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ESSENTIAL SELF-ADJOINTNESS OF SCHRÖDINGER OPERATORS ON

VECTOR BUNDLES OVER INFINITE GRAPHS

OGNJEN MILATOVIC AND FRANÇOISE TRUC

Abstract. Given a Hermitian vector bundle over an infinite weighted graph, we define the

Laplacian associated to a unitary connection on this bundle and study the essential self-adjointness

of a perturbation of this Laplacian by an operator-valued potential. Additionally, we give a suf-

ficient condition for the resulting Schrödinger operator to serve as the generator of a strongly

continuous contraction semigroup in the corresponding ℓp-space.

1. Introduction

In recent years, there has been quite a bit of interest in the study of self-adjoint extensions

of the adjacency operator, (magnetic) Laplacians and Schrödinger-type operators on infinite

graphs, (see, for instance, [1, 5, 6, 15, 16, 17, 19, 22, 30, 31, 32, 35, 36, 39, 42, 49, 50, 51, 52])

and also in the study of Laplacian in ℓp-spaces on infinite graphs. To describe the context

of some of those studies, let (X, b,m) be a weighted graph with vertex set X, edge weights b

(satisfying the conditions described in section 2.1 below), and vertex weights m : X → (0,∞).

Let Q(c) be the form defined on (complex-valued) finitely supported functions on X,

Q(c)(u, v) :=
1

2

∑

x,y∈X

b(x, y)(u(x) − u(y))(v(x) − v(y)) +
∑

x∈X

w(x)u(x)v(x), (1)

where w : X → [0,∞). Let ℓpm(X) be the space of ℓp-summable functions with weight m as

in Definition 2.5 below, let Q(D) be the closure of Q(c) in ℓ2m(X), and let L be the associated

self-adjoint operator. Since Q(D) is a Dirichlet form, the semigroup e−tL, t ≥ 0, extends to a

C0-semigroup on ℓpm(X), where p ∈ [1,∞). Let Lp denote the generators of these semigroups.

The following assumption on (X, b,m) plays an important role in the description of operators

Lp:

Assumption (A1) For any sequence {xn}n∈Z+ of vertices such that xn ∼ xn+1 for all n ∈ Z+,

the following equality holds: ∑

n∈Z+

m(xn) = ∞.

Before describing the operators Lp, we introduce some notations. Let

D̃s := {u : X → C :
∑

y∈X

b(x, y)|u(y)| <∞, for all x ∈ X},
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let ∆b,m be the Laplacian operator acting on functions u ∈ D̃s,

(∆b,mu)(x) :=
1

m(x)

∑

y∈X

b(x, y)(u(x) − u(y)), (2)

and let L̃ := ∆b,m + w/m with domain D̃s.

Under the assumption (A1), the following characterization of operators Lp is given in [36,

Theorem 5]: for any p ∈ [1,∞) the operator Lp is the restriction of L̃ to

Dom(Lp) = {u ∈ ℓpm(X) ∩ D̃s : L̃u ∈ ℓpm(X)}.

Actually, assumption (A1) can be replaced (in the case w = 0) by the existence of an intrinsic

metric with finite jump size and such that the restriction of the weighted degree

Degm(x) :=
1

m(x)

∑

y∈X

b(x, y), x ∈ X,

to every distance ball is bounded, see [30] (for p = 2) and [26] (for any p). In analogy with

Karp’s theorem for Riemannian manifolds, the authors of [26] additionally prove an ℓp-Liouville

type theorem, which, in the case p ∈ (1,∞), generalizes earlier results of [24], [25], [39], and [45].

In the setting of a graph that has uniform subexponential growth with respect to an intrinsic

metric with finite jump size, the paper [2] establishes p-independence of the spectrum of the

operator Lp described above.

As in the continuous case (Schrödinger operators on Riemannian manifolds), it is natural to

extend self-adjointness and spectral problems to operators acting on vector-valued functions or,

more generally, sections of vector bundles over graphs. In the last two decades, the notion of

vector bundles and connections on graphs has attracted quite a bit of attention, with fruitful

applications, such as analysis of large data sets [48] and the theory of molecular bonds [4]. In

the case of finite graphs, the author of [38] extends the classical matrix-tree theorem (which

relates the determinant of the combinatorial Laplacian to the number of spanning trees) to the

context of one- and two-dimensional vector-bundle Laplacians. The vector-bundle Laplacians

and Schrödinger-type operators considered in the present paper (see definitions 2.3 and 2.4)

are a generalization to infinite graphs of the operator from [38], and our goal is to investigate

conditions which ensure maximal accretivity or essential self-adjointness. Let us also mention

the paper [20], which establishes a Feynman–Kac-type formula for Schrödinger operators on

Hermitian vector bundles over arbitrary weighted graphs.

We close this section with an outline of the organization of our paper. In sections 2.1 and 2.2 we

describe the setting of discrete sets and the notion of (Hermitian) vector bundle and connection.

The operator theoretic preliminaries are explained in section 2.3. The main results are presented

in section 2.4, with some comments. Section 3 contains preliminary results, such as Green’s

formula, Kato’s inequality, and ground state transform. The last part of the paper is devoted

to the proofs of the theorems.
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2. Setup and main results

2.1. Weighted graph. Let X be a countably infinite set. We assume that X is equipped with

a measure m : X → (0,∞). Let b : X ×X → [0,∞) be a function such that

(i) b(x, y) = b(y, x), for all x, y ∈ X;

(ii) b(x, x) = 0, for all x ∈ X;

(iii) Deg1(x) :=
∑

y∈V

b(x, y) <∞, for all x ∈ X.

Vertices x, y ∈ X with b(x, y) > 0 are called neighbors, and we denote this relationship by

x ∼ y. We call the triple (X, b,m) a weighted graph. We assume that (X, b,m) is connected, that

is, for any x, y ∈ X there exists a path γ joining x and y. Here, γ is a sequence x1, x2, . . . , xn ∈ X

such that x = x1, y = xn, and xj ∼ xj+1 for all 1 ≤ j ≤ n− 1.

2.2. Hermitian vector bundles on graphs and connection. Following the discussion of [38,

Section 3], which concerned finite graphs, we define a Hermitian vector bundle over the graph

(X, b,m) described in section 2.1. A family of (finite-dimensional) complex linear spaces F =

(Fx)x∈X is called a complex vector bundle over X and written F → X, if any two Fx and Fy

are isomorphic as complex vector spaces. Then the Fx’s are called the fibers of F → X, and the

complex linear space

Γ(X,F ) :=
∏

x∈X

Fx = {u|u : X → F, u(x) ∈ Fx}

is called the space of sections in F → X. We define the space of finitely supported sections

Γc(X,F ) of the bundle F → X to be the set of u ∈ Γ(X,F ) such that u(x) = 0 for all but

finitely many x ∈ X.

Definition 2.1. Let F → X be a complex vector bundle. An assignment Φ which associates to

any x ∼ y an isomorphism of complex vector spaces Φx,y : Fx → Fy is called a connection on

F → X if

Φy,x = (Φx,y)
−1 for all x ∼ y. (3)

We now define Hermitian vector bundles and the corresponding unitary connections on dis-

crete sets:

Definition 2.2. (i) A family of complex scalar products

〈·, ·〉Fx
: Fx × Fx → C, x ∈ X,

is called a Hermitian structure on the complex vector bundle F → X, and the pair given by

F → X and 〈·, ·〉Fx
is called a Hermitian vector bundle over X.

(ii) Let F → X be a complex vector bundle with a connection Φ defined on it. Then Φ is called

unitary with respect to a Hermitian structure 〈·, ·〉Fx
on F → X if for all x ∼ y one has

Φ∗

x,y = Φ−1
x,y, (4)
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where T ∗ denotes the Hermitian adjoint of an operator T with respect to 〈·, ·〉Fx
.

Definition 2.3. The Laplacian ∆F,Φ
b,m : D̃ → Γ(X,F ) on a Hermitian vector bundle F → X with

a unitary connection Φ is a linear operator with the domain

D̃ := {u ∈ Γ(X,F ) :
∑

y∈X

b(x, y)|u(y)|Fy
<∞, for all x ∈ X} (5)

defined by the formula

(∆F,Φ
b,mu)(x) =

1

m(x)

∑

y∈X

b(x, y)(u(x) − Φy,xu(y)). (6)

Remark 2.1. The operator ∆F,Φ
b,m is well-defined by the property (iii) of b(x, y), definition (5),

and unitarity of Φ.

Remark 2.2. In the case Fx = {x} ×C with the canonical Hermitian structure, the sections of

the bundle F → X can be canonically identified with complex-valued functions on X. Under this

identification, any connection Φ can be uniquely written as Φx,y = eiθ(y,x), where θ : X ×X →
[−π, π] is a magnetic potential on (X, b), which, due to (3), satisfies the property θ(x, y) =

−θ(y, x) for all x, y ∈ X. As a result, we get the magnetic Laplacian operator. In particular, if

θ ≡ 0 we get the Laplacian operator (2).

Remark 2.3. If the property (iii) of b(x, y) is replaced by

♯ {y ∈ X : b(x, y) > 0} <∞, for all x ∈ X,

where ♯ S denotes the number of elements in the set S, then the graph (X, b,m) is called locally

finite. In this case, we have D̃ = Γ(X,F ).

2.3. Operators and quadratic forms. Let (X, b,m) be a connected weighted graph and let

F → X be a Hermitian vector bundle with a unitary connection Φ.

Definition 2.4. We define the Schrödinger-type operator H̃W,Φ : D̃ → Γ(X,F ) by the formula

H̃W,Φu := ∆F,Φ
b,mu+Wu, (7)

where W (x) : Fx → Fx is a linear operator for any x ∈ X, and D̃ is as in (5).

We give now a description of ℓp-spaces.

Definition 2.5. (i) For any 1 ≤ p < ∞ we denote by Γℓpm(X,F ) the space of sections u ∈
Γ(X,F ) such that

‖u‖pp :=
∑

x∈X

m(x)|u(x)|pFx
<∞, (8)

where | · |Fx
denotes the norm in Fx corresponding to the Hermitian product 〈·, ·〉Fx

. The space

of p-summable functions X → C with weight m will be denoted by ℓpm(X).

(ii) By Γℓ∞(X,F ) we denote the space of bounded sections of F , equipped with the norm

‖u‖∞ := sup
x∈X

|u(x)|Fx
. (9)
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The space of bounded functions on X will be denoted by ℓ∞(X).

The space Γℓ2m
(X,F ) is a Hilbert space with the inner product

(u, v) :=
∑

x∈X

m(x)〈u(x), v(x)〉Fx
(10)

In what follows, when there is no ambiguity, we will write ‖ · ‖ instead of ‖ · ‖2.

Definition 2.6. Let 1 ≤ p < +∞ and let D̃ be as in (5). The maximal operator Hp,max is given

by the formula Hp,maxu = H̃W,Φu with domain

Dom(Hp,max) = {u ∈ Γℓpm
(X,F ) ∩ D̃ : H̃W,Φu ∈ Γℓpm

(X,F )}. (11)

Moreover if

H̃W,Φ[Γc(X,F )] ⊆ Γℓpm
(X,F ), (12)

then we set Hp,min := H̃W,Φ|Γc(X,F ).

Remark 2.4. Note that under our assumptions on (X, b,m), the inclusion (12) does not nec-

essary hold. It holds if we additionally assume that (X, b,m) is locally finite.

We now define two quadratic forms and their associated operators, which will be used in the

statement of Theorem 2.3. Let W (x) : Fx → Fx be a linear operator satisfying

〈W (x)u(x), v(x)〉Fx
= 〈u(x),W (x)v(x)〉Fx

(13)

and

〈W (x)u(x), u(x)〉Fx
≥ 0, for all x ∈ X. (14)

We first define a symmetric sesqui-linear formQ
(c)
W,Φ in Γℓ2

m
(X,F ) with the domain Dom(Q

(c)
W,Φ) =

Γc(X,F ):

Q
(c)
W,Φ(u, v) :=

1

2

∑

x,y∈X

b(x, y)〈u(x) − Φy,xu(y), v(x) −Φy,xv(y)〉Fx

+
∑

x∈X

m(x)〈W (x)u(x), v(x)〉Fx
. (15)

If W satisfies (14), then Q
(c)
W,Φ is closable, and we denote its closure in Γℓ2m

(X,F ) by Q
(D)
W,Φ. Let

H
(D)
W,Φ be the self-adjoint operator associated with Q

(D)
W,Φ. We may think of H

(D)
W,Φ as a Schrödinger

operator with Dirichlet-type boundary conditions. We define the form Q
(N)
W,Φ by the same formula

as in (15), with the domain

Dom(Q
(N)
W,Φ) := {u ∈ Γℓ2m

(X,F ) : Q
(N)
W,Φ(u, u) <∞}.

The form Q
(N)
W,Φ is symmetric, non-negative and closed. The associated self-adjoint operator

in Γℓ2m
(X,F ) will be denoted by H

(N)
W,Φ and may be thought of as a Schrödinger operator with

Neumann-type boundary conditions.
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2.4. Statement of the results. In what follows, we often refer to Assumption (A1) specified

in section 1, and we denote by T the closure of an operator T . We are now ready to state the

first result.

Theorem 2.1. Assume that (X, b,m) is a connected weighted graph, and let F → X be a

Hermitian vector bundle with a unitary connection Φ. Let W (x) : Fx → Fx be a linear operator

satisfying

Re 〈W (x)u(x), u(x)〉Fx
≥ 0, for all x ∈ X. (16)

Then, the following properties hold:

(i) Assume that (A1) is satisfied. Let 1 < p <∞, and assume that (12) is satisfied. Then

Hp,min generates a strongly continuous contraction semigroup on Γℓpm(X,F ).

(ii) Assume that (12) is satisfied for p = 1. Additionally, assume that (X, b,m) is stochas-

tically complete. Then H1,min generates a strongly continuous contraction semigroup on

Γℓ1
m
(X,F ).

Remark 2.5. By [36, Definition 1.1], stochastic completeness of (X, b,m) means that there is

no non-trivial and non-negative w ∈ ℓ∞(X) such that

(∆b,m + α)w ≤ 0, α > 0,

where ∆b,m is as in (2).

Remark 2.6. By the remark preceding Theorem X.49 in [44], the following property holds: if a

linear operator T on a Banach space X generates a strongly continuous contraction semigroup,

then T is a maximal accretive operator on X. For the definition of an accretive operator on a

Banach space, see [44, Section X.8]. In particular, under the assumptions of Theorem 2.1, the

operator Hp,min is maximal accretive for all 1 ≤ p <∞.

In the next theorem, we make the following assumption, which is stronger than (12):

H̃W,Φ[Γc(X,F )] ⊆ Γℓpm(X,F ) ∩ Γ
ℓp

∗

m

(X,F ), with 1/p + 1/p∗ = 1. (17)

Remark 2.7. If (X, b,m) is a locally finite graph then (17) is satisfied. If infx∈X m(x) > 0 then

(A1) and (17) are satisfied.

Theorem 2.2. Let (X, b,m) and Φ be as in Theorem 2.1. Assume that the hypotheses (A1)

and (16) are satisfied. Then, the following properties hold:

(i) Let 1 < p <∞, and assume that (17) is satisfied. Then Hp,min = Hp,max.

(ii) Assume that (17) is satisfied for p = 1. Additionally, assume that (X, b,m) is stochas-

tically complete. Then H1,min = H1,max.

The following result is a vector bundle Laplacian analogue of [36, Theorem 6].

Theorem 2.3. Let (X, b,m) and Φ be as in Theorem 2.1. Assume that W satisfies (13)

and (14). Additionally, assume (A1) and H̃W,Φ[Γc(X,F )] ⊆ Γℓ2m
(X,F ). Then, the following

properties hold:
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(i) the operator H2,min is essentially self-adjoint, and H2,min = H2,max = H
(D)
W,Φ = H

(N)
W,Φ;

(ii) Q
(D)
W,Φ = Q

(N)
W,Φ.

Before stating the next result, we introduce some notations. In what follows, dc(x, y) denotes

the combinatorial distance between x, y ∈ X, defined as the number of edges in the shortest

path connecting the vertices x and y. Fix a vertex x0 ∈ X and define rc(x) := dc(x0, x), for all

x ∈ X. The n-neighborhood B
(c)
n (x0) of x0 ∈ X with respect to dc is defined as

{x ∈ X : rc(x) ≤ n} ∪ {{x, y} ∈ E : rc(x) ≤ n and rc(y) ≤ n}, (18)

where n ∈ Z+, and E stands for the set of (unoriented) edges of the graph (X, b,m).

In the next result, we assume that (X, b,m) is a locally finite weighted graph satisfying the

following condition:

Assumption (A2) Assume that

lim
n→∞

δnbn
n2

= 0, (19)

where

δn := max
x∈B

(c)
n (x0)

(deg(x)) and bn := max
x∈B

(c)
n (x0)

(
max
y∼x

(
b(x, y)

m(x)

))
. (20)

Here, B
(c)
n (x0) as in (18), and deg(x) stands for the degree of x ∈ X, that is, the number of

neighbors of x ∈ X.

Theorem 2.4. Assume that (X, b,m) is a locally finite, weighted and connected graph, which

satisfies the condition (A2). Let F → X be a Hermitian vector bundle with a unitary connection

Φ, and let W (x) : Fx → Fx be a linear operator satisfying (13). Additionally, assume that there

exists a constant C ∈ R such that

(H̃W,Φu, u) ≥ −C‖u‖2 for all u ∈ Γc(X,F ), (21)

where (·, ·) is as in (10) and ‖·‖ is the corresponding norm. Then H̃W,Φ is essentially self-adjoint

on Γc(X,F ).

In the remaining results we will use the notion of intrinsic metric.

Definition 2.7. A pseudo metric (see [30]) is a map d : X × X → [0,∞) such that d(x, y) =

d(y, x), for all x, y ∈ X; d(x, x) = 0, for all x ∈ X; and d(x, y) satisfies the triangle inequality.

A pseudo metric d = dσ is called a path pseudo metric if there exists a map σ : X ×X → [0,∞)

such that σ(x, y) = σ(y, x), for all x, y ∈ X; σ(x, y) > 0 if and only if x ∼ y; and

dσ(x, y) = inf{lσ(γ) : γ path connecting x and y},

where the length lσ of the path γ = (x0, x1, . . . , xn) is given by

lσ(γ) =
n−1∑

i=0

σ(xi, xi+1). (22)
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It is known that on a locally finite graph a path pseudo metric is a metric; see [30, Lemma

A.3(a)]. The following definitions come from [30]:

Definition 2.8. (i) A pseudo metric d on (X, b,m) is called intrinsic if

1

m(x)

∑

y∈X

b(x, y)(d(x, y))2 ≤ 1, for all x ∈ X.

(ii) An intrinsic path pseudo metric d = dσ on (X, b,m) is called strongly intrinsic if

1

m(x)

∑

y∈X

b(x, y)(σ(x, y))2 ≤ 1, for all x ∈ X.

Remark 2.8. On a locally finite graph (X, b,m), the formula

σ1(x, y) = b(x, y)−1/2 min

{
m(x)

Deg1(x)
,
m(y)

Deg1(y)

}1/2

, with x ∼ y, (23)

where Deg1(x) is as in property (iii) of b(x, y), defines a strongly intrinsic path metric; see [30,

Example 2.1].

Our next result states that Theorem 2.4 remains true without condition (A2) provided (X, d)

is metrically complete with respect to an intrinsic metric.

Theorem 2.5. Assume that (X, b,m) is a locally finite, weighted, and connected graph. Let

F → X be a Hermitian vector bundle with a unitary connection Φ. Let d = dσ be an intrinsic

path metric on X such that (X, d) is metrically complete. Let W (x) : Fx → Fx be a linear

operator satisfying (13). Additionally, assume that there exists a constant C ∈ R such that (21)

is satisfied. Then H̃W,Φ is essentially self-adjoint on Γc(X,F ).

Next results concern operators that are not necessarily semi-bounded from below.

Theorem 2.6. Assume that (X, b,m) is a locally finite, weighted and connected graph, and let

F → X be a Hermitian vector bundle with a unitary connection Φ. Let dσ be a strongly intrinsic

path metric on X. Let q : X → [1,∞) be a function satisfying

|q−1/2(x)− q−1/2(y)| ≤ Kσ(x, y), (24)

for all x, y ∈ X such that x ∼ y, where K is a constant. Let W (x) : Fx → Fx be a linear

operator satisfying (13). Additionally, assume that there exists ε ∈ [0, 1) such that

ε(∆F,Φ
b,mu, u) + (Wu,u) ≥ −(qu, u), for all u ∈ Γc(X,F ), (25)

where (·, ·) is as in (10). Let

σq(x, y) = min{q−1/2(x), q−1/2(y)} · σ(x, y) (26)

and let dσq
be the path metric corresponding to σq. Assume that (X, dσq

) is metrically complete.

Then H̃W,Φ is essentially self-adjoint on Γc(X,F ).
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In the next (and final) result, we will use the notion of a regular graph introduced in [7]. Let

us first recall the definition of the boundary of a given set A ⊆ X:

∂A := {x ∈ A : there exists y ∈ X\A such that y ∼ x}.
In the sequel, we denote by (X̂, d̂) the metric completion of (X, d), and we define the Cauchy

boundary X∞ as follows: X∞ := X̂\X. Note that (X, d) is metrically complete if and only if

X∞ is empty. For a path metric d = dσ on X and x ∈ X, we set

D(x) := inf
z∈X∞

d̂σ(x, z). (27)

Definition 2.9. Let (X, b,m) be a graph with a path metric dσ. Let ε > 0 be given and let

Xε := {x ∈ X : D(x) ≥ ε}, (28)

where D(x) is as in (27). We say that a graph (X, b,m) with a path metric dσ is regular if for

any sufficiently small ε, any bounded subset of ∂Xε (for the metric dσ) is finite.

Remark 2.9. Definition 2.9 covers a broad class of graphs. For instance, weighted graphs whose

first Betti number is finite are regular; see [7, Corollary 4.1]. In particular, any weighted tree is

regular; see [7, Proposition 4.2].

We are ready to state our last theorem.

Theorem 2.7. Assume that (X, b,m) is a locally finite, weighted, and connected graph. Let

d = dσ be an intrinsic path metric on X such that (X, d) is not metrically complete. Assume

that (X, b,m) is a regular graph in the sense of Definition 2.9. Let F → X be a Hermitian vector

bundle with a unitary connection Φ and let W (x) : Fx → Fx be a linear operator satisfying (13).

Additionally, assume that there exists a constant C such that

〈W (x)u(x), u(x)〉Fx
≥
(

1

2(D(x))2
−C

)
|u(x)|2Fx

, (29)

for all x ∈ X and all u ∈ Γc(X,F ), where D(x) is as in (27). Then H̃W,Φ is essentially

self-adjoint on Γc(X,F ).

2.5. Comments on the existing literature. In relation to Theorems 2.1 and 2.2, we should

mention that Kato [34, Section A] gave sufficient conditions under which the closure of the

minimal operator corresponding to −∆ + W , where ∆ is the standard Laplacian on R
n and

0 ≤ W ∈ Lp
loc(R

n), generates a strongly continuous contractive semigroup in Lp(Rn), 1 ≤
p < ∞. Furthermore, under the conditions of [34, Section A], one has the equality of the

minimal and maximal operators corresponding to −∆+W . The paper [41] contains an extension

of the results in [34, Section A] to the context of magnetic Schrödinger operators in Lp(M),

1 < p < ∞, where M is a manifold of bounded geometry. With regard to Theorem 2.4,

we should point out that the condition (A2) comes from the paper [39], which studied the

essential self-adjointness of the Laplacian on 1-forms in the context of a locally finite graph.

The authors of [1] generalize the self-adjointness result of [39] by replacing the hypothesis (A2)

with weaker requirements of “completeness” and “homogeneity” of the graph; see [1, Section
9



3.3.1]. Theorem 2.5 is an extension of [19, Theorem 2.10(b)], which concerned the essential self-

adjointness of a semibounded from below magnetic Schrödinger operator on a locally finite graph

with a complete intrinsic metric. Theorem 2.6 generalizes [42, Theorem 1.10], which was proven

for the magnetic Schrödinger operator satisfying the condition (25) with ε = 0. We should

note that the condition (25) goes back to [46]. Theorem 2.7 is an extension of [42, Theorem

1.5], which was proven for the magnetic Schrödinger operator on a regular graph in the sense of

Definition 2.9. In the context of the Schrödinger operator on a regular graph of bounded degree,

a result of this kind was proven in [7, Theorem 4.2]. Let us point out that Theorem 1.8 of [42]

could be extended in a similar way.

Recently, several researchers have come up with the concept of an intrinsic metric on a graph.

The definition used in the present paper goes back to [14]. For applications of intrinsic metrics

in different settings, see, for instance, [2, 3, 11, 12, 13, 18, 19, 23, 26, 28, 29, 30, 40]. For a proof

of a Hopf–Rinow-type theorem for locally finite weighted graphs with a path metric, see [30].

For a proof of Feynman–Kac–Itô formula for magnetic Schrödinger operators with a general

class of potentials on arbitrary weighted graphs see [19].

3. Preliminary lemmas

3.1. Green’s formula. We begin with a variant of Green’s formula, which is analogous to [19,

Lemma 2.1] and [21, Lemma 4.7] concerning Schrödinger operators with magnetic potential and

without magnetic potential, respectively.

Notation 3.1. Assume that (X, b,m) is a connected weighted graph, and let F → X be a

Hermitian vector bundle with a unitary connection Φ. Let W (x) : Fx → Fx be a linear operator.

We denote by W ∗ the Hermitian adjoint of W , that is, (W (x))∗ is the Hermitian adjoint of

W (x) with respect to 〈·, ·〉Fx
.

Lemma 3.1. Let (X, b,m), Φ, F , and W be defined as in Notation 3.1, and let H̃W,Φ be as

in (7). Then, the following properties hold:

(i) if H̃W,Φ[Γc(X,F )] ⊆ Γℓpm(X,F ) for some 1 ≤ p ≤ ∞, then any u ∈ Γ
ℓp

∗

m

(X,F ) with

1/p+ 1/p∗ = 1 belongs to the set D̃ defined by (5);

(ii) for all u ∈ D̃ and all v ∈ Γc(X,F ), the sums
∑

x∈X

m(x)〈H̃W,Φu, v〉Fx
,

∑

x∈X

m(x)〈u, H̃W ∗,Φv〉Fx
,

and the expression

1

2

∑

x,y∈X

b(x, y)〈u(x) − Φy,xu(y), v(x) − Φy,xv(y)〉Fx
+
∑

x∈V

m(x)〈W (x)u(x), v(x)〉Fx
(30)

converge absolutely and agree;

(iii) if H̃W,Φ[Γc(X,F )] ⊆ Γℓ2m
(X,F ) and W satisfies (13), then

Q
(c)
W,Φ(u, v) = (H̃W,Φu, v) = (u, H̃W,Φv), for all u, v ∈ Γc(X,F ), (31)

10



where Q
(c)
W,Φ is as in (15) and (·, ·) is as in (10).

Proof. To make the notations simpler, throughout the proof we suppress Fx in | · |Fx
. From the

assumption H̃W,Φ[Γc(X,F )] ⊆ Γℓpm
(X,F ), it is easily seen that the function y 7→ b(x, y)/m(y)

belongs to ℓpm(X), for all x ∈ X. In the case 1 < p∗ < ∞, for all u ∈ Γ
ℓp

∗

m

(X,F ), by Hölder’s

inequality with 1/p + 1/p∗ = 1 we have

∑

y∈X

b(x, y)|u(y)| ≤


∑

y∈X

(
b(x, y)

m(y)

)p

m(y)




1/p
∑

y∈X

|u(y)|p∗m(y)




1/p∗

. (32)

In the case p∗ = 1, for all u ∈ Γℓ1
m
(X,F ), by Hölder’s inequality with p = ∞ and p∗ = 1 we have

∑

y∈X

b(x, y)|u(y)| ≤ sup
y∈X

(
b(x, y)

m(y)

)
∑

y∈X

|u(y)|m(y)


 . (33)

In the case p∗ = ∞, for all u ∈ Γℓ∞(X,F ), by Hölder’s inequality with p = 1 and p∗ = ∞ we

have

∑

y∈X

b(x, y)|u(y)| ≤ sup
y∈X

(|u(y)|)


∑

y∈X

b(x, y)


 . (34)

This concludes the proof of property (i). Let us prove property (ii). Since v ∈ Γc(X,F ), the

first two sums are performed over finitely many x ∈ X. We now turn to the sum (30). By

Cauchy–Schwarz inequality and unitarity of Φy,x we get
∑

x,y∈X

|b(x, y)〈u(x),Φy,xv(y)〉Fx
| ≤

∑

x,y∈X

b(x, y)|u(x)||v(y)|

=
∑

y∈X

|v(y)|
(
∑

x∈X

b(x, y)|u(x)|
)
<∞,

where the convergence follows from the fact that u ∈ D̃ and v ∈ Γc(X,F ).

Similarly,
∑

x,y∈X

|b(x, y)〈u(x), v(x)〉Fx
| ≤

∑

x,y∈X

b(x, y)|u(x)||v(x)|

=
∑

x∈X

|u(x)||v(x)|


∑

y∈X

b(x, y)


 <∞,

where the convergence follows by property (iii) of b(x, y) and since v ∈ Γc(X,F ). Hence, the

three sums converge absolutely. The equality of sums follows directly from Fubini’s theorem.

This shows property (ii). Finally, (31) follows from the equality of three sums and the definition

of Q
(c)
W,Φ. �

In the next Lemma, T ∗ denotes the adjoint of operator T .
11



Lemma 3.2. Let (X, b,m), Φ and F be defined as in Notation 3.1. Assume that W (x) : Fx → Fx

satisfies (13), and that H̃W,Φ[Γc(X,F )] ⊆ Γℓ2
m
(X,F ). Let H2,min and H2,max be as in Defini-

tion 2.6 with p = 2. Then, H2,min is a symmetric operator in Γℓ2
m
(X,F ) and (H2,min)

∗ = H2,max.

Proof. The symmetry of H2,min follows by Lemma 3.1(iii). The inclusion Γℓ2m
(X,F ) ⊆ D̃, where

D̃ is as in (5), follows by Lemma 3.1(i). Thus, by (11) with p = 2 we have

Dom(H2,max) = {u ∈ Γℓ2m
(X,F ) : H̃W,Φu ∈ Γℓ2m

(X,F )}.
Using Lemma 3.1(ii) we get

(u, H̃W,Φv) = (H̃W,Φu, v), for all u ∈ Dom(H2,max) and v ∈ Γc(X,F ),

from which (H2,min)
∗ = H2,max follows easily. �

3.2. Kato’s inequality. The version of Kato’s inequality used in the present paper is analogous

to that of [9], which was proven in the case of magnetic Laplacian (acting on functions) with

m(x) ≡ 1 and b(x, y) ≡ 1 whenever x ∼ y.

Lemma 3.3. Let ∆b,m and ∆F,Φ
b,m be defined as in (2) and (6) respectively. Then, the following

pointwise inequality holds for all u ∈ D̃:

|u|(∆b,m|u|) ≤ Re 〈∆F,Φ
b,mu, u〉Fx

, (35)

where | · | denotes the norm in Fx, and Re z denotes the real part of a complex number z.

Proof. Using (2), (6), and the unitarity of Φy,x, we obtain

|u(x)|((∆b,m|u|)(x)) −Re 〈∆F,Φ
b,mu(x), u(x)〉Fx

=
1

m(x)

∑

y∈X

b(x, y) [Re 〈Φy,xu(y), u(x)〉Fx
− |u(x)||u(y)|] ≤ 0,

and the lemma is proven. �

3.3. Ground state transform. We will use an analogue of the“ground state transform” given

in [19, Proposition 2.12] and [21, Proposition 3.2].

Lemma 3.4. Let (X, b,m), Φ, and F be defined as in Notation 3.1. Assume that W (x) : Fx →
Fx satisfies (13). Let λ ∈ R, and let u ∈ D̃ so that

(H̃W,Φ − λ)u = 0. (36)

Then, for all finitely supported functions g : X → R, we have

Q
(c)
W,Φ(gu, gu) = λ‖gu‖2

+
1

2

∑

x,y∈X

b(x, y)(g(x) − g(y))2(Re 〈u(x),Φy,xu(y)〉Fx
), (37)

where Q
(c)
W,Φ(·, ·) is as in (15).

12



Proof. By (36) and (7) we get

λ‖gu‖2 = λ(u, g2u) =
∑

x∈X

m(x)〈(H̃W,Φu)(x), g
2(x)u(x)〉Fx

=
∑

x,y∈X

b(x, y)〈u(x) − Φy,xu(y), g
2(x)u(x)〉Fx

+ (Wgu, gu). (38)

Note that the first quantity on the right hand side of the last equality in (38) is real-valued

because ‖gu‖2 and (Wgu, gu) are real-valued. Let Q
(c)
0,Φ(·, ·) be as in (15) with W = 0. Using

the property (i) of b(x, y), unitarity of Φx,y, and (3) we have
∑

x,y∈X

b(x, y)〈u(x) − Φy,xu(y), g
2(x)u(x)〉Fx

=
1

2

∑

x,y∈X

b(x, y)〈u(x) − Φy,xu(y), g
2(x)u(x)〉Fx

+
1

2

∑

x,y∈X

b(x, y)〈u(y) − Φx,yu(x), g
2(y)u(y)〉Fy

=
1

2

∑

x,y∈X

b(x, y)〈u(x) − Φy,xu(y), g
2(x)u(x)− Φy,x(g

2(y)u(y))〉Fx

= Q
(c)
0,Φ(gu, gu) +

1

2

∑

x,y∈X

b(x, y)g(x)(g(y) − g(x))〈Φy,xu(y), u(x)〉Fx

+
1

2

∑

x,y∈X

b(x, y)g(y)(g(x) − g(y))〈u(x),Φy,xu(y)〉Fx
, (39)

where the last equality follows by direct computation. Taking the real parts in (39) and using

the observation that the leftmost side of (39) is real-valued, and noting that

Re 〈u(x),Φy,xu(y)〉Fx
= Re 〈Φy,xu(y), u(x)〉Fx

,

we get
∑

x,y∈X

b(x, y)〈u(x) − Φy,xu(y), g
2(x)u(x)〉Fx

= Q
(c)
0,Φ(gu, gu) −

1

2

∑

x,y∈X

b(x, y)(g(x) − g(y))2(Re 〈u(x),Φy,xu(y)〉Fx
). (40)

Combining (38) and (40) we get (37). �

3.4. Cut-off functions. In this section, we define cut-off functions used in several proofs below.

Assume that (X, b,m) is locally finite, and let dσ be a path metric. Fix x0 ∈ X and define

χn(x) :=

((
2n− dσ(x0, x)

n

)
∨ 0

)
∧ 1, x ∈ X, n ∈ Z+. (41)

Denote

Bσ
n(x0) := {x ∈ X : dσ(x0, x) ≤ n}. (42)

13



The sequence {χn}n∈Z+ satisfies the following properties, which are checked easily: (i) 0 ≤
χn(x) ≤ 1, for all x ∈ X; (ii) χn(x) = 1 for x ∈ Bσ

n(x0) and χn(x) = 0 for x /∈ Bσ
2n(x0); (iii) for

all x ∈ X, we have lim
n→∞

χn(x) = 1; and (iv) the functions χn satisfy the inequality

|χn(x)− χn(y)| ≤
dσ(x, y)

n
, for all x ∼ y. (43)

4. Proof of Theorem 2.1

We begin by recalling an abstract fact about generators of strongly continuous contraction

semigroups. Let T be a linear operator on a Banach space X and let ρ(T ) denote the resolvent set

of T . By Hille–Yosida Theorem (see [10, Theorem II.3.5]), the operator T generates a strongly

continuous contraction semigroup on X if and only if the following three conditions are satisfied:

(C1) T is densely defined and closed;

(C2) (−∞, 0) ⊂ ρ(T );

(C3) ‖(γ + T )−1‖ ≤ γ−1, for all γ > 0,

where ‖ · ‖ denotes the operator norm (of a bounded linear operator X → X ).

In Lemmas 4.1 and 4.3 below, we assume that the hypotheses of Theorem 2.1 are satisfied.

Lemma 4.1. Let 1 ≤ p <∞. Then, the operator Hp,min satisfies the following inequality:

Re
∑

x∈X

m(x)〈(Hp,minu)(x), u(x)|u(x)|p−2〉Fx
≥ 0, for all u ∈ Γc(X,F ). (44)

Proof. By Lemma 3.1, for all u, v ∈ Γc(X,F ) we have
∑

x∈X

m(x)〈(∆F,Φ
b,mu)(x), v(x)〉Fx

= Q
(c)
0,Φ(u, v), (45)

where Q
(c)
0,Φ is as in (15) with W = 0. Using (45) with u ∈ Γc(X,F ) and v := u|u|p−2, we have

Re
∑

x∈X

m(x)〈(∆F,Φ
b,mu)(x), u(x)|u(x)|p−2〉Fx

=
1

2

∑

x,y∈X

b(x, y) [|u(x)|p + |u(y)|p

−Re 〈Φy,xu(y), u(x)|u(x)|p−2〉Fx
− Re 〈Φx,yu(x), u(y)|u(y)|p−2〉Fy

]

≥ 1

2

∑

x,y∈X

b(x, y)
[
|u(x)|p + |u(y)|p − |u(x)||u(y)|p−1 − |u(y)||u(x)|p−1

]
. (46)

For p = 1, from (46) and the assumption (16) we easily get (44).

Let 1 < p <∞ and let p∗ satisfy 1/p + 1/p∗ = 1. By Young’s inequality we have

|u(x)||u(y)|p−1 ≤ |u(x)|p
p

+
(|u(y)|p−1)p

∗

p∗
=

|u(x)|p
p

+
(p− 1)|u(y)|p

p
(47)

and, likewise,

|u(y)||u(x)|p−1 ≤ |u(y)|p
p

+
(p− 1)|u(x)|p

p
. (48)
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From (47) and (48) we get

−|u(x)||u(y)|p−1 − |u(y)||u(x)|p−1 ≥ −|u(x)|p − |u(y)|p. (49)

Using (49), (46), and the assumption (16), we obtain (44). �

The following lemma is a special case of [35, Proposition 8]:

Lemma 4.2. Assume (A1). Let α > 0 and 1 ≤ p < ∞. Let ∆b,m be as in (2). Assume that

u ∈ ℓpm(X) is a real-valued function satisfying the inequality (∆b,m + α)u ≥ 0. Then u ≥ 0.

Remark 4.1. The case p = ∞ is more complicated and involves the notion of stochastic com-

pleteness; see, for instance, [12], [27], [35], [36], [37], [51], and [52].

In the remainder of this section and in section 5, we will use certain arguments of [34, Part

A] in our setting. In the sequel, Ran T denotes the range of an operator T .

Lemma 4.3. Let 1 < p <∞ and let λ ∈ C with Re λ > 0. Then, Ran (Hp,min + λ) is dense in

ℓpm(X).

Proof. Let u ∈ (Γℓpm(X,F ))
∗ = Γ

ℓp
∗

m

(X,F ), be a continuous linear functional that annihilates

(λ+Hp,min)Γc(X,F ):
∑

x∈X

m(x)〈(λ +Hp,min)v(x), u(x)〉Fx
= 0, for all v ∈ Γc(X,F ). (50)

By assumption (12) we know that H̃W,Φv ∈ Γℓpm(X,F ). Since u ∈ Γ
ℓp

∗

m

(X,F ), we may use

Lemma 3.1 (iii) in (50). As a result, we get
∑

x∈X

m(x)〈v(x), (λ + H̃W ∗,Φ)u(x)〉Fx
= 0, for all v ∈ Γc(X,F ),

where λ is the complex conjugate of λ. The last equality leads to

(λ̄+∆F,Φ
b,m +W ∗)u = 0. (51)

Using Kato’s inequality (35), assumption (16), and (51) we have

|u|(∆b,m|u|) ≤ Re 〈∆F,Φ
b,mu, u〉Fx

= −(Re λ)|u|2 − Re 〈W ∗u, u〉Fx
≤ −(Re λ)|u|2,

where |u| ∈ ℓp
∗

m (X) with 1 < p∗ <∞. Rewriting the last inequality, we obtain

|u|(∆b,m|u|+ (Reλ)|u|) ≤ 0.

For all x ∈ X such that u(x) 6= 0, we may divide both sides of the last inequality by |u(x)| to
get

(∆b,m +Re λ)|u| ≤ 0. (52)

Note that the inequality (52) also holds for those x ∈ X such that u(x) = 0; in this case, the

left hand side of (52) is non-positive by (2). Thus, the inequality (52) holds for all x ∈ X. By

Lemma 4.2, from (52) we get |u| ≤ 0. Hence, u = 0. �
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End of the proof of Theorem 2.1(i). By the definition of accretivity for an operator in

Banach space (see, for instance, [44, Section X.8]), the inequality (44) means that the operator

Hp,min is accretive in Γℓpm(X,F ). By an abstract fact (see the remark preceding Theorem X.48

in [44]), the operator Hp,min is closable and Hp,min is accretive in Γℓpm
(X,F ). Thus, the following

inequality holds:

Re
∑

x∈X

m(x)〈(Hp,minu)(x), u(x)|u(x)|p−2〉Fx
≥ 0 for all u ∈ Dom(Hp,min). (53)

Let λ ∈ C with Re λ > 0. Using Hölder’s inequality, from (53) we get

(Re λ)‖u‖p ≤ ‖(λ+Hp,min)u‖p, for all u ∈ Dom(Hp,min). (54)

By Lemma 4.3 we know that Ran (Hp,min+λ) is dense in Γℓpm(X,F ). This, together with (54)

shows that Ran (Hp,min + λ) = Γℓpm(X,F ). Hence, from (54) we get

‖(γ +Hp,min)
−1‖ ≤ 1

γ
, for all γ > 0,

where ‖ · ‖ is the operator norm Γℓpm(X,F ) → Γℓpm(X,F ). Thus, conditions (C1), (C2) and

(C3) of Hille–Yosida Theorem are satisfied. Hence, the operator Hp,min is the generator of a

contraction semigroup on Γℓpm(X,F ). �

Proof of Theorem 2.1(ii). Repeating the proof of Lemma 4.3 in the case p = 1 and using

Remark 2.5, from (52) with u ∈ Γℓ∞(X,F ) we obtain |u| = 0. Therefore, for all λ ∈ C with

Re λ > 0, the set Ran (H1,min + λ) is dense in Γℓ1m
(X,F ). From here on, we may repeat the

proof of Theorem 2.1(i). �

5. Proof of Theorem 2.2

We begin with the following lemma.

Lemma 5.1. Let 1 ≤ p < ∞ and 1/p + 1/p∗ = 1. Assume that (17) is satisfied. Then Hp,max

is a closed operator.

Proof. Let uk be a sequence in Dom(Hp,max) such that uk → u and Hp,maxuk → f , as k → ∞,

using the norm convergence in Γℓpm
(X,F ). We need to show that u ∈ Dom(Hp,max) and f =

Hp,maxu. Let v ∈ Γc(X,F ) be arbitrary, and consider the sum

∑

x∈X

m(x)〈(Hp,maxuk)(x), v(x)〉Fx
=
∑

x∈X

m(x)〈(H̃W,Φuk)(x), v(x)〉Fx
.

Since H̃W,Φ[Γc(X,F )] ⊆ Γ
ℓp

∗

m

(X,F ), we may use Lemma 3.1 to get

∑

x∈X

m(x)〈(H̃W,Φuk)(x), v(x)〉Fx
=
∑

x∈X

m(x)〈uk(x), (H̃W ∗,Φv)(x)〉Fx
. (55)
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Using the norm convergence uk → u in Γℓpm(X,F ) and the assumption H̃W,Φv ∈ Γ
ℓp

∗

m

(X,F ) with

1/p + 1/p∗ = 1, by Hölder’s inequality we get
∑

x∈X

m(x)〈uk(x), (H̃W ∗,Φv)(x)〉Fx
→
∑

x∈X

m(x)〈u(x), (H̃W ∗,Φv)(x)〉Fx
.

Using the norm convergence H̃W,Φuk → f in Γℓpm(X,F ), by Hölder’s inequality we get

∑

x∈X

m(x)〈(H̃W,Φuk)(x), v(x)〉Fx
→
∑

x∈X

m(x)〈f(x), v(x)〉Fx
.

Therefore, taking the limit as k → ∞ on both sides of (55), we obtain
∑

x∈X

m(x)〈u(x), (H̃W ∗,Φv)(x)〉Fx
=
∑

x∈X

m(x)〈f(x), v(x)〉Fx
. (56)

Since u ∈ Γℓpm(X,F ) and since H̃W,Φ[Γc(X,F )] ⊆ Γ
ℓp

∗

m

(X,F ), we may use Lemma 3.1 to rewrite

the left-hand side of (56) as follows:
∑

x∈X

m(x)〈u(x), (H̃W ∗ ,Φv)(x)〉Fx
=
∑

x∈X

m(x)〈(H̃W,Φu)(x), v(x)〉Fx
. (57)

Since v ∈ Γc(X,F ) is arbitrary, by (56) and (57) we get H̃W,Φu = f . Additionally, since

u ∈ Γℓpm
(X,F ), by Lemma 3.1 we get u ∈ D̃, where D̃ is as in (5). Thus, u ∈ Dom(Hp,max) and

Hp,maxu = f . Therefore, Hp,max is a closed operator. �

Maximal operator associated with ∆b,m. Let 1 ≤ p < ∞ and let ∆b,m be as in (2). We

define the maximal operator Lp,max in ℓpm(X) by the formula Lp,maxu = ∆b,mu with the domain

Dom(Lp,max) = {u ∈ ℓpm(X) ∩ D̃ : ∆b,mu ∈ ℓpm(X)}, (58)

where D̃ is as in (5) and sections are replaced by functions X → C.

Under the assumption (A1), it is known that Lp,max generates a contraction semigroup on

ℓpm(X) for all 1 ≤ p <∞; see [36, Theorem 5]. Thus, by Hille–Yosida Theorem we have

(−∞, 0) ⊂ ρ(Lp,max) and ‖(γ + Lp,max)
−1‖ ≤ 1

γ
, for all γ > 0, (59)

where ‖·‖ denotes the operator norm (for a bounded linear operator ℓpm(X) → ℓpm(X)) and ρ(T )

denotes the resolvent set of an operator T .

Lemma 5.2. Let 1 ≤ p < ∞ and let λ ∈ C with Re λ > 0. Assume that the hypotheses

(A1), (12), and (16) are satisfied. Then, the following properties hold:

(i) for all u ∈ Dom(Hp,max), we have

(Re λ)‖u‖p ≤ ‖(λ+Hp,max)u‖p; (60)

(ii) the operator λ+Hp,max : Dom(Hp,max) ⊂ ℓpm(X) → ℓpm(X) is injective.
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Proof. Let u ∈ Dom(Hp,max) and f := (λ + Hp,max)u. By the definition of Dom(Hp,max), we

have f ∈ Γℓpm(X,F ), where 1 < p < +∞. Using (35) and (16) we get

|u|((Re λ+∆b,m)|u|) ≤ Re 〈(λ+∆F,Φ
b,m)u, u〉Fx

≤ Re 〈(λ+∆F,Φ
b,m +W )u, u〉Fx

= Re 〈f, u〉Fx
≤ |f ||u|.

In what follows, we denote γ := Reλ. For all x ∈ X such that u(x) 6= 0, we may divide both

sides of the last inequality by |u(x)| to get

(γ +∆b,m)|u| ≤ |f |. (61)

Note that the inequality (61) also holds for those x ∈ X such that u(x) = 0; in this case, the

left hand side of (61) is non-positive by (2). Thus, the inequality (61) holds for all x ∈ X.

According to (59) the linear operator

(γ + Lp,max)
−1 : ℓpm(X) → ℓpm(X)

is bounded. Hence, we can rewrite (61) as

(γ +∆b,m)[(γ + Lp,max)
−1|f | − |u|] ≥ 0. (62)

Since

(γ + Lp,max)
−1|f | ∈ ℓpm(X) and |u| ∈ ℓpm(X),

it follows that ((γ + Lp,max)
−1|f | − |u|) ∈ ℓpm(X). Hence, applying Lemma 4.2 to (62) we get

|u| ≤ (γ + Lp,max)
−1|f |. (63)

Taking the lp norms on both sides and using (59) we get

‖u‖p ≤ ‖(γ + Lp,max)
−1|f |‖p ≤ 1

γ
‖f‖p,

and (60) is proven. We now turn to property (ii). Assume that u ∈ Dom(Hp,max) and (λ +

Hp,max)u = 0. Using (60) with f = 0, we get ‖u‖p = 0, and hence u = 0. This shows that

λ+Hp,max is injective. �

End of the proof of Theorem 2.2. We will consider the cases 1 < p < ∞ and p = 1

simultaneously, keeping in mind the stochastic completeness assumption on (X, b,m) when p = 1.

Since Hp,min ⊂ Hp,max and since Hp,max is closed (see Lemma 5.1), it follows that Hp,min ⊂
Hp,max. To prove the equality Hp,min = Hp,max, it is enough to show that Dom(Hp,max) ⊂
Dom(Hp,min). Let γ > 0, let u ∈ Dom(Hp,max), and consider

v := (Hp,min + γ)−1(Hp,max + γ)u. (64)

By Theorem 2.1, the element v is well-defined, and v ∈ Dom(Hp,min).

Since Hp,min ⊂ Hp,max, from (64) we get

(Hp,max + γ)(v − u) = 0.

Since Hp,max + γ is an injective operator (see Lemma 5.2), we get v = u. Therefore, u ∈
Dom(Hp,min). �
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6. Proof of Theorem 2.3

The equality H2,min = H2,max follows directly from Theorem 2.2 in the case p = 2. Note that

the operator H2,min is symmetric (as the closure of a symmetric operator). Furthermore, by

Theorem 2.1 and Remark 2.6 the operator H2,min is maximal accretive. Hence, by [33, Problem

V.3.32] the operator H2,min is self-adjoint. Note that the equality (31) extends to

(u,H2,minv) = Q
(D)
W,Φ(u, v), for all u ∈ Dom(Q

(D)
W,Φ) and v ∈ Γc(X,F ).

Hence, we have the operator relation H2,min ⊆ H
(D)
W,Φ, which leads to H2,min ⊆ H

(D)
W,Φ. Since

H
(D)
W,Φ and H2,min are self-adjoint, it follows that H2,min = H

(D)
W,Φ. Again, by Lemma 3.1, for all

u ∈ Dom(H
(N)
W,Φ) and v ∈ Γc(X,F ) we have

∑

x∈X

m(x)〈H̃W,Φu, v〉Fx
= Q

(D)
W,Φ(u, v) = (H

(N)
W,Φu, v).

This shows that H
(N)
W,Φu = H̃W,Φu for all u ∈ Dom(H

(N)
W,Φ). Hence, we have the operator relation

H
(N)
W,Φ ⊆ H2,max. Since H

(N)
W,Φ and H2,max are self-adjoint, it follows that H2,max = H

(N)
W,Φ. This

concludes the proof of property (i). Now property (ii) follows directly from the equality H
(D)
W,Φ =

H
(N)
W,Φ. �

7. Proof of Theorem 2.4

Throughout this section we assume that the hypotheses of Theorem 2.4 are satisfied. Let

H2,min and H2,max be as in Definition 2.6 and let Id(x) denote the identity endomorphism of Fx.

Using (21), we may add, without loss of generality, the operator k Id(x) to H̃W,Φ, where k ∈ R

is a sufficiently large constant, to get

(H2,minv, v) ≥ ‖v‖2, for all v ∈ Γc(X,F ). (65)

Since H2,min is a symmetric operator satisfying (65) and since (H2,min)
∗ = H2,max (as seen in

Lemma 3.2), the essential self-adjointness of H2,min is equivalent to the following statement:

ker(H2,max) = {0}; see [44, Theorem X.26].

Let u ∈ Dom(H2,max) satisfy H2,maxu = 0. Let dc be the combinatorial distance as in (18)

and let {χn}n∈Z+ be as in (41) with dσ = dc. Note that the sequence {χn}n∈Z+ satisfies the

properties (i)–(iii) of section 3.4, with Bσ
n(x0) replaced by B

(c)
n (x0). Additionally, note that (43)

becomes |χn(x) − χn(y)| ≤ 1/n. Also note that by the definition of dc, the functions χn are

finitely supported. Since X is locally finite, it follows that D̃ = Γ(X,F ). Thus, using (65) with

v = χnu, Lemma 3.4 with g = χn and λ = 0, and (31) we get
∑

x∈B
(c)
n (x0)

m(x)|u(x)|2 ≤ ‖χnu‖2 ≤ (H2,min(χnu), χnu) = Q
(c)
W,Φ(χnu, χnu)

=
1

2

∑

x,y∈X

b(x, y)(χn(x)− χn(y))
2(Re 〈u(x),Φy,xu(y)〉Fx

). (66)
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Using (66), properties of χn, the definition (20), and the inequality

|Re 〈u(x),Φy,xu(y)〉Fx
| ≤ |u(x)||Φy,xu(y)| = |u(x)||u(y)| ≤ |u(x)|2

2
+

|u(y)|2
2

, (67)

we obtain ∑

x∈B
(c)
n (x0)

m(x)|u(x)|2 ≤ δnbn
n2

‖u‖2.

We now let n→ ∞ and use (19) to get ‖u‖ = 0, which gives u = 0. �

8. Proof of Theorem 2.5

Throughout this section we assume that the hypotheses of Theorem 2.5 are satisfied. As in

the proof of Theorem 2.4, we may assume (65), and the argument reduces to showing that if

u ∈ Dom(H2,max) satisfies H2,maxu = 0, then u = 0.

Let {χn}n∈Z+ be as in (41). By hypothesis, we know that (X, dσ) is a complete metric space

and, thus, balls with respect to dσ are finite; see, for instance, [30, Theorem A.1]. Thus, the

functions χn are finitely supported. Since X is locally finite, it follows that D̃ = Γ(X,F ). Thus,

using (65) with v = χnu, Lemma 3.4 with g = χn and λ = 0, and (31), we get (66) with B
(c)
n (x0)

replaced by Bσ
n(x0). Using (66), properties of χn, Definition 2.8 (i), and the inequality (67), we

obtain ∑

x∈Bσ
n(x0)

m(x)|u(x)|2 ≤ 1

n2
‖u‖2.

Letting n→ ∞ we get ‖u‖ = 0; hence, u = 0. �

9. Proof of Theorem 2.6

The arguments used in this section are based on the method of [47] in the setting of Rie-

mannian manifolds. Throughout the section we assume that the hypotheses of Theorem 2.6 are

satisfied. Let H2,min and H2,max be as in Definition 2.6. We begin with a generalization of [42,

Proposition 4.1], which was proven there in the context of magnetic Schrödinger operators and

under the assumption (25) with ε = 0.

Proposition 9.1. If u ∈ Dom(H2,max), then
∑

x,y∈X

b(x, y)min{q−1(x), q−1(y)}|u(x) − Φy,xu(y)|2

≤ 4

1− ε

(
‖H̃W,Φu‖‖u‖ + (K2 + 1)‖u‖2

)
, (68)

where H̃W,Φ is as in (7), ε is as in (25), and K is as in (24).

Proof. Let u ∈ Dom(H2,max) and let g : X → R be a finitely supported function. Define

I :=


 ∑

x,y∈X

b(x, y)|u(x) − Φy,xu(y)|2(g2(x) + g2(y))




1/2

. (69)
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A direct computation, which uses the properties b(x, y) = b(y, x), (3) and (4), shows that

I2 = 4Re (g2∆F,Φ
b,mu, u) + ReZ, (70)

where

Z :=
∑

x,y∈X

b(x, y)(g2(x)− g2(y))〈Φy,xu(y)− u(x),Φy,xu(y) + u(x)〉Fx
.

By (70) we have

Re (g2∆F,Φ
b,mu, u) =

1

4
(I2 − ReZ)

≥ (∆F,Φ
b,m(gu), (gu)) − 1

4
S2, (71)

where

S2 :=
∑

x,y∈X

b(x, y)|u(x) + Φy,xu(y)|2(g(x) − g(y))2.

The inequality in (71) can be verified by using (31) to rewrite the term (∆F,Φ
b,m(gu), (gu)) and

writing out the sums on the left-hand and right-hand side of the inequality.

Starting from (70) and using the factorization

g2(x)− g2(y) = (g(x) − g(y))(g(x) + g(y)),

Cauchy–Schwarz inequality, and

(g(x) + g(y))2 ≤ 2(g2(x) + g2(y)),

we obtain

I2 ≤ 4Re (g2∆F,Φ
b,mu, u) +

√
2IS,

where S is as in (71). For ε ∈ [0, 1) as in (25), the last inequality gives

(1− ε)I2 ≤ 4(1 − ε)Re (g2∆F,Φ
b,mu, u) +

√
2(1− ε)IS

= 4Re (g2H̃W,Φu, u)− 4(g2Wu,u)− 4εRe (g2∆F,Φ
b,mu, u) +

√
2(1− ε)IS

≤ 4Re (g2H̃W,Φu, u)− 4(g2Wu,u)− 4ε(∆F,Φ
b,m (gu), gu) + εS2 +

√
2(1− ε)IS

≤ 4Re (g2H̃W,Φu, u) + 4(g2qu, u) + εS2 +
√
2(1− ε)IS, (72)

where in the first inequality we used (71) and in the second inequality we used (25).

Using the inequality ab ≤ a2

4 + b2 with a =
√

2(1 − ε) · I in the term
√
2(1 − ε)IS and

rearranging, we get

I2 ≤ 2

1− ε

(
4Re (g2H̃W,Φu, u) + 4(g2qu, u) + S2

)
(73)

Let {χn}n∈Z+ be as in (41). Since (X, dσq
) is a complete metric space, by [30, Theorem A.1] it

follows that the balls with respect to dσq
are finite. Let B

σq

2n(x0) be as in (42) with dσ replaced

by dσq
. Since q ≥ 1 it follows that Bσ

2n(x0) ⊆ B
σq

2n(x0). Thus, the functions χn are finitely

supported.
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Let q be as in (25), and define

ψn(x) := χn(x)q
−1/2(x). (74)

Clearly, functions ψn have finite support. Furthermore, by property (i) of χn and since q ≥ 1,

we have

0 ≤ ψn(x) ≤ q−1/2(x) ≤ 1, for all x ∈ X, (75)

and by property (iii) of χn we have

lim
n→∞

ψn(x) = q−1/2(x), for all x ∈ X. (76)

Finally, by (24), properties (i) and (43) of χn, and the inequality q ≥ 1, we have

|ψn(x)− ψn(y)| ≤
(
1

n
+K

)
σ(x, y), for all x ∼ y, (77)

where K is as in (24). In what follows, we define In and Sn by the same formulas as I in (69)

and S in (71), respectively, with g = ψn. Using (77), the inequality

|Φy,xu(y) + u(x)|2 ≤ 2(|u(x)|2 + |u(y)|2)
and Definition 2.8(ii), we get

S2
n ≤ 4

(
1

n
+K

)2

‖u‖2,

which, together with (73) and (75), gives

I2n ≤ 2

1− ε

(
4Re (ψ2

nH̃W,Φu, u) + 4(ψ2
nqu, u) + S2

n

)

≤ 2

1− ε

(
4‖H̃W,Φu‖‖u‖ + 4‖u‖2 + 4

(
n−1 +K

)2 ‖u‖2
)
. (78)

Letting n→ ∞ in (78) and using (76), Fatou’s lemma, and the inequality

2min{q−1(x), q−1(y)} ≤ q−1(x) + q−1(y), for all x, y ∈ X,

we get (68). �

End of the proof of Theorem 2.6. From now on the proof proceeds as in [42, Theorem

1.9]. For completeness, we include the argument. By [33, Problem V.3.10] the operator H2,min

is essentially self-adjoint if and only if

(H2,maxu, v) = (u,H2,maxv), for all u , v ∈ Dom(H2,max). (79)

Let dσq
be as in the hypothesis of Theorem 2.6. Fix x0 ∈ X and define

P (x) := dσq
(x0, x), x ∈ X. (80)

For a function f : X → R, define f+(x) := max{f(x), 0}. Let u , v ∈ Dom(H2,max), let s > 0,

and define

Js :=
∑

x∈X

m(x)

(
1− P (x)

s

)+ (
〈(H̃W,Φu)(x), v(x)〉Fx

− 〈u(x), (H̃W,Φv)(x)〉Fx

)
. (81)
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As indicated in the proof of Proposition 9.1, the set {x ∈ X : P (x) ≤ s} is finite. Thus, for all

s > 0, the summation in (81) is carried out over finitely many vertices. From the definition of

Js and dominated convergence theorem it is easy to see that

lim
s→+∞

Js = (H2,maxu, v) − (u,H2,maxv), for all u, v ∈ Dom(H2,max). (82)

Using the definition of Js, properties b(x, y) = b(y, x), (3), and (4), we get

2Js =
∑

x,y∈X

[(
(1− P (x)/s)+ − (1− P (y)/s)+

)
b(x, y)

· (〈u(x),Φy,xv(y)− v(x)〉Fx
− 〈Φy,xu(y)− u(x), v(y)〉Fx

)] ,

which, together with the triangle inequality and property

|f+1 (x)− f+2 (x)| ≤ |f1(x)− f2(x)|,
leads to

2|Js| ≤
1

s

∑

x,y∈X

b(x, y)|P (x) − P (y)| (|Φy,xv(y)− v(x)||u(x)|

+|Φy,xu(y)− u(x)||v(x)|) . (83)

Additionally, by (80) and (26), for all x ∼ y we have

|P (x)− P (y)| ≤ dσq
(x, y) ≤ σq(x, y)

= min{q−1/2(x), q−1/2(y)} · σ(x, y). (84)

We now combine (83) and (84) and use Cauchy–Schwarz inequality together with Defini-

tion 2.8(ii). As a result, we obtain

|Js| ≤
1

2s
(‖v‖Tu + ‖u‖Tv), for all u, v ∈ Dom(H2,max), (85)

where

Tu :=


 ∑

x,y∈X

b(x, y)min{q−1(x), q−1(y)}|u(x) − Φy,xu(y)|2



1/2

.

Since u ∈ Dom(H2,max) and v ∈ Dom(H2,max), by Lemma 3.2 it follows that H̃W,Φu ∈ Γℓ2
m
(X,F )

and H̃W,Φv ∈ Γℓ2
m
(X,F ). Thus, by Proposition 9.1, the expressions Tu and Tv are finite. We

now let s→ +∞ in (85) to get Js → 0, which, together with (82), shows (79). �

10. Proof of Theorem 2.7

The following lemma, whose proof is given in [7, Proposition 4.1], describes an important

property of regular graphs.

Lemma 10.1. Assume that (X, b,m) is a locally finite graph with a path metric dσ. Additionally,

assume that (X, b,m) is regular in the sense of Definition 2.9. Let Xε be as in (28). Then, closed

and bounded subsets of Xε are finite.
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To prove Theorem 2.7 we follow the method of [42, Theorem 1.5] (see also [7]) . For com-

pleteness, all details are given below. The main idea is the Agmon-type estimate given in the

next lemma. This kind of estimate has been first used in [43] for Schrödinger operators on an

open set with compact boundary in R
n, and refined in [8] for magnetic Laplacians.

Lemma 10.2. Let λ ∈ R and let v ∈ Γℓ2m
(X,F ) be a weak solution of (H̃W,Φ−λ)v = 0. Assume

that there exists a constant c1 > 0 such that, for all u ∈ Γc(X,F )

(u, (H̃W,Φ − λ)u) ≥ 1

2

∑

x∈X

max

(
1

D(x)2
, 1

)
m(x)|u(x)|2Fx

+ c1‖u‖2, (86)

where D(x) is as in (27).Then v ≡ 0.

Proof. Let ρ be a number such that 0 < ρ < 1/2. For any ε > 0, we define fε : X → R by

fε(x) = Fε(D(x)), where D(x) is as in (27) and Fε : R
+ → R is given by

Fε(s) =





0 for s ≤ ε

ρ(s− ε)/(ρ − ε) for ε ≤ s ≤ ρ

s for ρ ≤ s ≤ 1

1 for 1 ≤ s.

Let us fix a vertex x0. For any α > 0, we define gα : X → R by gα(x) = Gα(dσ(x0, x)), where

Gα : R
+ → R is given by

Gα(s) =





1 for s ≤ 1/α

−αs+ 2 for 1/α ≤ s ≤ 2/α

0 for s ≥ 2/α.

We also define

Eε,α := {x ∈ X : ε ≤ D(x) and dσ(x0, x) ≤ 2/α}. (87)

By Lemma 10.1 the set Eε,α is finite because Eε,α is a closed and bounded subset of Xε, where

Xε is as in (28). Since the support of fεgα is contained in Eε,α, it follows that fεgα is finitely

supported. Additionally, note that

|fε(x)gα(x)− fε(y)gα(y)| ≤ |fε(x)||gα(x)− gα(y)|+ |gα(y)||fε(x)− fε(y)|

≤ ρ

ρ− ε
|D(x)−D(y)|+ α|dσ(x0, x)− dσ(x0, y)|.

Hence, by [5, Lemma 4.1] it follows that fεgα is a β-Lipschitz function with respect to dσ, where

β = ρ/(ρ− ε) + α.

By Lemma 3.4 with g replaced by fεgα, we have

(fεgαv, (H̃W,Φ − λ)(fεgαv))

=
1

2

∑

x,y∈X

b(x, y)(fεgα(x)− fεgα(y))
2(Re 〈u(x),Φy,xu(y)〉Fx

). (88)
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The unitarity of the operator Φy,x implies the inequality

Re 〈u(x),Φy,xu(y)〉Fx
≤ 1

2
(|v(x)|2Fx

+ |v(y)|2Fy
),

so from the symmetry of the weight b we get that

(fεgαv, (H̃W,Φ − λ)(fεgαv)) ≤
1

2

∑

x∈X

∑

y∼x

b(x, y)|v(x)|2Fx
((fεgα)(x)− (fεgα)(y))

2

≤ 1

2

(
ρ

ρ− ε
+ α

)2 ∑

x∈X

∑

y∼x

|v(x)|2Fx
b(x, y)(dσ(x, y))

2

≤ 1

2

(
ρ

ρ− ε
+ α

)2 ∑

x∈X

m(x)|v(x)|2Fx
, (89)

where the second inequality uses the fact that fεgα is a β-Lipschitz function with β = ρ/(ρ− ε)+

α, and the last one comes from Definition 2.8.

On the other hand, by the definitions of fε and gα and the assumption (86) we have

(fεgαv, (H̃W,Φ − λ)(fεgαv)) ≥
1

2

∑

x∈Sρ,α

m(x)|v(x)|2Fx
+ c1‖fεgαv‖2, (90)

where

Sρ,α := {x ∈ X : ρ ≤ D(x) and dσ(x0, x) ≤ 1/α}.
Combining (90) and (89) we obtain

1

2

∑

x∈Sρ,α

m(x)|v(x)|2Fx
+ c1‖fεgαv‖2 ≤

1

2

(
ρ

ρ− ε
+ α

)2 ∑

x∈X

m(x)|v(x)|2Fx
.

We fix ρ and ε, and let α → 0+. After that, we let ǫ → 0+. Finally, we take the limit as

ρ→ 0+. As a result, we get v ≡ 0. �

End of the Proof of Theorem 2.7. Since ∆F,Φ
b,m |Γc(X,F ) is a non-negative operator, for all

u ∈ Γc(X,F ), we have

(u, H̃W,Φu) ≥
∑

x∈X

m(x)〈W (x)u(x), u(x)〉Fx
.

Therefore, using assumption (29) we obtain:

(u, (H̃W,Φ − λ)u) ≥ 1

2

∑

x∈X

1

D(x)2
m(x)|u(x)|2Fx

− (λ+ C)‖u‖2

≥ 1

2

∑

x∈X

max

(
1

D(x)2
, 1

)
m(x)|u(x)|2Fx

− (λ+ C + 1/2)‖u‖2. (91)

Choosing, for example, λ = −C − 3/2 in (91) we get the inequality (86) with c1 = 1.

Thus, (H̃W,Φ − λ)|Γc(X,F ) with λ = −C − 3/2 is a symmetric operator satisfying (u, (H̃W,Φ −
λ)u) ≥ ‖u‖2, for all u ∈ Γc(X,F ). By [44, Theorem X.26] we know that the essential self-

adjointness of (H̃W,Φ − λ)|Γc(X,F ) is equivalent to the following statement: if v ∈ Γℓ2
m
(X,F )
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satisfies (H̃W,Φ − λ)v = 0, then v = 0. Thus, by Lemma 10.2, the operator (H̃W,Φ − λ)|Γc(X,F )

is essentially self-adjoint. Thus, H̃W,Φ|Γc(X,F ) is essentially self-adjoint. �
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