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Abstract 

After swallowing a liquid or a semi-liquid food product, a thin film responsible for the dynamic profile of aroma 

release coats the pharyngeal mucosa. The objective of the present article was to understand and quantify physical 

mechanisms explaining pharyngeal mucosa coating. An elastohydrodynamic model of swallowing was developed for 

Newtonian liquids that focused on the most occluded region of the pharyngeal peristaltic wave. The model took 

lubrication by a saliva film and mucosa deformability into account. Food bolus flow rate and generated load were 

predicted as functions of three dimensionless variables: the dimensionless saliva flow rate, the viscosity ratio 

between saliva and the food bolus, and the elasticity number. Considering physiological conditions, the results were 

applied to predict aroma release kinetics. 

Two sets of conditions were distinguished. The first one was obtained when the saliva film is thin, in which case food 

bolus viscosity has a strong impact on mucosa coating and on flavour release. More importantly, we demonstrated 

the existence of a second set of conditions. It was obtained when the saliva film is thick and the food bolus coating 

the mucosa is very diluted by saliva during the swallowing process and the impact of its viscosity on flavour release is 

weak. This last phenomenon explains physically in vivo observations for Newtonian food products found in the 

literature. Moreover, in this case, the predicted thickness of the mix of food bolus with saliva coating the mucosa is 

approximately of 20 µm; value in agreement with orders of magnitude found in the literature. 

Keywords:   lubrication, pharynx, elastohydrodynamic, viscosity, aroma 
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1.  Introduction 

Food formulation has to take different recommendations to improve nutritional quality of foods (low fat content, 

less salt and sugar) and to adapt food to specific people (as disphagic patients) without modifying their organoleptic 

qualities (flavour and texture perception). These organoleptic qualities are closely related to the physiological 

process of food transformation during chewing and swallowing (Weel et al., 2004; Boland et al., 2006). It is so 

necessary to study the processes of food bolus formation (Woda et al., 2010 ; Yven et al., 2010) and of swallowing 

mechanisms in relation with physical properties of food (Taniguchi et al., 2008; Tsukada et al., 2009) to formulate 

novel food products. 

Swallowing of a liquid or a semi-liquid food product generates a thin film of product coating the pharyngeal mucosa 

(Levine, 1989) responsible for the dynamic profile of aroma release (Buettner et al., 2001). The influence of rheology 

of liquid and semi-liquid food products on aroma release and perception is an unclear and debatable issue in the 

literature (Hollowood et al., 2002; Cook et al., 2003; Weel et al., 2004; Saint-Eve et al., 2006). We can assume that 

the conclusions did not match because the experimental investigations covered very different rheological properties 

(from yield stress fluids as yoghurt to shear -thinning fluids as hydrocolloids). Moreover, these analyses may have 

been biased by the fact that rheological properties and physico-chemical properties governing aroma relase (such as 

mass transfer coefficie nt, Tréléa et al., 2008) are often coupled properties of the product. To explain the role of 

product rheology on aroma release, we need to study the physical phenomena governing pharyngeal mucosa 

coating. 

To understand these phenomena, de Loubens et al. (2010) analysed the physiology and biomechanics of swallowing. 

They showed that the thin film of product coating the mucosa is due to a weak reflux during the pharyn geal 

peristalsis between the root of the tongue and the posterior pharyngeal wall (Figure 1a). To physically represent this 

phenomenon and simplify the problem, they focused their attention on the most occluded region of the peristaltic 

wave. In this region, the pharyngeal peristalsis wave is equivalent to a forward roll coating process. Based on this 

physiological analysis, a fluid-mechanical model that considers lubrication by a saliva film was devel oped. However, 

mucosa deformability was not considered in their first model,  whereas it is an important phenomena that may 

quantitatively improve the model predictions. In the present study, we consider that the pharyngeal peristalsis is 

equivalent to a forward roll coating process with deformable and lubricated surfaces (Figure 1b). In this process, the 

mucosa deform under the load L’ applied by the pharyngeal constrictors muscles (Figure 1b). The purpose of this 

study was to develop an elastohydrodynamic model of the pharyngeal peristalsis in order to understand and 

quantify the role of saliva and the food bolus on the pharyngeal mucosa coating. The equation system was scaled by 

the elastic effects and solved numerically. A parametric study showed the influence of the different model 

parameters on food bolus flow rates and generated forces. The model was applied to flavour release and the 

predictions were compared with in vivo observations obtained for Newtonian liquid foods from the literature. 

Finally, main model assumptions were discussed. 
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Figure 1: (a) Pharyngeal peristalsis (adapted from Pal et al., 2003). (b) Diagram of the peristaltic wave and associated 

study system. Near the most occluded point, the pharyngeal walls are in rotation compared to each other. U’ is the 

wave velocity (m/s) and L’ the load applied by the pharyngeal constrictors muscles (N/m), adapted from de Loubens 

et al. (2010). 

 

Figure 2: Diagram of definition and notations. U’ is the wave velocity (m/s), L’ the load applied by the pharyngeal 

constrictors muscles (N/m), H’(x’) the mucosa location (m), h2’ (x’) the interface location between the food bolus and 

the saliva and H0’ the negative-gap width. 

2.  Elastohydrodynamic model of the pharyngeal peristalsis 

2.1.  Model hypothesis 

As de Loubens et al. (2010), we considered that the swallowing process is equivalent to a forward roll coating 

process (Figure 1). Moreover, we took the deformability of the mucosa into account. The general features of the 
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forward roll coating process with deformable rolls for Newtonian fluids have been described by Coyle (1988). This 

author analysed the flow by means of two dimensionless numbers:  the elasticity parameter Es is the ratio of viscous 

to elastic forces: 

  
( ) ''2

''
2

0

e
s ER

UE µ
=   (1) 

and the load parameter F is the ratio of the external load to the elastic forces: 
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where Ee’ is the effective elastic modulus of the substrate that covers the deformable rolls (Pa/m), µ’ the viscosity of 

the fluid (Pa.s), R’ the rolls radius (m), U’ the velocity (m/s) and L’ the applied load per unit of width (N/m). 

Table 1: Physiological variables and approximate corresponding values. 

Description           Symbol Typical values References 
Saliva thickness e1’ no data  
Saliva viscosity µ1’ 1 1-10 mPa.s       Schipper et al., 2007; Stokes et al., 2007 
Bolus viscosity µ2’ > 1 mPa.s 

 
 

Wave velocity U’ 0.1-0.5 m/s       Dantas et al., 1990; Meng et al., 2005; Chang et al., 1998 
Radius R’ 40 mm          estimated from Chang et al., 1998 
Elasticity modulus of 
the mucosa 

E’ 20-200 kPa       Diridollou et al., 2000; Kim et al., 1998 

Mucosa thickness  em’ 1-4 mm Diridollou et al., 2000 
Load L’ 10-60 N/m       de Loubens et al., 2010 
Elasticity parameter  ES ∼ 8.10-9 calculated with (1) 
Load parameter F ∼ 3.10-5 calculated with (2) 
 

Two limiting cases can be distinguished (Johnson, 1970). When F is low and Es is high, the viscous forces 

predominate. This case tends to the rigid roll limit that was the case developed for pharyngeal peristalsis by de 

Loubens et al. (2010). When F is high and Es is low, the elastic forces dominate and the pressure profile is similar to 

that of a dry contact. This case is the large deflection limit. The cylinders surfaces would intersect if there were no 

deformation. Coyle (1988) defined the effective elastic modulus by Ee’ = E’/em’ , where E’ is the Young modulus of the 

substrate (Pa) and em’ its thickness (m). Useful physiological data on the pharyngeal peristalsis are given in Table 1. 

From these data and the results obtained by Coyle (1988), we can estimate that the pharyngeal peristalsis occurs on 

the large deflection limit (F ≈ 3.10−5 and Es ≈ 8.10−9), although the parameters have a wide range of variation. 

The present physical situation is therefore modeled with the lubrication approximation: the inertial terms are 

neglected compared to the viscous terms in the Navier-Stokes equations. The use of the lubrication approximation 

for the most occluded region of the pharyngeal peristalsis wave and the fact that the flow can be considered as 



5 
 

stationary was already justified by de Loubens et al. (2010). In addition, we take the presence of a lubricating saliva 

film and mucosa deformability into consideration. 

Since the confusion concerning the role of food rheology on flavour release, we restrict our analysis to homogeneous 

Newtonian food bolus. Moreover, in the paragraph concerning the model applications (4.2), model predictions were 

compared with in vivo data obtained with Newtonian glucose solutions. As demonstrated by de Loubens et al. 

(2010), the main role of saliva during swallowing is to obstruct the contact. To represent this phenomenon, saliva is 

considered as being a Newtonian fluid too. 

The geometry is symmetric along the x-axis (Figure 2). Relative quantities associated with saliva and the food bolus 

are referred to as 1 and 2, respectively. Between the two fluids, we ignored diffusion and surface tension effects. The 

dimensional values are identified by the symbol ‘. The flow rate of saliva q1’ (m3/s) is assumed to be known and the 

flow rate of the food bolus q2’ is calculated. µi’ (Pa.s) refers to the viscosities, em’ the thickness (m) of the deformable 

layer of mucosa, H’(x) the half gap between the two cylinders (m), H0’ the “negative-gap width” (m), h2’(x) the 

location of the interface between the food bolus and saliva (m), U’ the cylinder velocity (m/s), L’ the load per unit of 

width (N/m), and R’ the radius (m). 

2.2. Elastic model of the mucosa 

Near the contact point, the undeformed roll surface profiles are locally approximated by parabolas: 

)'(
'2

)'(
2

0 xH
R

xHxH ′∆+
′

+−=′  (3) 

where ΔH’(x’) is the cylinder surface deflection and must be expressed  in terms of model for the elastic deformation 

of the rolls. The deformation of the layer can be considered with different models. Skotheim and Mahadevan (2005) 

have carried out a detailed study of fluid -immersed compressible, incompressible and poro-elastic soft interfaces. 

The one-dimensional Constrained Column Model (CCM) is the most tractable and the least intensive at the 

computational level. It assumes that the local pressure p’ is directly proportional to the local deflection ΔH’: 

eE
xpxH )'()'(

′
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For large deflections and incompressible compliant layers such as mucosa, Carvalho and Scriven (1995) and Gostling 

et al. (2003) have proposed: 
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They found good agreement between this model and most of the sophisticated models in terms of the flow rates 

and the generated forces. These two last assumptions were retained to model the surface deflection (Eq. 4 and 5). 
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2.3. Dimensionless variables 

For high load, viscous forces are small compared to elastic forces, so the pressure should be scaled with the latter. 

Choosing H’0 as the length scale is the most convenient choice because it allows the model to be written in two 

parameters only, namely the viscosity ratio: 

1

2
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and the elasticity number: 
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where Es is defined with the saliva viscosity: 
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The limit Ne→+∞ corresponds to the case where the undeformed rolls would touch. The limit Ne→0 corresponds to 

the dry rolling contact. The dimensionless values defined for imposed velocity and gap are given by: 
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2.4. Hydrodynamic model 

The cylinder profile is given by: 

)(1)( 2 xpxxH ++−=  (8) 
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The momentum conservation equations are solved in the lubrication approximation in their dimensionless form: 
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Defining η = z/H(x) and β = h2(x)/H(x), and considering no wall slip, continuity of velocity and shear stress at the 

interface between the food bolus and the saliva and symmetry, the boundary conditions are: 
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After integration of (9) and (10), application of the boundary conditions (12), (13), (14) and (15) and of the mass 

conservation, the flow rates are given by: 

( )βθββ
θ

θθ
−+








−+−= 1)(

3
2

3
)(cos

2
)( 3

2
3

1 H
d
dp

N
Hq

e

 (16) 

βθβ
α

β
θ

θθ )(
3
21)(cos

2
)( 32

3

2 H
d
dp

N
Hq

e

+







−






 −= (17) 

where θ = arctan(x) . 

Upstream, we consider that the contact is fully submerged. Downstream, the film splits.  In the large deflection case, 

Coyle (1988) has demonstrated that this boundary condition has a slight effect on the results, so we consider that: 
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After resolution, we calculate the resulting load: 
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2.5. Resolution method 

From (16) and (17), we obtain an algebraic equation: 
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and a differential equation on the pressure: 
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Where 

)()tan(1)( 2 θθθ pH ++−=  (22) 

Equations (20), (21) and (22) were solved using Matlab7 software. Even so, the integration had to be performed 

backwards in space (from π/2 to -π/2) to obtain numerical stability. q2 is the unknown variable. For a set of 

parameters (q1, α, Ne), we iterated on q2 until the boundary conditions (18) were verified. 

3. Parametric study 

3.1. Mono-layer case 

Numerical solutions were validated by comparing the results in the monolayer case with those of Coyle (1988). 

Figure 3 shows the flow rate q 1 and the load L as a function of the elasticity number Ne. As shown by Coyle (1988), 

from the results presented Figure 3, the flo w rate and load dependence with Ne can be approximated by the 

relationships: 

5.0
1 5.0 eNq ≈  when 02 =q  (23) 

55.07.13.1 eNL +≈  when 02 =q  (24) 

When Ne tends to zero, the flow rate decreases and the load tends to 1.3.  This value corresponds to a dry rolling 

contact and was verified analytically (Coyle, 1988). 

3.2. Food bolus flow rates 
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Figure 4-a shows the influence of Ne and Figure 4-b the influence of the saliva flow rates q1 at Ne=1 on the food bolus 

flow rates q2 for different cases. The food bolus flow rate q 2 decreases when Ne tends to zero corresponding to the 

dry rolling contact. When there is no saliva at the interface (q1=0), q2 dependence with Ne and α can be expressed 

with a relationship similar to (23): 

( ) 5.0
2 5.0 eNq α≈  when 01 =q  (25) 

Increasing the viscosity ratio α increases q2 whereas saliva lubrication decreases q2. The influence of the saliva flow 

rate q1 decreases when Ne increases. When the relationship: 

2
14qNe ≈  (26) 

is verified, the contact is over-flooded by saliva and q2 tends to zero. 

The viscosity ratio α has a strong influence  on the food bolus flow rate q 2 when the saliva flow rate q 1 is low. Its 

impact drop sharply when q1 increases. 

3.3. Load 

Figure 5-a shows the influence of Ne and Figure 5-b the influence of q1 at Ne=1 on the generated load L for differ ent 

cases. When the contact is not lubricated by saliva, we obtain a relationship equivalent to (24): 

( ) 55.07.13.1 eNL α+≈  when 01 =q  (27) 

When α increases, L increases. When α is smaller than 1, L decreases with q1, whereas L increases with q1 when α is 

higher than 1. The dependence of L on q1 is highly reduced when Ne is weak due to the fact that the contribution of 

hydrodynamic pressure to the load is negligible. 

3.4.  Pressure profile 

Figures 6-a and b show pressure profi les for Ne=1 and Ne=10−3, respectively, for different cases. The pressure sharply 

increases as the fluid is dragged into the narrowing channel, after which the channel widens and the pressure drops. 

When α is higher than 1 the pressure profile developed with α and the saliva flow rate q 1 reduces its development 

and, inversely, when α is lower than 1. When Ne is weak, the pressure profile is less dependent on α and q1 as shown 

in Figure 6-b for Ne = 10−3. It tends to a parabola corresponding to a dry rolling contact (Coyle, 1988): the pressure 

profile is dominated by the elastic deformation of the mucosa. 
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Figure 3: Dimensionless flow rate q1 (-●-) and load L (-▲-) as a function of the elasticity number Ne in the mono-layer 

case (q2=0). 

 

Figure 4:  Dimensionless food bolus flow rate q2 as a function of the elasticity number Ne for different viscosity ratios 

α and dimensionless saliva flow rates q1 (a) and as a function of dimensionless saliva flow rate q 1 for different 

viscosity ratios α for Ne=1 (b). 
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Figure 5: Dimensionless load L as a function of the elasticity number Ne for different viscosity ratio α and 

dimensionless saliva flow rates q 1 (a) and as a function of the dimensionless saliva flow rat e for different viscosity 

ratios α at imposed gap and velocity for Ne=1 (b). 

 

 

Figure 6:  Dimensionless pressure profiles  p for different viscosity ratio α and different dimensionless saliva flow 

rates q1 at Ne=1 (a) and Ne=10−3 (b). 
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4. Applications 

The aim of this section is to provide quantitative results for typical physiological parameters, to apply these results to 

in vivo aroma release and to compare the predictions with in vivo experiments found in the literature. 

4.1. Application to swallowing 

Coating flows often present instabilities and the film varies in a wavy, sinusoidal-like manner across the substrate. 

This type of film thickness non -uniformity is usually referred to as ribbing. It is a consequence of an imbalance 

between surface tension forces and the pressure gradient present within the downstream nip region that generate 

vortex in the film -split region. In the case of a bi-layer coating, the two flui ds are mixed together under the vortex 

action at the contact output. Chong et al. (2007) observed that ribbing is present over a wide range of operating 

parameters for negative gaps. We can thus consider that ribbing and vortex occur during swallowing and that the 

food bolus is therefore mixed with the saliva film. The interesting model outputs in terms of flavour release are the 

total thickness e’ of the mixture of the food bolus with saliva (e’=e’1+e’2) and the rate of dilution r of the food bolus 

in saliva defined by: 

''
'100

11

2

ee
er
+

=  (28) 

In order to apply the model to pharyngeal peristalsis, the mathematical model was used to calculate the thickness of 

bolus e’2 deposited on the pharyngeal mucosa at imposed velocity U’ and load L’. A value of L’ to be reached was 

fixed and (20), (21) and (22) were solved as explained in 2.5. We iterated on q’2 and H’0 until (18) and (19) were 

verified. In fact, the action of the pharyngeal constrictors muscles is equivalent to setting a normal force on the rolls, 

refferd to as load L’ (de Loubens et al., 2010). 

Figure 7 shows the total thickness (in µm) as a function of the rate of dilution (in %) for different parameters 

representative of different physiological conditions (Table 1). 

Regardless of the parameters, the values of the elasticity number Ne are lower than the 1 and, as previously 

explained, the situation is therefore similar to the dry rolling contact. The load is due to the elastic forces and not to 

the hydrodynamic pressure. 

When the viscosity ratio α is 1 (cases a1, b1, c1), the deposited thickness is constant regardless of the dilution rate is. 

When the viscosity ratio increases (comparison between the cases a1 and a10, for example), there are two sets of 

conditions. The first one is obtained when the food bolus is not very diluted  with saliva (r → 0%) and the viscosity 

ratio has a considerable influence on the total thickness e’. The second one is obtained when the food bolus dilution 

increases (r → 100%) and the total thickness tends to a constant. 

In the cases a1, the rate of dilution between the two sets of conditions is about 45%, resulting in an initial saliva 

thickness e’1 of approximately 5 µm. 
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When the dilution ratio is maximal, the saliva entirely obstructs the contact and the bolus cannot coat the mucosa. 

The limit value of saliva thickness is approximately 10 µm in the case a. 

The comparison between cases a and b illustrates the strong role of the peristalsis wave velocity U’ When U’ is 

multiplied by 5, the total thickness is multiplied by 2.5. Moreover, the limit rate of dilution r and the limit of saliva 

thickness between the two sets of conditions previously described increase when the wave velocity increases: in 

case a they are about 45% and 5 µm and 55% and 15 µm in case b. The saliva thickness value necessary to over-flood 

the contact increases from about 10 to 25 µm (r = 100%) as well. 

The comparison of cases a10 and c10 shows that increasing the Young modulus of the mucosa E’ reduces the total 

thickness. The values of E’ reported in Table 1 have one decade of differ ence. This parameter is difficult to obtain in 

vivo and we have therefore used the Young modulus obtained from human skin in vivo (Diridollou et al., 2000) and 

of human pharyngeal tissue in post mortem tension (Kim et al., 1998). The mechanical behavior of the mucosa would 

require more considerations. In fact, mucosa presents a viscoelastic behavior (Kim et al., 1998) and, as a result, the 

Young modulus obtained at the time scale of the process should be introduced into the model (Cohu and Magnin, 

1997). 

 

Cas n° U’ 
[m/s] 

E’ 
[kPa] 

µ2’ 
[mPa.s] 

α Es F 

a1 (○) 0.1 20 5 1 4 10-9 8 10-5 
a10 (●) 0.1 20 50 10 4 10-9 8 10-5 
b1 (□) 0.5 20 5 1 2 10-8 8 10-5 
b10 (■) 0.5 20 50 10 2 10-8 8 10-5 
c1 (∆) 0.1 200 5 1 4 10-10 8 10-6 
c10 (▲) 0.1 200 50 10 4 10-10 8 10-6 

Figure 7: Total thickness of food bolus and saliva e’=e1’+e2’ coating the pharyngeal mucosa as a function of the 

dilution rate of the food bolus with saliva 
''

'100
11

2

ee
er
+

=  and iso-values of saliva thickness e1’ (grey lines) 

(em’=4 mm, R’=4 mm,µ1’=5 mPa.s, L’=10 N/m). 
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4.2. Application to flavour release 

Predictions of aroma release kinetics 

The results of the pharyngeal mucosa coating model were used in a mechanistic model that predicts aroma release 

(Doyennette et al., 2011). Figure 8 shows the kinetics of aroma release in the nasal cavity predicted by the 

mechanistic model for different viscosity ratio α and  rates of dilution r calculated with the present model. In this 

section, we considered that the physico-chemical properties of the food bolus are independent of its viscosity. 

Two sets of conditions can be distinguished according to the physiological parameters and the viscosity ratio. When 

the initial thickness of saliva and the dilution are weak (r→0 %, cases 3 and 4), viscosity has a considerable effect on 

the decreasing part of the aroma release kinetics, whereas when the dilution with saliva is strong (r→ 100%, cases 1 

and 2), viscosity has no effect on aroma release. Figure 7, we show that for typical physiological parameters and a 

food bolus viscosity of 50 mPa.s, the order of magnitude of the limit value of saliva thickness that distinguishes the 

two cases is between 5 and 15 µm. 

Comparison with in vivo aroma release kinetics 

In this section, the model predictions are compared with the results obtained in the literature. 

Doyennette et al. (2011) carried out an in vivo investigation of the influence of viscosity on aroma release. They used 

glucose solutions as test fluids that varied widely in viscosity (from 0.7 to 405  mPa.s at 35◦C). They concluded that 

the solution coating the pharyngeal mucosa was highly diluted with saliva. To show this, they compared the maximal 

relative concentration of kinetics Cmax obtained in vivo with their model predictions for two different cases. 

Figure 9 shows the maximal concentration of kinetics Cmax obtained in vivo and predicted by the model in two 

different cases as a function of the viscosity of the glucose solution. They observed a maximal difference of 40% in 

vivo on Cmax, depending on the glucose viscosity of the solution. However, when they simulated aroma release 

kinetics by considering that the residual thickness of the product was not diluted by saliva (r=0%), they observed 

differences of 97% between the products whereas, when they considered a rate of dilution r of approximately 85%, 

their predictions were in agreement with the in vivo observations. Thus, it was necessary to suppose that the food 

bolus was highly diluted by saliva to explain the in vivo observations. 

The biomechanical model developed in the present study makes it possible to understand the physical origins of 

these observations: the initial thickness of saliva coating the mucosa is sufficiently  thick to dilute the food bolus 

coating the mucosa at the level of the most occluded region of the pharyngeal peristaltic wave and to break the 

viscosity influence on coating and flavour release. Moreover, the thickness of the residual film that coats the mucosa 

after swallowing was estimated at approximately 15 µm in their study and this value is close to those calculated with 

the present model (Figure 7). 
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Figure 8: Aroma release kinetics predicted by the mechanistic model developed by Doyennette et al. (2011) for 

different rates of dilution of the food bolus with saliva (
''

'100
11

2

ee
er
+

= ) and total thicknesses (e1’+e2’) predicted with 

the present elastohydrodynamic model. The time 0 s corresponds to the swallowing events. (U’=0.5 m/s, E’=20 kP a, 

em’=4 mm, R’=4 mm,µ1’=5 mPa.s, L’=10 N/m ) 

 

Figure 9: Maximal relative concentration of aroma release kinetics Cmax as a function of the viscosity of glucose 

solutions µ2’: in vivo data (♦), model predictions without dilution with saliva (r=0%,■), model predictions with a rate 

of dilution of product with saliva r of 85% (▲). Error bars represent the standard deviation on the in vivo data. Data 

from Doyennette et al. (2011). 
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5. Discussion about non-Newtonian behavior 

In despite of different assumptions performed in the model, this last is able to explain the physical origins of in vivo 

observations for Newtonian fluids. The main assumptions concern the physical fluids properties (saliva and food 

bolus) and especially their rheological behavior that we discuss in this section. 

5.1. Rheology of saliva 

In the present model of pharyngeal peristalsis, saliva was considered as a Newtonian flui d although it presents 

complex rheological properties as shear thinning behavior (Stokes et al., 2007), viscoelasticity (Stokes et al., 2007), 

extensional viscosity (Harward et al., 2010) and normal stress (Stokes et al., 2007). Moreover, the intensity of its 

properties depends greatly upon the method of stimulation (Stokes et al., 2007). 

To discuss about the interest to consider shear thinning behavior in the model, Figure 10 shows the shear rate 

distribution (calculated by the present model) in the contact between the root of the tongue and the posterior 

pharyngeal wall for different levels of lubrication by saliva and for mean physiological conditions. When saliva 

thickness increases, mucosa are more and more close and parallel. At the interface between the food bolus and the 

saliva, there is a gap of shear stress due to the continuity of shear stress and the difference of viscosity between the 

two fluids. For the different cases, shear rates vary between 1 and 104 s-1, approximately. Stokes et al. (2007) shows 

that the shear viscosity of saliva vary at maximum between 20 and 1 mPa.s for shear rates comprise between 2 and 

5.103 s-1. These variations are relatively important; knowing that, the thickness of product varies with the square of 

the viscosity in the monolayer case. At the light of the present results, the shear thinning behavior of saliva should 

change quantitatively the model predictions. 

Saliva has a highly elastic nature (Stokes et al., 2007) that has to be compared to the time scale of the coating 

process during swallowing. This time scale is given by the ratio l’/U’, where l’ is the length of the contact (≈10 mm, 

Figure 10), is about 20 ms. For saliva, Stokes et al. (2007) reported that the relaxation times of saliva are from 30 ms 

to 1 s. Being superior to the time scale of the pharyngeal mucosa coating process, viscoelasticity can have an 

influence on the coating phenomena.  

Saliva presents also an extensional viscosity μE’ (Harward et al., 2010). According to the results of Harward et al. 

(2010), the extensional viscosity depends on the strain rate and can reach 120 times the shear viscosity. In the 

momentum conservation equation, we can demonstrate that the ratio of the stresses due to the extensional 

viscosity to the shear viscosity is given by  
2

1 '
'

'
'









l
hE

µ
µ

, where h’ is the gap between the surfaces (≈100 µm, Figure 

10). The value of this ratio is about 0.01 (<<1). We can conclude that extensional effects of saliva should have a slight 

effect on the coating of mucosa. 

The shear of saliva induces normal stress effects (Stokes et al., 2007) that could participate to support the load L’ 

applied by the constrictor muscles. Normal stress N1’ is about 10-100 Pa for shear stresses comprise between 10 and 
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2000 s-1 (Stokes et al., 2007). In the contact between the roots of the tongue and the posterior pharyngeal wall, 

these effects could generate a load LN1’ given by N1’.l’, approximately. An order of magnitude of LN1’ is 1 N/m. This 

value represents only 10% of the load L’ applied by the constrictor muscles. We can so conclude that the normal 

stress effects of saliva must have a moderate effect on the coating phenomena during swallowing.  

 

Figure 10: Example of shear rate distribution (isovalues of shear rate in 1/s) in the contact for different level of saliva 

lubrication: e1=2.6 µm and e2=61 µm (a), e1=13 µm and e2=17 µm (b), e1=22 µm and e2=4.2 µm (c). The z’-coordinate 

0 correspond to the axis of symmetry (U’=0.5 m/s, E’=20 kP a, em’=4 mm, R’=4 mm,µ1’=5 mPa.s, µ2’=10 mPa.s, 

L’=10 N/m). 

Thus, at the light of the simulations obtained with the present model, we can conclude that the shear thinning 

behavior and the viscoelasticity of saliva should affect mucosa coating phenomena and would be interesting to study 
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in detail. However, these phenomena could affect the results only quantitatively. In fact, qualitatively, the existence 

of the two sets of conditions demonstrated in this study is due to obstructions effects by saliva. Moreover, the 

behavior law of saliva has to be determined on a large scale of shear rates that is difficult to obtain experimentally 

and the effect of viscoelasticty on lubrication-flows characteristics is a “largely-unresolved problem” (Zhang and Li, 

2005). 

5.2. Rheology of food bolus 

A second interesting question is the role of food bolus rheology on coating phenomena. Food bolus can present all 

kind of rheological properties from liquid to semi-solid food products or chewing solid food. In the present model, 

we choose to only explore the viscous effects in order to not over-sophisticate the model and to be representative of 

the experimental conditions of Doyennette et al. (2011) and compare thus the results of these two different 

approaches.  

However, as saliva, it is clear that more complex rheological properties can impact on coating phenomena. For 

example, biopolymers and hydrocolloids used as thickeners present shear thinning behaviors. Food bolus can also 

present a yield stress. The yield stress effects and the shear thinning behavior can have a great impact on the coating 

phenomena because the shear rates generated in the contact vary from 0 to 104 s-1. It could be interesting to 

develop a specific experimental device as in our previous study (de Loubens et al., 2010) with deformable rolls to 

study the influence of complex rheological properties on coating (as inhomogeneous food bolus for example). To 

study pharyngeal mucosa coating, modeling stays an interesting approach because it allows us to evaluate physical 

quantities that are very difficult to measure in vivo. 

6. Conclusion 

To conclude, the elastohydrodynamic model of swallowing provides physical explanations as to the role of saliva on 

the food bolus coating and flavour release. After being successfully compared with in vivo experiments, this type of 

approach is promising for designing food products with specific aroma release kinetics or for adapting food product 

properties to people who suffer from swallowing disorders. However, the food bolus presents complex behaviours 

and the development of in vitro systems to model swallowing may be of great interest for studying the role of the 

rheological properties of the food bolus on the pharyngeal mucosa coating and flavour release. 
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