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Given a Hermitian vector bundle over an infinite weighted graph, we define the Laplacian associated to a unitary connection on this bundle and study a perturbation of this Laplacian by an operator-valued potential. We give a sufficient condition for the resulting Schrödinger operator to serve as the generator of a strongly continuous contraction semigroup in the corresponding ℓ p -space. Additionally, in the context of ℓ 2 -space, we study the essential self-adjointness of the corresponding Schrödinger operator.

Introduction

In recent years, there has been quite a bit of interest in the study of the Laplacian in ℓ p -spaces on infinite graphs. More precisely, let (X, b, m) be a weighted graph as described in section 2.1 below, and let us define a form Q (c) on (complex-valued) finitely supported functions on X by

Q (c) (u, v) := 1 2 x,y∈X b(x, y)(u(x) -u(y))(v(x) -v(y)) + x∈X w(x)u(x)v(x), (1) 
where w : X → [0, ∞). We denote by ℓ p m (X) the space of ℓ p -summable functions with weight m, by Q (D) the closure of Q (c) in ℓ 2 m (X), and by L the associated self-adjoint operator. Since Q (D) is a Dirichlet form, the semigroup e -tL , t ≥ 0, extends to a C 0 -semigroup on ℓ p m (X), where p ∈ [1, ∞). We denote by -L p the generators of these semigroups. For the definition of a C 0 -semigroup and its generator, see the Appendix. The following characterization of operators L p is given in [START_REF] Keller | Dirichlet forms and stochastic completneness of graphs and subgraphs[END_REF]:

Assume that n∈Z + m(x n ) = ∞, (A1) 
for any sequence {x n } n∈Z + of vertices such that x n ∼ x n+1 for all n ∈ Z + . Then for any p ∈ [1, ∞), the operator L p is the restriction of L to 

Actually, (A1) can be replaced when w = 0 by the existence of a compatible intrinsic metric (see [START_REF] Hua | Harmonic functions of general graph Laplacians[END_REF]), or if moreover p = 2, by the existence of an intrinsic metric so that 1 m(x) y∈X b(x, y) is bounded on the combinatorial neighborhood of each distance ball (see [START_REF] Huang | A note on self-adjoint extensions of the Laplacian on weighted graphs[END_REF]).

In the case of Schrödinger operators on a Riemannian manifold M , it is natural to study maximal accretivity or self-adjointness properties of operators acting on sections of vector bundles over M . But the notion of vector bundle is also relevant on graphs; see for example [START_REF] Chung | Laplacian and vibrational spectra for homogeneous graphs[END_REF], [START_REF] Güneysu | Generalized Schrödinger semigroups on infinite graphs[END_REF], [START_REF] Kenyon | Spanning forests and the vector bundle Laplacian[END_REF], and [START_REF] Singer | Vector diffusion maps and the connection Laplacian[END_REF]. The aim of this paper is precisely to study such properties in the setup of a vector bundle over an infinite weighted graph. In particular, we give sufficient conditions for the equality of the operator H p,max (vector-bundle analogue of L p ) and the closure in Γ ℓ p m (X, F ) (the corresponding ℓ p -space of sections of the bundle F → X) of the restriction of H W,Φ (vector-bundle analogue of L) to the set of finitely supported sections.

The paper is organized as follows. In sections 2.1, 2.2 and 2.3 we describe the setting: discrete sets, Hermitian vector bundle and connection, operators. The main results are presented in section 2.4, with some comments. Section 3 contains preliminary results, such as Green's formula, Kato's inequality, and ground state transform. Sections 4, 5 and 6 are devoted to the proofs of the theorems. For readers' convenience, in the Appendix we review some concepts from the theory of semigroups of operators: C 0 -semigroup, generator of a C 0 -semigroup, and (maximal) accretivity. Additionally, the Appendix contains the statement of Hille-Yosida Theorem and a discussion of the connection between self-adjointness and maximal accretivity of operators in Hilbert spaces.

Setup and Main Results

2.1. Weighted Graph. Let X be a countably infinite set, equipped with a measure m :

X → (0, ∞). Let b : X × X → [0, ∞) be a function such that (i) b(x, y) = b(y, x), for all x, y ∈ X; (ii) b(x, x) = 0, for all x ∈ X; (iii) y∈X b(x, y) < ∞, for all x ∈ X.
Vertices x, y ∈ X with b(x, y) > 0 are called neighbors, and we denote this relationship by x ∼ y. We call the triple (X, b, m) a weighted graph. We assume that (X, b, m) is connected, that is, for any x, y ∈ X there exists a path γ joining x and y. Here, a path γ is a sequence x 1 , x 2 , . . . , x n ∈ X such that x = x 1 , y = x n , and x j ∼ x j+1 for all 1 ≤ j ≤ n -1.

Hermitian Vector Bundles on Graphs and Connection.

A family of (finite-dimensional) complex linear spaces F = x∈X F x is called a complex vector bundle over X and written F → X, if any two F x and F y are isomorphic as complex vector spaces. Then the F x 's are called the fibers of F → X, and the complex linear space Γ(X, F ) :

= x∈X F x = {u| u : X → F, u(x) ∈ F x }
is called the space of sections in F → X. We define the space of finitely supported sections Γ c (X, F ) of F → X as the set of u ∈ Γ(X, F ) such that u(x) = 0 for all but finitely many x ∈ X. Definition 2.1. An assignment Φ which associates to any x ∼ y an isomorphism of complex vector spaces Φ x,y : F x → F y is called a connection on the complex vector bundle F → X if

Φ y,x = (Φ x,y ) -1
for all x ∼ y.
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Definition 2.2. (i) A family of complex scalar products

•, • Fx : F x × F x → C, x ∈ X,
is called a Hermitian structure on the complex vector bundle F → X, and the pair given by F → X and •, • Fx is called a Hermitian vector bundle over X.

(ii) A connection Φ on a complex vector bundle F → X is called unitary with respect to a Hermitian structure •, • Fx if for all x ∼ y one has

Φ * x,y = Φ -1
x,y , where T * denotes the Hermitian adjoint of an operator T : F x → F y with respect to •, • Fx and

•, • Fy .

Definition 2.3. The Laplacian ∆ F,Φ b,m : D → Γ(X, F ) on a Hermitian vector bundle F → X with a unitary connection Φ is a linear operator with the domain

D := {u ∈ Γ(X, F ) : y∈X b(x, y)|u(y)| Fy < ∞, for all x ∈ X} (4) 
defined by the formula

(∆ F,Φ b,m u)(x) = 1 m(x) y∈X b(x, y)(u(x) -Φ y,x u(y)). (5) 
Remark 2.1. The operator ∆ F,Φ b,m is well-defined by the property (iii) of b(x, y), definition (4), and unitarity of Φ. Remark 2.2. In the case F x = {x} × C with the canonical Hermitian structure, the sections of the bundle F → X can be canonically identified with complex-valued functions on X. Under this identification, any connection Φ can be uniquely written as Φ x,y = e iθ(y,x) , where θ : X × X → [-π, π] is a magnetic potential on (X, b), which, due to (3), satisfies the property θ(x, y) = -θ(y, x) for all x, y ∈ X. As a result, we get the magnetic Laplacian operator. In particular, if θ ≡ 0 we get the Laplacian operator (2). Remark 2.3. If the property (iii) of b(x, y) is replaced by

♯ {y ∈ X : b(x, y) > 0} < ∞, for all x ∈ X,
where ♯ S denotes the number of elements in the set S, then the graph (X, b, m) is called locally finite. In this case, we have D = Γ(X, F ).

2.3.

Operators. From now on we will always work in the setting of a Hermitian vector bundle F → X over a connected weighted graph (X, b, m), equipped with a unitary connection Φ. Definition 2.4. We define the Schrödinger-type operator H W,Φ : D → Γ(X, F ) by the formula

H W,Φ u := ∆ F,Φ b,m u + W u, (6) 
where W (x) : F x → F x is a linear operator for any x ∈ X, and D is as in (4).

Definition 2.5. (i) For any 1 ≤ p < ∞ we denote by Γ ℓ p m (X, F ) the space of sections u ∈ Γ(X, F ) such that

u p p := x∈X m(x)|u(x)| p Fx < ∞,
where | • | Fx denotes the norm in F x corresponding to the Hermitian product •, • Fx . The space of p-summable functions X → C with weight m will be denoted by ℓ p m (X). (ii) By Γ ℓ ∞ (X, F ) we denote the space of bounded sections of F , equipped with the norm

u ∞ := sup x∈X |u(x)| Fx .
The space of bounded functions on X will be denoted by ℓ ∞ (X).

The space Γ ℓ 2 m (X, F ) is a Hilbert space with the inner product

(u, v) := x∈X m(x) u(x), v(x) Fx
Definition 2.6. Let 1 ≤ p < +∞ and let D be as in [START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators III-Magnetic fields[END_REF]. The maximal operator H p,max is given by the formula H p,max u = H W,Φ u with domain

Dom(H p,max ) = {u ∈ Γ ℓ p m (X, F ) ∩ D : H W,Φ u ∈ Γ ℓ p m (X, F )}. ( 7 
)
Moreover if

H W,Φ [Γ c (X, F )] ⊆ Γ ℓ p m (X, F ), (8) 
then we set H p,min := H W,Φ | Γc(X,F ) .

Remark 2.4. Note that under our assumptions on (X, b, m), the inclusion (8) does not necessarily hold. It holds if we additionally assume that (X, b, m) is locally finite.

Statement of the Results.

Let us denote by T the closure of an operator T .

Theorem 2.1. Let W (x) : F x → F x be a linear operator satisfying

Re W (x)u(x), u(x) Fx ≥ 0, for all x ∈ X. (9) 
Then, the following properties hold:

(i) Let 1 < p < ∞, and assume that ( 8) and (A1) are satisfied. Then the operator -H p,min generates a strongly continuous contraction semigroup on Γ ℓ p m (X, F ). (ii) Assume that ( 8) is satisfied for p = 1, and that (X, b, m) is stochastically complete.

Then the operator -H 1,min generates a strongly continuous contraction semigroup on Γ ℓ 1 m (X, F ). Remark 2.5. By Definition 1.1 in [START_REF] Keller | Dirichlet forms and stochastic completneness of graphs and subgraphs[END_REF], stochastic completeness of (X, b, m) means that there is no non-trivial and non-negative w ∈ ℓ ∞ (X) such that

(∆ b,m + α)w ≤ 0, α > 0,
where ∆ b,m is as in (2).

Remark 2.6. The notions of generator of a strongly continuous semigroup and (maximal) accretivity are reviewed in the Appendix. In particular, under the assumptions of Theorem 2.1, the operator H p,min is maximal accretive for all 1 ≤ p < ∞.

In the next theorem, we make the following assumption, which is stronger than ( 8): Theorem 2.2. Assume that the hypotheses (A1) and ( 9) are satisfied. Then, the following properties hold:

H W,Φ [Γ c (X, F )] ⊆ Γ ℓ p m (X, F ) ∩ Γ ℓ p * m (X, F ), (10) 
(i) Let 1 < p < ∞, and assume that (10) is satisfied. Then H p,min = H p,max .

(ii) Assume that ( 10) is satisfied for p = 1, and that (X, b, m) is stochastically complete. Then H 1,min = H 1,max .

Regarding self-adjointness problems, let us point out that the results of [START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators II-Metrically non complete graphs[END_REF][START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators III-Magnetic fields[END_REF][START_REF] Masamune | A Liouville property and its application to the Laplacian of an infinite graph[END_REF][START_REF] Milatovic | Essential self-adjointness of magnetic Schrödinger operators on locally finite graphs[END_REF][START_REF] Milatovic | Self-adjoint extensions of discrete magnetic Schrödinger operators[END_REF] and Theorem 5 in [START_REF] Keller | Unbounded Laplacians on graphs: basic spectral properties and the heat equation[END_REF] can be extended to the vector-bundle setting. As an illustration, we state and prove an extension of Theorem 1.5 from [START_REF] Milatovic | Self-adjoint extensions of discrete magnetic Schrödinger operators[END_REF]. Before doing this, we recall the notion of intrinsic metric.

Definition 2.7. A pseudo metric is a map d : X × X → [0, ∞) such that d(x, y) = d(y, x), for all x, y ∈ X; d(x, x) = 0, for all x ∈ X; and d(x, y) satisfies the triangle inequality.

A pseudo metric d = d σ is called a path pseudo metric if there exists a map σ : X × X → [0, ∞) such that σ(x, y) = σ(y, x), for all x, y ∈ X; σ(x, y) > 0 if and only if x ∼ y; and d σ (x, y) = inf{l σ (γ) : γ path connecting x and y}, where the length l σ of the path γ = (x 0 , x 1 , . . . , x n ) is given by

l σ (γ) = n-1 i=0 σ(x i , x i+1 ).
On a locally finite graph a path pseudo metric is a metric; see [START_REF] Huang | A note on self-adjoint extensions of the Laplacian on weighted graphs[END_REF].

Definition 2.8. A pseudo metric d on (X, b, m) is called intrinsic if 1 m(x) y∈X b(x, y)(d(x, y)) 2 ≤ 1, for all x ∈ X.
Remark 2.8. The concept of intrinsic pseudo metric goes back to [START_REF] Frank | Intrinsic metrics for non-local symmetric Dirichlet forms and applications to spectral theory[END_REF] which discusses a more general situation. For graphs it has been discussed in [START_REF] Huang | On stochastic completeness of weighted graphs[END_REF] and [START_REF] Folz | Gaussian upper bounds for heat kernels of continuous time simple random walks[END_REF]. Related earlier material can be found in [START_REF] Masamune | Conservation property of symmetric jump processes[END_REF].

We will also use the notion of a regular graph introduced in [START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators II-Metrically non complete graphs[END_REF], which is a (not yet published) revised version of [START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators II-Metrically non complete graphs[END_REF]. Let us first recall the definition of the boundary of a given set A ⊆ X: ∂A := {x ∈ A : there exists y ∈ X\A such that y ∼ x}.

In the sequel, we denote by ( X, d) the metric completion of (X, d), and we define the Cauchy boundary X ∞ as follows: X ∞ := X\X. Note that (X, d) is metrically complete if and only if X ∞ is empty. For a path metric d = d σ on X and x ∈ X, we set

D(x) := inf z∈X∞ d σ (x, z). (11) 
Definition 2.9. Let (X, b, m) be a graph with a path metric d σ . Let ε > 0 be given and let

X ε := {x ∈ X : D(x) ≥ ε}. (12) 
We say that (X, b, m) is regular if for any sufficiently small ε, any bounded subset of ∂X ε (for the metric d σ ) is finite.

Remark 2.9. Metrically complete graphs (X, d) are regular since D(x) = ∞ for any x ∈ X, which implies that X ε = X, so that ∂X ε = ∅.

Remark 2.10. Definition 2.9 covers also a broad class of metrically non-complete graphs. For instance, weighted graphs whose first Betti number is finite are regular. In particular, any weighted tree is regular; see [START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators II-Metrically non complete graphs[END_REF].

Theorem 2.3. Let (X, b, m) be a locally finite graph with an intrinsic path metric d = d σ .

Assume that (X, b, m) is regular. Let W (x) : F x → F x be a linear self-adjoint operator such that there exists a constant C satisfying

W (x)u(x), u(x) Fx ≥ 1 2(D(x)) 2 -C |u(x)| 2 Fx , (13) 
for all x ∈ X and all u ∈ Γ c (X, F ), where D(x) is as in [START_REF] Güneysu | Generalized Schrödinger semigroups on infinite graphs[END_REF]. Then H W,Φ is essentially self-adjoint on Γ c (X, F ).

Preliminary Lemmas

3.1. Green's Formula. We now give a variant of Green's formula, which is analogous to Lemma 2.1 in [START_REF] Güneysu | A Feynman-Kac-Itô formula for magnetic Schrödinger operators on graphs[END_REF] and Lemma 4.7 in [START_REF] Haeseler | Generalized solutions and spectrum for Dirichlet forms on graphs[END_REF].

Notation 3.1. Let W (x) : F x → F x be a linear operator. We denote by W * the Hermitian adjoint of W , that is, (W (x)) * is the Hermitian adjoint of W (x) with respect to •, • Fx .

Lemma 3.1. Let H W,Φ be as in [START_REF] Dodziuk | Kato's inequality and asymptotic spectral properties for discrete magnetic Laplacians[END_REF]. The following properties hold:

(i) if H W,Φ [Γ c (X, F )] ⊆ Γ ℓ p m (X, F ) for some 1 ≤ p ≤ ∞, then any u ∈ Γ ℓ p * m (X, F ) with
1/p + 1/p * = 1 belongs to the set D defined by ( 4); (ii) for all u ∈ D and all v ∈ Γ c (X, F ), the sums

x∈X m(x) H W,Φ u, v Fx , x∈X m(x) u, H W * ,Φ v Fx ,
and the expression

1 2 x,y∈X b(x, y) u(x) -Φ y,x u(y), v(x) -Φ y,x v(y) Fx + x∈X m(x) W (x)u(x), v(x) Fx (14) 
converge absolutely and agree.

Proof. To make the notations simpler, throughout the proof we suppress This concludes the proof of property (i). Let us prove property (ii). Since v ∈ Γ c (X, F ), the first sum is performed over finitely many x ∈ X. Hence, this sum converges absolutely. The proof of absolute convergence of the second sum and the expression ( 14) is based on the next two estimates. By Cauchy-Schwarz inequality and unitarity of Φ y,x we get

F x in | • | Fx . From the assumption H W,Φ [Γ c (X, F )] ⊆ Γ ℓ p m (X, F ),
x,y∈X |b(x, y) u(x), Φ y,x v(y) Fx | ≤ y∈X |v(y)| x∈X b(x, y)|u(x)| < ∞,
where the convergence follows from the fact that u ∈ D and v ∈ Γ c (X, F ). Similarly,

x,y∈X |b(x, y) u(x), v(x) Fx | ≤ x∈X |u(x)||v(x)|   y∈X b(x, y)   < ∞,
where the convergence follows by property (iii) of b(x, y) and since v ∈ Γ c (X, F ). The equality of the three sums follows directly from Fubini's theorem. This shows property (ii).

3.2. Kato's Inequality. This version of Kato's inequality extends that of [START_REF] Dodziuk | Kato's inequality and asymptotic spectral properties for discrete magnetic Laplacians[END_REF].

Lemma 3.2. Let ∆ b,m and ∆ F,Φ b,m be defined as in ( 2) and ( 5) respectively. Then, the following pointwise inequality holds for all u ∈ D:

|u|(∆ b,m |u|) ≤ Re ∆ F,Φ b,m u, u Fx , (15) 
where | • | denotes the norm in F x , and Re z denotes the real part of a complex number z.

Proof. Using (2), ( 5), and the unitarity of Φ y,x , we obtain

|u(x)|((∆ b,m |u|)(x)) -Re ∆ F,Φ b,m u(x), u(x) Fx = 1 m(x) y∈X b(x, y) [Re Φ y,x u(y), u(x) Fx -|u(x)||u(y)|] ≤ 0.

Ground State Transform.

Using the definition of H W,Φ and unitarity of Φ y,x , it is easy to prove the following vector-bundle analogue of "ground state transform" from [START_REF] Frank | Intrinsic metrics for non-local symmetric Dirichlet forms and applications to spectral theory[END_REF], [START_REF] Güneysu | A Feynman-Kac-Itô formula for magnetic Schrödinger operators on graphs[END_REF], and [START_REF] Haeseler | Generalized solutions and spectrum for Dirichlet forms on graphs[END_REF]. We omit the proof here. Lemma 3.3. Assume that W (x) : F x → F x is a self-adjoint operator. Assume that (8) is satisfied for p = 2. Let λ ∈ R, and let u ∈ D so that

( H W,Φ -λ)u = 0.
Then, for all finitely supported functions g : X → R, we have

(( H W,Φ -λ)(gu), gu) = 1 2 x,y∈X b(x, y)(g(x) -g(y)) 2 (Re u(x), Φ y,x u(y) Fx ).

Proof of Theorem 2.1

In Lemmas 4.1 and 4.3 below, we assume that the hypotheses of Theorem 2.1 are satisfied.

Lemma 4.1. Let 1 ≤ p < ∞. Then, the operator H p,min satisfies the following inequality for all u ∈ Γ c (X, F ):

Re x∈X m(x) (H p,min u)(x), u(x)|u(x)| p-2 Fx ≥ 0. ( 16 
)
Proof. Let u ∈ Γ c (X, F ) be arbitrary. By Lemma 3.1(ii) with W = 0, u ∈ Γ c (X, F ) and v := u|u| p-2 , we have

Re x∈X m(x) (∆ F,Φ b,m u)(x), u(x)|u(x)| p-2 Fx = 1 2 x,y∈X b(x, y) [|u(x)| p +|u(y)| p -Re Φ y,x u(y), u(x)|u(x)| p-2 Fx -Re Φ x,y u(x), u(y)|u(y)| p-2 Fy ≥ 1 2 x,y∈X b(x, y) |u(x)| p + |u(y)| p -|u(x)||u(y)| p-1 -|u(y)||u(x)| p-1 . (17) 
For p = 1, from ( 17) and the assumption (9) we easily get [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF] From the last two inequalities we get

-|u(x)||u(y)| p-1 -|u(y)||u(x)| p-1 ≥ -|u(x)| p -|u(y)| p . (18) 
Using ( 18), ( 17), and the assumption ( 9), we obtain [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF].

The following lemma is a special case of Proposition 8 in [START_REF] Keller | Unbounded Laplacians on graphs: basic spectral properties and the heat equation[END_REF]: Lemma 4.2. Assume (A1). Let α > 0 and 1 ≤ p < ∞. Let ∆ b,m be as in [START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators II-Metrically non complete graphs[END_REF]. Assume that u ∈ ℓ p m (X) is a real-valued function satisfying the inequality (∆ b,m + α)u ≥ 0. Then u ≥ 0. Remark 4.1. The case p = ∞ is more complicated and involves the notion of stochastic completeness; see, for instance, [START_REF] Huang | On stochastic completeness of weighted graphs[END_REF], [START_REF] Keller | Unbounded Laplacians on graphs: basic spectral properties and the heat equation[END_REF], [START_REF] Keller | Dirichlet forms and stochastic completneness of graphs and subgraphs[END_REF].

In the remainder of this section and in section 5, we will use certain arguments of Section A in [START_REF] Kato | L p -theory of Schrödinger operators with a singular potential[END_REF] and [START_REF] Milatovic | On m-accretivity of perturbed Bochner Laplacian in L p spaces on Riemannian manifolds[END_REF] in our setting. In the sequel, Ran T denotes the range of an operator T .

Lemma 4.3. Let 1 < p < ∞ and let λ ∈ C with Re λ > 0. Then, Ran (H p,min + λ) is dense in ℓ p m (X). Proof. Let u ∈ (Γ ℓ p m (X, F )) * = Γ ℓ p * m (X, F ), be a continuous linear functional that annihilates (λ + H p,min )Γ c (X, F ): x∈X m(x) (λ + H p,min )v(x), u(x) Fx = 0, for all v ∈ Γ c (X, F ). ( 19 
)
By assumption [START_REF] Folz | Gaussian upper bounds for heat kernels of continuous time simple random walks[END_REF] we know that

H W,Φ v ∈ Γ ℓ p m (X, F ). Since u ∈ Γ ℓ p * m (X, F ), by Lemma 3.1(i)
we have u ∈ D. Now using Lemma 3.1(ii) in [START_REF] Keller | Dirichlet forms and stochastic completneness of graphs and subgraphs[END_REF], we get

x∈X m(x) v(x), (λ + H W * ,Φ )u(x) Fx = 0, for all v ∈ Γ c (X, F ),
where λ is the complex conjugate of λ. The last equality leads to

( λ + ∆ F,Φ b,m + W * )u = 0. ( 20 
)
Using Kato's inequality [START_REF] Huang | A note on self-adjoint extensions of the Laplacian on weighted graphs[END_REF], assumption [START_REF] Frank | Intrinsic metrics for non-local symmetric Dirichlet forms and applications to spectral theory[END_REF], and ( 20) we have

|u|(∆ b,m |u|) ≤ Re ∆ F,Φ b,m u, u Fx = -(Re λ)|u| 2 -Re W * u, u Fx ≤ -(Re λ)|u| 2 ,
where |u| ∈ ℓ p * m (X) with 1 < p * < ∞. Rewriting the last inequality, we obtain

|u|(∆ b,m |u| + (Re λ)|u|) ≤ 0.
For all x ∈ X such that u(x) = 0, we may divide both sides of the last inequality by |u(x)| to get

(∆ b,m + Re λ)|u| ≤ 0. ( 21 
)
Note that the inequality ( 21) also holds for those x ∈ X such that u(x) = 0; in this case, the left hand side of ( 21) is non-positive by [START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators II-Metrically non complete graphs[END_REF]. Thus, the inequality ( 21) holds for all x ∈ X. By Lemma 4.2, from ( 21) we get |u| ≤ 0. Hence, u = 0.

End of the Proof of Theorem 2.1(i). The inequality [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF] means that H p,min is accretive in Γ ℓ p m (X, F ); see (R1) in the Appendix with j(u) = u|u| p-2 . Hence, H p,min is closable and H p,min is accretive in Γ ℓ p m (X, F ); see the Appendix. Therefore, for all u ∈ Dom(H p,min ) the following inequality holds:

Re x∈X m(x) (H p,min u)(x), u(x)|u(x)| p-2 Fx ≥ 0. ( 22 
)
Let λ ∈ C with Re λ > 0. Using Hölder's inequality, from [START_REF] Masamune | Conservation property of symmetric jump processes[END_REF] we get

(Re λ) u p ≤ (λ + H p,min )u p , (23) 
for all u ∈ Dom(H p,min ). By Lemma 4.3 we know that Ran (H p,min + λ) is dense in Γ ℓ p m (X, F ). This, together with [START_REF] Milatovic | On m-accretivity of perturbed Bochner Laplacian in L p spaces on Riemannian manifolds[END_REF], shows that Ran (H p,min + λ) = Γ ℓ p m (X, F ). Hence, from [START_REF] Milatovic | On m-accretivity of perturbed Bochner Laplacian in L p spaces on Riemannian manifolds[END_REF] we get

(ξ + H p,min ) -1 ≤ 1 ξ , for all ξ > 0,
where • is the operator norm Γ ℓ p m (X, F ) → Γ ℓ p m (X, F ). Thus, -H p,min satisfies the conditions (C1), (C2) and (C3) of Hille-Yosida Theorem; see the Appendix. Hence, -H p,min is the generator of a strongly continuous contraction semigroup on Γ ℓ p m (X, F ).

Proof of Theorem 2.1(ii). Repeating the proof of Lemma 4.3 in the case p = 1 and using Remark 2.5, from [START_REF] Masamune | A Liouville property and its application to the Laplacian of an infinite graph[END_REF] with u ∈ Γ ℓ ∞ (X, F ) we obtain |u| = 0. Therefore, for all λ ∈ C with Re λ > 0, the set Ran (H 1,min + λ) is dense in Γ ℓ 1 m (X, F ). From here on, we may repeat the proof of Theorem 2.1(i).

Proof of Theorem 2.2

We begin with the following lemma. Lemma 5.1. Let 1 ≤ p < ∞ and 1/p + 1/p * = 1. Assume that (10) is satisfied. Then H p,max is a closed operator.

Proof. Let u k be a sequence of elements in Dom(H p,max ) such that u k → u and H p,max u k → f , as k → ∞, using the norm convergence in Γ ℓ p m (X, F ). We need to show that u ∈ Dom(H p,max ) and f = H p,max u. Let v ∈ Γ c (X, F ) be arbitrary, and consider the sum

x∈X m(x) (H p,max u k )(x), v(x) Fx = x∈X m(x) ( H W,Φ u k )(x), v(x) Fx . By Lemma 3.1(ii) we have x∈X m(x) ( H W,Φ u k )(x), v(x) Fx = x∈X m(x) u k (x), ( H W * ,Φ v)(x) Fx . (24) 
Using the norm convergence u k → u in Γ ℓ p m (X, F ) and the assumption

H W,Φ v ∈ Γ ℓ p * m (X, F ) with 1/p + 1/p * = 1, by Hölder's inequality we get x∈X m(x) u k (x), ( H W * ,Φ v)(x) Fx → x∈X m(x) u(x), ( H W * ,Φ v)(x) Fx . Using the norm convergence H W,Φ u k → f in Γ ℓ p m (X, F ), by Hölder's inequality we get x∈X m(x) ( H W,Φ u k )(x), v(x) Fx → x∈X m(x) f (x), v(x) Fx .
Therefore, taking the limit as k → ∞ on both sides of (24), we obtain

x∈X m(x) u(x), ( H W * ,Φ v)(x) Fx = x∈X m(x) f (x), v(x) Fx . (25) 
Since u ∈ Γ ℓ p m (X, F ) and since

H W,Φ [Γ c (X, F )] ⊆ Γ ℓ p * m
(X, F ), we may use Lemma 3.1(i) to conclude u ∈ D. Using Lemma 3.1(ii), we rewrite the left-hand side of (25) as follows:

x∈X m(x) u(x), ( H W * ,Φ v)(x) Fx = x∈X m(x) ( H W,Φ u)(x), v(x) Fx . (26) 
Since v ∈ Γ c (X, F ) is arbitrary, by ( 25) and ( 26) we get H W,Φ u = f . Thus, u ∈ Dom(H p,max ) and H p,max u = f . Therefore, H p,max is closed.

Maximal Operator Associated with ∆ b,m . Let 1 ≤ p < ∞ and let ∆ b,m be as in [START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators II-Metrically non complete graphs[END_REF]. We define the maximal operator L p,max in ℓ p m (X) by the formula L p,max u = ∆ b,m u with the domain

Dom(L p,max ) = {u ∈ ℓ p m (X) ∩ D : ∆ b,m u ∈ ℓ p m (X)},
where D is as in (4) and sections are replaced by functions X → C.

Under the assumption (A1), it is known that -L p,max generates a strongly continuous contraction semigroup on ℓ p m (X) for all 1 ≤ p < ∞; see Theorem 5 in [START_REF] Keller | Dirichlet forms and stochastic completneness of graphs and subgraphs[END_REF]. Thus, by Hille-Yosida Theorem (see the Appendix), we have (0, ∞) ⊂ ρ(-L p,max ) and (ξ + L p,max

) -1 ≤ 1 ξ , (27) 
for all ξ > 0, where ρ(T ) denotes the resolvent set of an operator T .

Lemma 5.2. Let 1 ≤ p < ∞ and let λ ∈ C with Re λ > 0. Assume that the hypotheses (A1) and ( 9) are satisfied. Then, the following properties hold:

(i) for all u ∈ Dom(H p,max ), we have 

(
λ + ∆ b,m )|u|) ≤ Re (λ + ∆ F,Φ b,m )u, u Fx ≤ Re (λ + ∆ F,Φ b,m + W )u, u Fx = Re f, u Fx ≤ |f ||u|.
In what follows, we denote ξ := Re λ. For all x ∈ X such that u(x) = 0, we may divide both sides of the last inequality by |u(x)| to get

(ξ + ∆ b,m )|u| ≤ |f |. ( 29 
)
Note that the inequality (29) also holds for those x ∈ X such that u(x) = 0; in this case, the left hand side of (29) is non-positive by [START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators II-Metrically non complete graphs[END_REF]. Thus, the inequality (29) holds for all x ∈ X.

According to [START_REF] Singer | Vector diffusion maps and the connection Laplacian[END_REF] the linear operator (ξ + L p,max ) -1 : ℓ p m (X) → ℓ p m (X) is bounded. Hence, we can rewrite (29) as Taking the ℓ p -norms on both sides and using [START_REF] Singer | Vector diffusion maps and the connection Laplacian[END_REF] we get

(ξ + ∆ b,m )[(ξ + L p,max ) -1 |f | -|u|] ≥ 0. ( 30 
) Since (ξ + L p,max ) -1 |f | ∈ ℓ p m (X) and |u| ∈ ℓ p m (X), it follows that ((ξ + L p,max ) -1 |f | -|u|) ∈ ℓ p m ( 
u p ≤ (ξ + L p,max ) -1 |f | p ≤ 1 ξ f p ,
and (28) is proven. We turn to property (ii). Assume that u ∈ Dom(H p,max ) and (λ+H p,max )u = 0. Using (28) we get u p = 0, and hence u = 0. This shows that λ + H p,max is injective.

End of the Proof of Theorem 2.2. We will consider the cases 1 < p < ∞ and p = 1 simultaneously, keeping in mind the stochastic completeness assumption on (X, b, m) when p = 1 The following lemma, whose proof is given in Proposition 4.1 of [START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators II-Metrically non complete graphs[END_REF], describes an important property of regular graphs. For the case of metrically complete graphs, see [START_REF] Huang | A note on self-adjoint extensions of the Laplacian on weighted graphs[END_REF]. Lemma 6.1. Assume that (X, b, m) is a locally finite graph with a path metric d σ . Additionally, assume that (X, b, m) is regular in the sense of Definition 2.9. Let X ε be as in [START_REF] Haeseler | Generalized solutions and spectrum for Dirichlet forms on graphs[END_REF]. Then, closed and bounded subsets of X ε are finite.

By Remark 2.4 and Lemma

3.1(ii), H W,Φ | Γc(X,F ) is a symmetric operator in Γ ℓ 2 m (X, F ).
To prove Theorem 2.3 we follow the method of Theorem 1.5 in [START_REF] Milatovic | Self-adjoint extensions of discrete magnetic Schrödinger operators[END_REF], which goes back to [START_REF] De Verdière | Confining quantum particles with a purely magnetic field[END_REF] in the continuous setting. The main ingredient is the following Agmon-type estimate: Lemma 6.2. Let λ ∈ R and let v ∈ Γ ℓ 2 m (X, F ) be a weak solution of ( H W,Φλ)v = 0. Assume that there exists a constant c 1 > 0 such that, for all u ∈ Γ c (X, F )

(u, ( H W,Φ -λ)u) ≥ 1 2 x∈X max 1 D(x) 2 , 1 m(x)|u(x)| 2 Fx + c 1 u 2 , (32) 
where D(x) is as in [START_REF] Güneysu | Generalized Schrödinger semigroups on infinite graphs[END_REF]. Then v ≡ 0.

Proof. Let ρ be a number such that 0 < ρ < 1/2. For any ε > 0, we define

f ε : X → R by f ε (x) = F ε (D(x))
, where D(x) is as in [START_REF] Güneysu | Generalized Schrödinger semigroups on infinite graphs[END_REF] and

F ε : R + → R is given by F ε (s) = 0 for s ≤ ε; F ε (s) = (s -ε)/(ρ -ε) for ε ≤ s ≤ ρ; F ε (s) = s for ρ ≤ s ≤ 1; F ε (s) = 1 for s ≥ 1.
Let us fix a vertex x 0 . For any α > 0, we define g

α : X → R by g α (x) = G α (d σ (x 0 , x)), where G α : R + → R is given by G α (s) = 1 for s ≤ 1/α; G α (s) = -αs + 2 for 1/α ≤ s ≤ 2/α; G α (s) = 0 for s ≥ 2/α. We also define E ε,α := {x ∈ X : ε ≤ D(x) and d σ (x 0 , x) ≤ 2/α}.
By Lemma 6.1 the set E ε,α is finite because E ε,α is a closed and bounded subset of X ε , where X ε is as in [START_REF] Haeseler | Generalized solutions and spectrum for Dirichlet forms on graphs[END_REF]. Since the support of f ε g α is contained in E ε,α , it follows that f ε g α is finitely supported. Using Lemma 4.1 in [START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators II-Metrically non complete graphs[END_REF] it is easy to see that f ε g α is a β-Lipschitz function with respect to d σ , where β = ρ/(ρε) + α. By Lemma 3.3 with with g replaced by f ε g α , unitarity of Φ y,x , β-Lipschitz property of f ε g α , and Defintion 2.8, we have

(f ε g α v, ( H W,Φ -λ)(f ε g α v)) ≤ 1 2 ρ ρ -ε + α 2 x∈X m(x)|v(x)| 2 Fx . (33) 
On the other hand, by the definitions of f ε and g α and the assumption (32) we have We fix ρ and ε, and let α → 0+. After that, we let ε → 0+. Finally, we take the limit as ρ → 0+. As a result, we get v ≡ 0.

(f ε g α v, ( H W,Φ -λ)(f ε g α v)) ≥ 1 2 x∈Sρ,α m(x)|v(x)| 2 Fx + c 1 f ε g α v 2 , (34) 
End of the Proof of Theorem 2.3. Since ∆ F,Φ b,m | Γc(X,F ) is a non-negative operator, for all u ∈ Γ c (X, F ), we have (u, H W,Φ u) ≥ x∈X m(x) W (x)u(x), u(x) Fx .

Therefore, using assumption (13) we obtain:

(u, ( H W,Φ -λ)u) ≥ 1 2 x∈X 1 D(x) 2 m(x)|u(x)| 2 Fx -(λ + C) u 2 ≥ 1 2 x∈X max 1 D(x) 2 , 1 m(x)|u(x)| 2 Fx -(λ + C + 1/2) u 2 . ( 35 
)
Choosing, for example, λ = -C -3/2 in (35) we get the inequality (32) with c 1 = 1. Thus, ( H W,Φ -λ)| Γc(X,F ) with λ = -C-3/2 is a symmetric operator satisfying (u, ( H W,Φ -λ)u) ≥ u 2 , for all u ∈ Γ c (X, F ). By Theorem X.26 in [START_REF] Reed | Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness[END_REF] we know that the essential self-adjointness of ( H W,Φλ)| Γc(X,F ) is equivalent to the following statement: if v ∈ Γ ℓ 2 m (X, F ) satisfies ( H W,Φλ)v = 0, then v = 0. Thus, by Lemma 6.2, the operator ( H W,Φλ)| Γc(X,F ) is essentially self-adjoint. Thus, H W,Φ | Γc(X,F ) is essentially self-adjoint.

Generators of strongly continuous contraction semigroups are characterized as follows (Theorem II.3.5 in [START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF]):

Hille-Yosida Theorem. An operator A on a Banach space generates a strongly continuous contraction semigroup if and only if the following three conditions are satisfied: (C1) A is densely defined and closed; (C2) (0, ∞) ⊂ ρ(A), where ρ(A) is the resolvent set of A; (C3) (ξ -A) -1 ≤ ξ -1 , for all ξ > 0.

Finally, we note that if A generates a strongly continuous contraction semigroup, then -A is maximal accretive.

  Dom(L p ) = {u ∈ ℓ p m (X) ∩ D s : Lu ∈ ℓ p m (X)},where D s := {u : X → C : y∈X b(x, y)|u(y)| < ∞, ∀x ∈ X}, L := ∆ b,m + w/m, and (∆ b,m u)(x) := 1 m(x) y∈X b(x, y)(u(x)u(y)).

with 1 /p + 1 /p * = 1 . 2 . 7 .

 11127 Remark If (X, b, m) is a locally finite graph then[START_REF] Güneysu | A Feynman-Kac-Itô formula for magnetic Schrödinger operators on graphs[END_REF] is satisfied. If inf x∈X m(x) > 0 then (A1) and[START_REF] Güneysu | A Feynman-Kac-Itô formula for magnetic Schrödinger operators on graphs[END_REF] are satisfied.

.

  it is easily seen that the function y → b(x, y)/m(y) belongs to ℓ p m (X), for all x ∈ X. In the case 1 < p * < ∞, for all u ∈ Γ ℓ p * m (X, F ), by Hölder's inequality with 1/p + 1/p * = 1 we have y∈X b(x, y)|u(y)| ≤ In the case p * = 1, for all u ∈ Γ ℓ 1 m (X, F ), by Hölder's inequality with p = ∞ and p * = 1 we have y∈X b(x, y)|u(y)| ≤ sup y∈X In the case p * = ∞, for all u ∈ Γ ℓ ∞ (X, F ), by Hölder's inequality with p = 1 and p * = ∞ we have y∈X b(x, y)|u(y)| ≤ sup y∈X

  X). Hence, applying Lemma 4.2 to (30) we get |u| ≤ (ξ + L p,max ) -1 |f |.

  whereS ρ,α := {x ∈ X : ρ ≤ D(x) and d σ (x 0 , x) ≤ 1/α}.Combining (34) and (33) we obtain1 2 x∈Sρ,α m(x)|v(x)| 2 Fx + c 1 f ε g α v 2 ≤ )|v(x)| 2 Fx .

  Re λ) u p ≤ (λ + H p,max )u p ; (28) (ii) the operator λ + H p,max : Dom(H p,max ) ⊂ Γ ℓ p m (X, F ) → Γ ℓ p m (X, F ) is injective. Proof. Let u ∈ Dom(H p,max) and f := (λ + H p,max )u. By the definition of Dom(H p,max ), we have f ∈ Γ ℓ p m (X, F ), where 1 < p < +∞. Using (15) and (9) we get |u|((Re

  . Since H p,min ⊂ H p,max and since H p,max is closed (see Lemma 5.1), it follows that H p,min ⊂ H p,max . To prove the equality H p,min = H p,max , it is enough to show that Dom(H p,max ) ⊂ Dom(H p,min ). Let ξ > 0, let u ∈ Dom(H p,max ), and consider v := (H p,min + ξ) -1 (H p,max + ξ)u. (31) By Theorem 2.1, the element v is well-defined, and v ∈ Dom(H p,min ). Since H p,min ⊂ H p,max , from (31) we get (H p,max + ξ)(vu) = 0. Since H p,max + ξ is an injective operator (see Lemma 5.2), we get v = u. Therefore, u ∈ Dom(H p,min ).

6. Proof of Theorem 2.3
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Appendix

In this section we review some concepts from the theory of one-parameter semigroups of operators on Banach spaces. Our exposition follows Chapters I and II of [START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF]. A family of bounded linear operators (T (t)) t≥0 on a Banach space X is called a strongly continuous semigroup (or C 0 -semigroup) if it satisfies the functional equation

and the maps t → T (t)u are continuous from R + to X for all u ∈ X . Here, I stands for the identity operator on X . The generator A : Dom(A) ⊂ X → X of a strongly continuous semigroup (T (t)) t≥0 on a Banach space X is the operator

defined for every u in its domain

By Theorem II.1.4 in [START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF], the generator of a strongly continuous semigroup is a closed and densely defined operator that determines the semigroup uniquely. A linear operator A on a Banach space X with norm • is called accretive if

for all ξ > 0 and all u ∈ Dom(A). In the literature on semigroups of operators, the term dissipative is used when referring to an operator A such that -A is accretive. If A is a densely defined accretive operator, then A is closable and its closure A is also accretive; see Proposition II.3.14 in [START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF]. We now give another description of accretivity. Let X * be the dual space of X . By the Hahn-Banach theorem, for every u ∈ X there exists u * ∈ X * such that u, u * = u 2 = u * 2 , where u, u * denotes the evaluation of the functional u * at u. For every u ∈ X , we define

By Proposition II.3.23 of [START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF], an operator A is accretive if and only if for every u ∈ Dom(A) there exists j(u) ∈ J (u) such that Re Au, j(u) ≥ 0.

(R1)

An operator A on a Banach space X is called maximal accretive if it is accretive and ξ + A is surjective for all ξ > 0. There is a connection between maximal accretivity and self-adjointness of operators on Hilbert spaces: A is a self-adjoint and non-negative operator if and only if A is symmetric, closed, and maximal accretive; see Problem V.3.32 in [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF].

A contraction semigroup (T (t)) t≥0 on a Banach space X is a semigroup such that T (t) ≤ 1 for all t ≥ 0, where • denotes the operator norm (of a bounded linear) operator X → X .