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ABSTRACT

Existing measurement techniques for IEEE 802.11-based net-
works assume that the higher the density of monitors in the
target area, the higher the quality of the measure. This
assumption is, however, too strict if we consider the cost
involved in monitor installation and the necessary time to
collect and merge all traces. In this paper, we investigate
the balance between number of traces and completeness of
collected data. We propose a method based on similarity to
rank collected traces according to their contribution to the
monitoring system. With this method, we are able to select
only a subset of traces and still keep the quality of the mea-
sure, while improving system scalability. In addition, based
on the same rank, we identify monitors that can be relo-
cated to enlarge the monitored area and increase the overall
efficiency of the system. Finally, our experimental results
show that the proposed solution leads to a better tradeoff in
terms of unique captured frames over the number of merge
operations.

Categories and Subject Descriptors

C.2.3 [Computer-communication Networks]: Network
Operations—network monitoring, network management

General Terms

Management, Design, Measurement, Experimentation

Keywords

Wireless networks; IEEE 802.11; measurement; monitoring;
scalability

1. INTRODUCTION
Wireless monitoring systems typically employ multiple pas-

sive sensing nodes scattered out across an area of interest to
capture as much information as possible. The need for multi-
ple monitors covering the same area comes from the fact that
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packet sniffers may miss events as a consequence of physical
issues, such as fading, interference, collisions, and hardware
outages. The outcome of such a process is a collection of
traces, each one collected by a different monitor, which are
merged into a single file. The merged trace provides a bet-
ter picture of the wireless activity in the target area at the
cost of increased overhead to capture more traces. This pro-
cedure brings up then a tradeoff between completeness and
scalability [3, 12].

Much effort has been devoted to large scale monitoring
systems and merging techniques. Initially, traces were col-
lected from logs generated in access points or captured in
adjacent wired networks [1, 7]. These solutions provide a
narrowed view of the area of interest because they failed to
monitor the entire wireless network. Cheng et al. claim
that the dynamics of a wireless environment can be only re-
built if all frames and delivery outcomes are captured [3].
Alternative approaches rely on as many distributed passive
sniffers as possible. These systems use a central entity in
charge of generating merged traces taking into account syn-
chronization issues [3, 9]. A common characteristic of all
these solutions is that they are concerned with the contrast-
ing requirements of completeness of the captured traces and
scalability of the monitoring systems [8, 13, 14]. Although
these systems are sophisticated, their main goal is simply to
merge as many traces as possible, rather than improving the
system efficiency by previously selecting the most relevant
traces.

In this paper, we investigate the actual need of completely
merging all the obtained traces. To accomplish that, we rank
traces according to their individual contributions, which are
computed considering pairwise trace similarity. In fact, dif-
ferent traces are likely to bring their own specific observa-
tions; when such observations are not significant (i.e., traces
have a high level of similarity), some traces may not be con-
sidered in the merging procedure. In our experiments, we
observe a clear tradeoff between the amount of information
obtained with an additional trace and system scalability. In
a nutshell, our contributions can be summarized as follows:

• Similarity analysis. We propose two metrics to ana-
lyze the similarity between IEEE 802.11 traces, called
intra- and inter-flow similarity. The first one is based
on the ratio of frames captured by both traces and the
total number of frames. The latter, on the other hand,
is based on the ratio of flows observed in both traces
and the total number of flows.

• Trace ranking. We propose a ranking method, called
“Hamiltonian”, to sort individual traces according to



their contribution to the merged trace. Based on the
similarity metrics, we can select a subset of traces to be
merged and also we can decide whether another trace
is needed to correctly monitor a given area of interest.

• Scalability gains. We show results attesting that our
method leads to significant scalability improvements,
meaning that we can detect whether the contribution
of a given monitor is irrelevant with regard to its lo-
cation. If so, it can be moved further, enlarging the
monitored area.

This paper is structured as follows. In Section 2, we
present our experimental scenarios as well as the hardware
and software used. In Section 3, we introduce the proposed
intra- and inter-flow metrics and we show their impact. In
Section 4, we propose the method to smarter choose a sub-
set of traces and we present the improvements obtained on
the merging procedure. Our conclusions and future works
are reported in Section 5.

2. SNIFFINGANDEXPERIMENTAL SETUP
We adopt WiPal as the network sniffing tool [4, 5]. It is,

actually, both a software library and a set of tools to provide
flexible trace manipulation. Apart from the capture feature,
WiPal can also identify reference frames, perform trace syn-
chronization, merge, concatenation, and extract sub-traces
or single fields. It also has a module for statistic presenta-
tion. Given two traces ti and tj , WiPal operates in three
steps:

• Identifying reference frames. Beacon frames and
non-retransmitted probe response are considered as
unique frames by WiPal. They embed 64-bit times-
tamps (not related to the next synchronization step)
and are extracted from the input traces and then inter-
sected. The intersection process first puts every unique
frame of ti in a hash table, then it does the same for
unique frames in tj ; if a collision occurs, a reference
frame is found.

• Synchronization. Synchronizing two traces means
mapping timestamps of one trace to values that are
compatible with results obtained from the second trace.
WiPal operates on windows of w + 1 reference frames
and, for each of them (Ri), the process performs lin-
ear regression using reference frames in the relative
window Ri−⌊w/2⌋, . . . , Ri+⌈w/2⌉. Once the reference
frames are synchronized, the two traces are also syn-
chronized accordingly.

• Merging. Frames from synchronized traces are copied
to the output trace avoiding duplicates.

We have conducted experiments in two scenarios. We call
the first one IRCICA, as we deployed our monitors at the
second floor of the IRCICA/LIFL computer science labora-
tory of Lille; and the second one INRIA as we conducted our
experiments at the INRIA National Institute for Research
in Computer Science and Control building also in Lille. Fig-
ure 1(a) shows the placement of monitors along the corridor
at IRCICA (leading to a linear shape). Note that moni-
tors 1 to 6 are equally spaced, while monitors 7 and 8 are
slightly separated from the others. At INRIA, as shown in
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(b) INRIA scenario.

Figure 1: Monitor deployment for both scenarios.

Figure 1(b), monitors are placed along the L-shaped floor.
Monitors cannot directly view each other, as they are sepa-
rated by walls.

In both scenarios, the monitors sniffed the wireless net-
work activity during 100 minutes, collecting IEEE 802.11b/g
frames. Each monitor produced only one trace, listening to
channel 1. The traces have an average size of 205 and 110
MByte at IRCICA and INRIA scenarios, respectively. In
our experiments, each frame is limited to 220 bytes and the
MAC addresses are anonymous.

Frame losses always occur independent from the sniffer
hardware and software configuration [11]. In our experi-
ments, we use Asus EEEPC-4G netbooks as sniffers. They
are equipped with 512-MByte RAM and three USB Wi-Fi
Netgear WG111v3 cards as wireless network adapters. The
operating system is a Xandros OS with a customized kernel.

3. TRACE SIMILARITY
Hereinafter, we denote T = {t0, . . . , tn} the set of traces

captured in the same time period, where ti is the trace
collected by monitor si. We consider that each trace is
composed of flows of frames. We denote by fm

i the mth

source-destination flow in trace ti and pni the nth frame in
ti. We denote the cardinality of a set by | • |.

We propose two metrics to discover how similar two traces
are. The intra-flow similarity computes the ratio of the
number of frames simultaneously captured by two given mon-
itors nodes over the total number of frames captured by
them. The inter-flow similarity, on the other hand, consid-
ers the intersection of flows instead of frames. Therefore, it
is proportional to the ratio between the number of flows“ob-
served” by the two monitors over the total number of flows



“observed” by them. A flow is considered “observed” if at
least one of its frames is captured. In addition, since flows
can have different numbers of frames, we give them different
weights; the larger the number of frames in a flow, the more
important it is.

3.1 Intra-flow similarity
We use the Jaccard similarity index to compute the intra-

flow similarity. This metric considers all the frames captured
by two sniffers, digging into each source-destination flow.
This is why we consider this metric as intra-flow. Con-
sidering two captured traces ti and tj as a set of frames,
ti = {p0i , . . . , p

n
i }, the Jaccard similarity is:

J(ti, tj) =
|ti ∩ tj |

|ti ∪ tj |
· (1)

Figure 2(a) depicts the intra-flow similarity matrix of the
traces from IRCICA. Each point (i, j) is gradually colored
according to its value of J(ti, tj). As the monitors have been
sequentially placed, higher values are on the diagonal. In the
figure, we can identify three geographical regions: a central
region (monitors 4-5-6) and two side regions (monitors 1-2-3
and 7-8). As monitors 7-8 are slightly isolated from the oth-
ers (see Figure 1(a)), they present a high similarity between
them and low similarity with all the others. This means
that small changes in monitors’ geographical placement have
a big impact on the amount of original data captured. In
the INRIA scenario, shown in Figure 3(a), traces 1 and 2
share a low intra-flow similarity with all the others and the
remaining traces are split into two sets, 3-5-6-7 and 4-8.

3.2 Inter-flow similarity
From a higher point of view, it is worth considering the

flows in common between two traces. The importance of
each flow is proportional to the number of frames it has. Let
us consider T the corpus of traces and each unique flow fm

i

as a single term in a trace ti. We weight the importance of
the flow using the Term Frequency-Inverse Document Fre-
quency (TF-IDF) metric [10]. TF-IDF is widely used in
the information retrieval and text mining field to weight
the similarity between two text documents. In our context,
documents are traces and terms are flows. The inter-flow
similarity between two traces ti and tj is computed as fol-
lows. If the union of the two traces has l distinct flows, a
TF-IDF vector of l elements is assigned to each trace. Each
element of the vector is the product of two factors. The first
one is the flow frequency in that trace. The second one is
the logarithm of the inverse trace (the one containing that
flow) frequency over all the traces in the corpus.

TF-IDF(ti, l) =
|f l

i∪j |

|ti|
· log

|T |

|{ti ∈ T |f l
i∪j ∈ ti}|

· (2)

The inter-flow similarity (IFS) is a value in the range [0;1]
(from orthogonal traces to equal traces), given by the cosine
of the angle between these vectors. This is equal to the
dot product of the vectors, divided by the product of their
magnitude:

IFS(ti, tj) =

∑

l TF-IDF(ti, l) · TF-IDF(tj , l)
√

∑

l TF-IDF(ti, l)2 ·
√

∑

l TF-IDF(tj , l)2
·

(3)

In Figures 2(b) and 3(b), we can observe how the inter-
flow similarity metric can clarify the relationship between
traces. In the IRCICA scenario, Figure 2(b), we can clearly
distinguish a first cluster of high similarity traces from mon-
itors 7-8, which correspond to the monitors located on the
west side of the building. Because they are slightly separated
from the other monitors, they present low similarity. Cen-
tral monitors 4-5-6 compose another cluster, while on the
east side of the building, we have a set of monitors 2-3 and a
singleton with monitor 1. This last monitor produces a trace
with a perceptible similarity with trace 2 fading down up to
trace 6. We remark that, even if very geographically close,
trace pairs 1-2 and 3-4 do not present a very high similarity
among them.

Figure 3(b) shows that the traces from monitors 3-5-6-7,
placed in the east side of the INRIA building (Figure 1(b)),
have a very high inter-flow similarity as well as traces from
monitors 2-4. Monitors 1 and 8 constitute two singletons.

4. MERGING EFFICIENCY
Deploying a large-scale WLAN monitoring system raises

two important issues. First, deployment cost can be sig-
nificant depending on the number of monitors. Second, it
has a direct consequence on the amount of data to be post-
processed. Moving such a bulk of data is an additional short-
coming, since it impacts on the underlying network. There
is then a tradeoff to respect between representativeness and
scale.

Merging traces from different monitors is based on the
assumption that a monitor might capture an event that an-
other monitor misses. Merging together many traces, how-
ever, is a CPU- and time-consuming process. The proce-
dure is recursive and uses pairs of traces as input – with n

traces, it would require n − 1 steps to synchronize, merge,
and rewrite the final trace. Moreover, depending on the se-
quence of traces to merge, this procedure converges faster
or slower as similar traces (i.e., traces with several equal
frames) do not contribute with unique frames when merged
together. To tackle this issue, we propose a method to bet-
ter chose the sequence of traces to merge. At the end, we
show that the procedure improves system scalability without
losing monitoring information.

4.1 Trace selection strategy
We consider the matrix of inter-frame similarity (IFS)

values calculated in Section 3.2 and shown in Figures 2(b)
and 3(b) as an adjacent matrix of a fully connected graph
G(V,E). In this graph, each vertex vi corresponds to a
captured trace ti and each edge eij has a weight linearly
proportional to the IFS between traces ti and tj connected
(IFS(ti, tj)). For the sake of visualization, we consider the
length of each edge as proportional to its weight. We then
use the Force Atlas algorithm embedded in the Gephi graph
visualization and manipulation software to plot the graph [2].
Figures 2(c) and 2(c) show how nodes are arranged on a
plane.

We observe that pairs of vertices with high similarity are
likely placed farther away, whereas vertices with lower simi-
larity are placed closer. Our hypothesis is that, touching all
the nodes according to the minimum Hamiltonian path, is a
smarter way to iteratively select traces to merge because it
ranks the traces according to their contribution to the final
merge. This rank is obtained from the path sequence, which
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Figure 2: IRCICA scenario. (a) and (b) are, respectively, the intra- and inter-flow similarity matrices
between traces, whereas (c) is the graph generated using traces as nodes and inter-flow similarity values as
edge lengths.
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Figure 3: INRIA scenario. (a) and (b) are, respectively, the intra- and inter-flow similarity matrices between
traces, whereas (c) is the graph generated using traces as nodes and inter-flow similarity values as edge
lengths.

is the solution of the Hamiltonian path problem. Traces at
the beginning of the path contribute more to the merge in
terms of number of unique frames, whereas traces at the end
give a not relevant contribution. The full connectivity guar-
antees the existence of such a Hamiltonian path. We refer
to Hamiltonian path or Hamiltonian sequence equivalently.

At the end of the procedure, we can select a subset of
traces with higher contribution to be merged and we can
also identify the monitors not satisfactorily contributing to
the system. Merging a subset of traces can improve the sys-
tem scalability while moving nodes to other points where
they can have a higher contribution can enlarge the moni-
tored area. We calculate the optimal Hamiltonian path with
Concorde TSP Solver [6].

4.2 Evaluation
We evaluate our ranking strategy comparing its perfor-

mance with a sequential strategy. As a sequential strategy,
we mean merging the traces starting from monitor 1 and
monitor 2 until monitor 8. We use this sequence because,
as far as we know, there is no other work proposing a dif-

ferent method in the literature. Hence, we assume that the
sequence is randomly chosen. For comparison purposes, we
find the minimum Hamiltonian path starting from the trace
captured by monitor 1 in both scenarios. It is worth men-
tioning that the utilization of a different method was consid-
ered such as using the trace size or the amount of frames per
trace, but the differences among them are not appreciable.

For the IRCICA scenario we get the Hamiltonian path
1-5-8-2-4-7-6-3. In Figure 4(a), we can appreciate how
fast this sequence converges to the total covering of unique
captured frames. We show the percentage of unique frames
added to the final trace per merge procedure. As the first
merge, the Hamiltonian sequence chooses trace 5 instead of
trace 2, resulting in a positive percentage difference of 25%
compared with the sequential strategy. At the second merge,
the difference between trace 8 and 3, raises to 32%. From
the third merge operation on the gap starts reducing. The
Hamiltonian curve remains always on the top of the sequen-
tial one, proving the importance of the right trace selection
at the beginning of the whole merging process. Indeed, the
first three chosen traces, 1-5-8, geographically cover all the
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Figure 4: IRCICA scenario. Comparison between the Hamiltonian merging sequence (1-5-8-2-4-7-6-3) and
the sequential merging order.
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Figure 5: INRIA scenario. Comparison between the Hamiltonian merging sequence (1-6-3-4-7-8-5-2) and the
sequential merging order.

area and 87% of all the captured frames. In addition, if the
traces merged at steps 3-4-5-6 can still add a small amount
of new frames, the last merged trace (trace 3) does not gen-
erate a significant increment. This suggests that its utiliza-
tion is not relevant and could be left aside or it suggests that
monitor 3 should be better moved somewhere else.

Regarding the quantity of unique flows detected, the Hamil-
tonian selection strategy presents a faster covering. Fig-
ure 4(b) shows the percentage of unique flows added to the
final trace per merge procedure. The largest differences com-
pared with the sequential strategy are at the firsts merging
steps: 9% higher at the first step and 11% higher at the
second. Comparing Figures 4(a) and 4(b), we also remark
that flows chosen at the beginning are the most significant
ones contributing with a large number of frames. From the
third merging step on, 27% of new flows are detected with
only 12% of new unique frames.

The INRIA scenario also shows that the Hamiltonian strat-
egy leads to a better performance compared with the sequen-
tial one, even when monitors are not geographically placed
respecting the sequential order. In this case, the trace se-
quence given by the Hamiltonian path is 1-6-3-4-7-8-5-2.

Figure 5(a) shows the performance of the Hamiltonian strat-
egy in INRIA scenario. Again, the largest difference appears
at the first steps. Choosing to merge traces 1 and 6, instead
of 1 and 2, we have an increment of 22% in the percentage
of unique frames captured. We also note that, choosing the
Hamiltonian sequence, the last two monitors, do not pro-
duce a significant improvement. These monitors could be
better moved somewhere else to enlarge the monitored area
without a significant loss.

Figure 5(b) shows that even considering steps 5 and 6,
where the sequential procedure detects more flows, the Hamil-
tonian strategy still detects more unique frames. The se-
quential strategy detects more flows in these steps because
most frames are merged at the very beginning of the whole
procedure.

5. SUMMARY AND OUTLOOK
In this work we show how to better scale current monitor-

ing systems, selecting the monitors which produce the most
significant contribution for the merging procedure. Starting
from a set of captured traces, we first compute the inter-
flow similarity between all of them. Then, we model the



network as a graph to find the most appropriate sequence of
merges. This sequence is found using the minimum Hamil-
tonian path, computed on such graph, which sorts the traces
according to their contribution to the final merged file. Our
approach leads to two main improvements. The system can
become more scalable, since the merges can be limited to a
subset of traces at the beginning of the sequence; and the
system can become larger, since last traces in the sequence
can suggest moving the monitors to other areas.

Although the inter-flow similarity looks like to have a good
impact on the trace selection, we wish to exploit other sim-
ilarity metrics. We used the optimum Hamiltonian path
starting from trace 1 in order to compare it with a sequen-
tial merging. A further improvement could be the utilization
of the absolute minimum path.
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