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655 avenue de l’Europe, 38334 Saint Ismier Cedex, France
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The resolution of some problems of electromagnetic scattering from random rough surfaces
implies the derivation of the illumination function, especially when the geometrical optics
approximation is valid. In current models, the shadowing effects occurring for both the trans-
mitter and the receiver are assumed to be independent of their azimuthal directions. This
assumption makes it possible to compute separately the shadowing probabilities in each di-
rection. However, if the transmitter and receiver azimuthal directions are close, these proba-
bilities become strongly correlated. In such a configuration, the uncorrelation approximation
induces an overestimation of the average illumination function up to 10% as well as a dis-
continuity. In this paper, assuming surfaces of isotropic Gaussian statistics with independent
heights and slopes, this correlation is taken into account. Comparisons of our model with
Monte Carlo simulations are made and show a very good agreement, which validates our
approach.

1. Introduction

Resolving some problems of electromagnetic wave scattering from random rough
surfaces needs the derivation of a so-called illumination function, especially when
the geometrical optics approximation can be applied. Conventional illumination
functions, for example Wagner’s [1] and Smith’s [2] models, can be dated back to
the 1960s, and are widely applied. These models assume one-dimensional (1-D)
stationary surfaces of Gaussian statistics for which the heights and the slopes are
independent random variables. Brown [3] extended the illumination function to the
case of non-Gaussian surfaces with the same height-slope independence assump-
tion. Bourlier et al. [4, 5] investigated this problem and showed, by comparing
the Wagner, Smith and Ricciardi-Sato models, that Smith’s illumination function
was the most accurate and that considering the dependence between the heights
and the slopes weakly improves the result. Bourlier et al. [5, 6] also extended the
formulation to the bistatic case, for which the transmitter and the receiver are in
different directions. The bistatic model consists in multiplying two independent
one-dimensional monostatic illumination functions: the first one associated to the
transmitter and the second one to the receiver. However, this assumption is not
valid for many two-dimensional configurations. Indeed, if the transmitter and re-
ceiver azimuthal directions are close, the illumination probabilities associated to
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these directions become strongly correlated and then, they cannot be multiplied.
While this case is often neglected, it is not unusual in real-life situations. Typically,
in long-range acquisition when the transmitter and the receiver are located on the
same device, their directions are close comparatively to the faraway target.
Based on Smith’s approach [2], this paper proposes to model this effect. Like

in the original Smith’s model [2], we assume an isotropic rough surface where the
heights and the slopes are independent Gaussian ramdom variables. We propose
an extension of Smith’s 1-D monostatic illumination function to the 2-D case by
accounting for the correlation between the transmitter and receiver azimuthal di-
rections.
Section 2 reviews Smith’s monostatic illumination function [2], its extension to

the bistatic 2-D case proposed by Bourlier et al. [5, 6], and also discusses of the
problem of the correlation between the azimuthal directions. Our model is derived
in Section 2, and Section 3 presents some comparisons with a Monte-Carlo process.
Compared to previous work, our contribution can be summarized as the introduc-

tion of a correction coefficient r0 in Bourlier’s model. Our derivation is mathemat-
ically sound and based on probability theory. We also propose a simple analytical
approximation of this coefficient. Then, the extension of Boulier’s model to our
model requires a simple evaluation of our approximation of r0.

2. Illumination Function for Gaussian Random Rough Surfaces

We review the monostatic illumination function for a 1-D Gaussian rough surface
proposed by Smith [2] in subsection 2.1, and its extension to a 2-D surface surface
and to a bistatic configuration proposed by Bourlier et al. [5, 6] in subsection 2.2.
Next, we introduce our new bistatic model for a 2-D surface in subsection 2.3 and
develop it in subsections 2.3.1, 2.3.2 and 2.3.4.

2.1. Monostatic Illumination Function for 1-D Surfaces

Any point M(ζ, γ) of the surface is described by its height ζ and its slope γ (see
Fig. 1 with a particular point M = F ). The heights and slopes are independent
Gaussian random variables defined respectively by ζ ∼ N (0, σ2

ζ ) and γ ∼ N (0, σ2
γ),

where N (m,σ) is the normal law of mean value m and of variance σ2. The asso-
ciated PDFs (probability density functions) are pζ and pγ , respectively, and the
CDFs (cumulative distribution functions) are denoted as Pζ and Pγ , respectively.
In Fig. 1, the observation (receiver) from direction A has an angle θA defined

from the vertical z and its associated slope is µA = cot θA.
The illumination function S(F,A) gives the probability that a surface point

F (ζ0, γ0) with height ζ0 and slope γ0 is visible from the receiver A and is ex-
pressed as the product of two probabilities: S(F,A) = Sγ(γ0, A)Sζ(ζ0, A). Since
our derivation is strongly based on probability theory, we adopt a probability no-
tation and terminology. We call an event a set of outcomes to which a probability
is assigned. The notation of the events and the associated probabilities is detailed
in Table 1.
The probability Sγ(γ0, A) that “the point F is not self-shadowed” is the prob-

ability that the slope γ0 of surface the point F is smaller than that of the re-
ceiver µA > 0. Thus, this probability is a binary value given by the Heaviside
function Υ as

Sγ(γ0, A) = Υ(µA − γ0) (1)
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Slope
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(a)

Figure 1. Illustration of the monostatic illumination function.

Probability Associated event
S(F,A) The point F is visible from direction A
Sγ(γ0, A) The point F is not self-shadowed
Sζ(ζ0, A) The ray “FA” is above the surface at τA ∈]0,∞[

S(ζ0, ĀτA | AτA−dτ ) The ray “FA” intersects the surface at τA
given that it is above the surface at τA − dτ

Table 1. Notation used for a monostatic configuration.

The probability Sζ(ζ0, A) of the event “the ray “FA” is above the surface at
τA ∈]0,∞[” is

Sζ(ζ0, A) = exp

[

−
∫ ∞

0
S
(

ζ0, ĀτA | AτA−dτ

)

dτA

]

(2)

where

S
(

ζ0, ĀτA | AτA−dτ

)

= Λ(µA)
µA pζ(ζ0 + τAµA)

Pζ(ζ0 + τAµA)
(3)

Note that S(ζ0, ĀτA | AτA−dτ ) used to be denoted as g in previous work. We changed
it into a probability notation to ensure the consistency throughout the paper.
Moreover,

Λ(µA) =
σγ√
2πµA

exp

(

− µ2
A

2σ2
γ

)

− erfc

(

µA√
2σγ

)

(4)

and Equation (2) has an analytical expression

Sζ(ζ0, A) = Pζ(ζ0)
Λ(µA)

=

[

1− 1

2
erfc

(

ζ0√
2σζ

)]Λ(µA)

(5)
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2.2. Bistatic Illumination Function for 2-D Surfaces

For 2-D surfaces described by z = ζ(x, y), a surface point has (at least) two slopes:
γx, the slope with respect to the x direction and γy, the slope with respect to the y
direction. To simplify the formulation, we consider an isotropic surface, leading to
(γx, γy) ∼ N (0, σ2

γ). In addition, the receiver is defined from the point A = (θA, φA)
and the transmitter from the point B = (θB, φB) (see Fig. 2). They are defined in
spherical coordinates with polar angles θA, θB ∈ [0, π/2] and azimuthal angles
φA, φB ∈ [0, 2π]. The associated slopes are µA = cot θA and µB = cot θB, respec-
tively. Since we consider an isotropic surface, we define the absolute azimuthal
angle difference φ = min(|φA − φB|, |µA − µB − 2π|) and φ ∈ [0, π].

Figure 2. Illustration of the azimuthal correlation between two directions A and B in the bistatic config-
uration.

The bistatic illumination function S(F,A ∩ B) gives the probability that the
point F (ζ0, γ0x, γ0y) is visible simultaneously from both A and B.

Probability Associated event
S(F,A ∩B) The point F is visible from both directions A and B

Sγ(γ0x, γ0y, A ∩B) The point F is not self-shadowed for directions A and B
Sζ(ζ0, A ∩B) The ray “FA” is above the surface at τA ∈]0,∞[ and

the ray “FB” is above the surface at τB ∈]0,∞[
Sζ(ζ0, B|A) The ray “FB” is above the surface at τB ∈]0,∞[

given that the ray “FA” is above the surface at τA ∈]0,∞[
S(ζ0, B̄τB | (BτB−dτ ∩A)) The ray “FB” intersects the surface at τB

given that it is above the surface at τB − dτ and
that the ray “FA” is above the surface at τA ∈]0,∞[

Table 2. Notation used for a bistatic configuration.

Bourlier et al. [5, 6] distinguished two cases.
The first case φ = 0. This case is equivalent to an in-plane configuration. In this

case, the events A and B are correlated because the fact that the two rays are
above the surface is determined by the fact that only the lowest ray is above the
surface. Thus, only the lowest direction with the smallest probability needs to be
considered

S(F,A ∩B) = min (S(F, A), S(F,B)) (6)

The second case φ ∈]0, π]. The events associated to A and B are then assumed
to be independent (the probabilities can be separately estimated and multiplied
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between them), leading to

S(F,A ∩B) = S(F,A) S(F,B) (7)

However, if A and B are close (Figure 2), the events can be strongly correlated
and the above equation does not hold. This occurs when the absolute azimuthal
difference φ is small. The next subsection presents a way to take into account this
correlation.

2.3. Inclusion of the Azimuthal Correlation

Since the surface heights ζ and the slopes γ are independent random variables, we
can write

S(F,A ∩B) = Sζ(ζ0, A ∩B) Sγ(γ0x, γ0y, A ∩B) (8)

The computation of Sγ(γ0x, γ0y, A ∩B), corresponding to the probability that a
facet with slopes (γ0x, γ0y) is not self-shadowed simultaneously from the points A
and B, is straightforward and is explained in Section 2.3.1.
The most difficult part concerns the derivation of Sζ(ζ0, A ∩ B), presented in

subsection 2.3.2.

2.3.1. Derivation of Sγ(γ0x, γ0y, A ∩B)

The probability that a facet with slopes (γ0x, γ0y) is not self-shadowed for direc-
tions A and B is given by

Sγ(γ0x, γ0y, A ∩B) = Υ (µA − γA, µB − γB) (9)

where γA and γB are the slopes projected in the directions A and B, respectively,
as

γA = cosφA γ0x + sinφA γ0y

γB = cosφB γ0x + sinφB γ0y

and Υ(x, y) is the two-dimensional Heaviside function

Υ(x, y) =

{

1 if x, y > 0
0 otherwise

.

It is important to note that since the Heaviside function has binary values, it can
be written as a separable product of two one-variable Heaviside functions, leading
to

Sγ(γ0x, γ0y, A ∩B) = Υ (µA − γA) Υ (µB − γB)

= Sγ(γ0x, γ0y, A) Sγ(γ0x, γ0y, B) (10)

The calculation of the average illumination function over the slopes (γ0x, γ0y)
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requires to compute S̄γ(A ∩B), which is defined as

S̄γ(A ∩B)

=

∫ +∞

−∞

∫ +∞

−∞
Υ(µA − γA) Υ (µB − γB) pγ(γ0x, γ0y) dγ0x dγ0y (11)

If the surface is isotropic (σγ0x
= σγ0y

≡ σγ), the slope distribution is separable.
For Gaussian statistics, it is then written as

pγ(γ0x, γ0y) =
1

2πσ2
γ

exp

(

−
γ20x + γ20y

2σ2
γ

)

=
1√
2πσγ

exp

(

− γ20x
2σ2

γ

)

1√
2πσγ

exp

(

−
γ20y
2σ2

γ

)

= pγ(γ0x) pγ(γ0x) (12)

and the surface parametrization can be rotated so that γA = γ0x and
γB = cos(φ)γ0x + sin(φ)γ0y. In [6], an integration is done analytically and the last
one numerically:

S̄γ(A ∩B)

=

∫ +∞

−∞

∫ +∞

−∞
Υ(µA − γ0x) Υ (µB − cosφγ0x − sinφγ0y) pγ(γ0x) pγ(γ0y) dγ0x dγ0y

=

∫ +∞

−∞
Υ(µA − γ0x) pγ(γ0x)

∫ +∞

−∞
Υ(µB − cosφγ0x − sinφγ0y) pγ(γ0y) dγ0y dγ0x

=

∫ +∞

−∞
Υ(µA − γ0x) pγ(γ0x) Pγ

(

µB − cosφγ0x
sinφ

)

dγ0x

(13)

where Pγ(x) = [1− erfc(x)]/2.

2.3.2. Derivation of Sζ(ζ0, A ∩B)

The probability that the rays coming from F and propagating towards A and B
do not intersect the surface can be expressed from the Bayes conditional probability
theorem as

Sζ(ζ0, A ∩B) = Sζ(ζ0, A) Sζ(ζ0, B | A) (14)

where Sζ(ζ0, A) is the monostatic illumination function expressed from Eq. (2). The
conditional probability Sζ(ζ0, B | A) is the probability that the ray “FB” does not
intersect the surface given that the ray “FA” does not as well. The purpose of this
subsection is to find an approximation of this probability.
The event A : the ray “FA” is not blocked by the surface provides the following

information: “All points of the surface below A have heights which are bounded by
the height of A at the corresponding abscissa”. We introduce this event in Eq. (2)

Sζ(ζ0, B | A) = exp

[

−
∫ ∞

0
Sζ

(

ζ0, B̄τB | (BτB−dτ ∩A)
)

dτB

]

(15)
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in which the function Sζ(ζ0, B̄τB | BτB−dτ ) is replaced by
Sζ

(

ζ0, B̄τB | (BτB−dτ ∩A)
)

by using the information provided by the event
A.
Modelling the information provided by the event A is not trivial for two reasons.

First, this information is not punctual (only one point of the surface) but one-
dimensional (set of points along the cross section of the surface) and thus, it is
complicated to model and to apply. Second, this information is related to the
surface behaviour and it has to be transformed into information useful for the
computation of the intersection with the ray “FB”. In the following, we propose
a heuristic way to model this information and we show how to use it to model the
probability Sζ

(

ζ0, B̄τB | (BτB−dτ ∩A)
)

.

2.3.3. Derivation of the Conditional Probability Sζ

(

ζ0, B̄τB | (BτB−dτ ∩A)
)

For each point of the ray “FB”, instead of using the entire information available
along the ray “FA”, we only use the information provided by the point of “FA” in
the direction orthogonal to the ray “FB” along the surface, as shown in Figure 3.
We note τA the abscissa of only one point of “FA” and we approximate

Sζ(ζ0, B̄τB | (BτB−dτ ∩A)) ≈ Sζ(ζ0, B̄τB | (BτB−dτ ∩AτA)). An important conse-
quence of this approximation is that we need to choose A and B such that µA ≤ µB.
Indeed, in an in-plane configuration, if µA > µB then BτB−dτ ⇒ AτA and thus
Sζ(ζ0, B̄τB | (BτB−dτ ∩ AτA)) = Sζ(ζ0, B̄τB | BτB−dτ ) and the information provided
by the ray “FA’ is not used. From now on, we assume that µA ≤ µB.
Note that this approximation is very similar to that used by Smith [2] for the

derivation of the monostatic 1-D illumination function. Indeed, for the monostatic
case, the probability Sζ(ζ0, B̄τB | BτB−dτ ) from Equation (3) expresses the proba-
bility that the ray intersects the surface at the distance τB given that the ray is
above the surface at the distance τB − dτ . Considering that the surface is below
the ray at the abscissa τB − dτ is an approximation of the event that the surface
must be below the ray in the interval [0; τB[. Since modelling information over the
interval [0; τB[ is complicated, Smith replaced this information only by the single
point τB − dτ . He replaced the event B[0,τB [ by BτB−dτ . Then, our approximation
is in the same spirit but is applied to the other ray. We chose a point below “FA”
in the direction orthogonal to “FB” so that we have AτA | BτB−dτ ≈ AτA | BτB ,
which will allow us to simplify Equation (16).

Information Information

(a) (b)

Figure 3. (a) The non-shadowing for direction A provides information for all points of the surface below
the ray. (b) In the computation of B, we approximate this information by considering only one point below
A, which corresponds to the orthogonal projection onto the ray “FB” at the point of abscissa τB .

If φ ∈ [π2 , π], then for all abscissae τB ≥ 0, the point below “FA” is located at
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an infinite distance and does not provide any information. In this case, we neglect
the information provided by event A and we get Sζ(ζ0, B̄τB | (BτB−dτ ∩ A)) =
Sζ(ζ0, B̄τB | BτB−dτ ) and Sζ(ζ0, B | A) = Sζ(ζ0, B). In the following, we consider
the case where φ ∈ [0, π2 [.

Figure 4. Distance between the points of abscissa τA and τB on rays A and B, respectively.

If φ ∈ [0, π2 [, the point below “FA” corresponding to abscissa τB on “FB” has an
abscissa τA = τB/ cosφ on A, and the distance between the points is d = τB tanφ
(see Fig. 4). In addition, since the point is below the ray “FA”, its height is upper-
bounded by ζτA < ζ0 + τAµA = ζ0 + τBµA/ cosφ. Let us denote AτA this event. By
using Bayes’s conditional probability theorem, we expand

Sζ

(

ζ0, B̄τB | (BτB−dτ ∩AτA)
)

= Sζ

(

ζ0, (B̄τB | AτA) | BτB−dτ

)

= Sζ(ζ0, B̄τB | BτB−dτ )
Sζ

(

ζ0, (AτA | B̄τB) | BτB−dτ

)

Sζ(ζ0, AτA | BτB−dτ )

= Sζ(ζ0, B̄τB | BτB−dτ )
Sζ

(

ζ0, AτA | (B̄τB ∩BτB−dτ )
)

Sζ(ζ0, AτA | BτB−dτ )

To simplify this equation, we use the fact that B̄τB ∩BτB−dτ = B̄τB . Furthermore,
since we have chosen a point below “FA” which is located in the direction or-
thogonal to “FB”, we can make the approximation AτA | BτB−dτ ≈ AτA | BτB . We
get

Sζ

(

ζ0, B̄τB | (BτB−dτ ∩AτA)
)

= Sζ(ζ0, B̄τB | BτB−dτ )
Sζ(ζ0, AτA | B̄τB)

Sζ(ζ0, AτA | BτB)
(16)

where Sζ(ζ0, B̄τB | BτB−dτ ) is the Smith monostatic illumination function from
Equation (3), which does not account for events associated to the ray “FA”.
Sζ(ζ0, AτA | B̄τB) is the probability that the surface is below the ray “FA” at

τA – the height of the surface is in interval ]−∞, ζτA [ below AτA – given that the
ray “FB” crosses the surface at τB – the height of the surface is ζτB = ζ0 + τBµB

below BτB . The information provided by the point BτB provides information about
the height distribution below AτA . The height PDF pζ at this point is transformed
into a conditional PDF pζ|ζτB . Assuming that pζ|ζτB is known for a specific height
ζτB , then

Sζ(ζ0, AτA | B̄τB) =

∫ ζτA

−∞
pζ|ζτB (ζ) dζ

= Pζ|ζτB (ζτA) (17)
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Sζ(ζ0, AτA | BτB) is the probability that the surface is below the ray “FA” at τA
given that the surface is below the ray “FB” at τB. The event BτB fixes the height
ζτB ∈ [−∞, ζ0 + τBµB[ weighted by the height PDF pζ , and then

Sζ(ζ0, AτA | BτB) =

∫ ζ0+τBµB

−∞

pζ(ζτB)

Pζ(ζ0 + τBµB)
Sζ(ζ0, AτA | B̄τB) dζτB

=

∫ ζ0+τBµB

−∞

pζ(ζτB)

Pζ(ζ0 + τBµB)
Pζ|ζτB (ζτA) dζτB (18)

2.3.4. Derivation of pζ|ζτB

Equations (17) and (18) require the knowledge of the conditional PDF pζ|ζτB .
From the height ζτB and the slope γ, the height at a distance d can be approxi-
mated from a first-order Taylor series expansion as ζτB + γd. Since the PDF slope
follows N (0, σ2

γ), the PDF of ζτB + γd follows N (ζτB , (d σγ)
2). This is illustrated in

Figure 5. Thus, a point located along B at a distance d at the height ζτB can be
interpreted as a measure with a Gaussian uncertainty.

(a)

Figure 5. The measure of a point of the surface provides information on its neighbourhood.

If two independent measures x1 ∼ N (m1, σ
2
1) and x2 ∼ N (m2, σ

2
2) are fused

with the minimum-variance unbiased estimator method [7], then the result is
x ∼ N (m,σ2) with a mean value m = (m1/σ

2
1 +m2/σ

2
2)/(1/σ

2
1 + 1/σ2

2) and a vari-
ance σ2 = 1/(1/σ2

1 + 1/σ2
2).

Then, assuming that ζ ∼ N (0, σ2
ζ ) and ζτB + γd ∼ N (ζτB , (d σγ)

2) are indepen-

dent measures, the conditional PDF pζ|ζτB (ζτA) follows N (mζτA |ζτB , σ
2
ζτA |ζτB

) with
mean

mζτA |ζτB =
ζτB

1 +
(

d σγ

σζ

)2 (19)

and variance

σ2
ζτA |ζτB =

(σζ dσγ)
2

σ2
ζ + (dσγ)2

(20)

The associated cumulative distribution function used in Equations (17) and (18) is

Pζ|ζτB (ζτA) = 1− 1

2
erfc

(

ζτA −mζτA |ζτB√
2 σζτA |ζτB

)

(21)
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2.3.5. Properties of the Azimuthal Correlation in Sζ(ζ0, A ∩B)

Our modelling of the azimuthal correlation in the term Sζ(ζ0, A∩B) is consistent
with the in-plane and no correlation configurations for which the results are known.

• Case with no correlation φ ∈ [π2 , π]. In subsection 2.3.3, we explain why the
information provided by A should be neglected according to Smith’s model if
φ ∈ [π2 , π]. In this case, our model with azimuthal correlation comes back to the
separable model with no correlation Sζ(ζ0, A ∩B) = Sζ(ζ0, A) Sζ(ζ0, B).

• Continuity toward the case with no correlation φ → π
2 . In Equa-

tion (18), the distance between the points AτA and BτB is defined by
d = τB tanφ and limφ→π

2

d = ∞. Thus, the variance of the second mea-

sure from subsection 2.3.4 tends toward infinity limφ→π

2

(σγd)
2 = ∞, and

the estimation limφ→π

2

N (mζτA |ζτB , σ
2
ζτA |ζτB

) = N (0, σ2
ζ ) tends toward the sur-

face distribution. In this case, no information is provided by the other
ray, and limφ→π

2

Sζ(ζ0, AτA | B̄τB) = limφ→π

2

Sζ(ζ0, AτA | BτB) =

Pζ(ζτA) and limφ→π

2

Sζ(ζ0, B̄τB | (BτB−dτ ∩AτA)) = Sζ(ζ0, B̄τB | BτB−dτ ). Thus,

limφ→π

2

Sζ(ζ0, B | A) = Sζ(ζ0, B), and the model tends toward the separable
model with no correlation as the azimuthal angle approaches π

2 .

• Case with an in-plane configuration φ = 0. In this case, the points below A
coincide with the points below B. They share the same abscissae parametriza-
tion τ = τA = τB, the distance to the nearest neighbour is d = 0 and the PDF
pζτA |ζτB is the Dirac delta distribution δζτB . The probability Sζ(ζ0, AτA | B̄τB)

from Equation (16) becomes

Sζ(ζ0, AτA | B̄τB) = PζτA |ζτB (ζτA)

=

∫ ζτA

−∞
δζτB (ζ) dζ

= 0 (22)

since A and B are chosen such that µA ≤ µB, i.e., the value ζτB is above ζτA
and the Dirac delta evaluates to 0. Because Sζ(ζ0, AτA | BτB) is the average of
PζτA |ζτB (ζτA) in ]−∞, ζτB ], it is strictly positive. Thus, Equation (16) equals 0.

The conditional probability is then Sζ(ζ0, B | A) = exp(0) = 1, and the probabil-
ity of the intersection is Sζ(ζ0, A ∩B) = Sζ(ζ0, A). This is the expected result of
the bistatic in-plane configuration where only the lowest direction is considered.

2.3.6. Development

By using the result of Equation (16) in Equation (15), we get

Sζ(ζ0, B | A) = exp

[

−
∫ ∞

0
Sζ(ζ0, B̄τB | BτB−dτ )

Sζ(ζ0, AτA | B̄τB)

Sζ(ζ0, AτA | BτB)
dτB

]

To simplify the expression, we introduce the correction coefficient

r(τB) =
Sζ(ζ0, AτA | B̄τB)

Sζ(ζ0, AτA | BτB)
(23)
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and we write the probability

Sζ(ζ0, B | A) = exp

[

−
∫ ∞

0
Sζ(ζ0, B̄τB | BτB−dτ ) r(τB) dτB

]

= exp

[

−Λ(µB) µB

∫ ∞

0

pζ(ζ0 + τBµB)

Pζ(ζ0 + τBµB)
r(τB) dτB

]

= exp

[

−Λ(µB) µB r0

∫ ∞

0

pζ(ζ0 + τBµB)

Pζ(ζ0 + τBµB)
dτB

]

(24)

where the average correction coefficient is defined by

r0 =

∫ ∞

0

pζ(ζ0 + τBµB)

Pζ(ζ0 + τBµB)
r(τB) dτB

/

∫ ∞

0

pζ(ζ0 + τBµB)

Pζ(ζ0 + τBµB)
dτB (25)

The introduction of the average correction coefficient allows us to integrate Equa-
tion (24) similarly to Equation (5) as

Sζ(ζ0, B | A) = Pζ(ζ0)
r0Λ(µB) (26)

2.3.7. Approximation of r0

The average correction coefficient r0 results from an integration which has no
analytical solution. In this section, we propose an analytical approximation. By
developing r given in Equation (23) with the definition of the probabilities from
Equations (17) and (18), we rewrite Equation (25) as

r0 =

∫ ∞

0

pζ(ζ0 + τBµB) Pζ|ζτB (ζτA)
∫ ζ0+µBτB
−∞ pζ(ζ

′
B) Pζ|ζ′

B(τB)(ζτA) dζ
′
B

dτB

/

∫ ∞

0

pζ(ζ0 + τBµB)

Pζ(ζ0 + τBµB)
dτB

(27)

where Pζ|ζτA is the CDF given from Equation (21). The average correction coeffi-

cient is a multivariate function r0(φ, ζ0, µA, µB, σγ). Thanks to our model proper-
ties, we know that r0(φ = 0) = 0 and r0(φ = π/2) = 1.
By computing r0 numerically with Equation (27) provided by our model, we

observe empirically that the sensitiveness to variable ζ0 is low.
Thanks to the surface horizontal scaling property, we have r0(φ, ζ0, µA, µB, σγ) =

r0(φ, ζ0, νA, νB, 1/
√
2), where νA = µA/

√
2σγ and νB = µB/

√
2σγ are the normal-

ized slope.
Furthermore, we also observe that the sensitiveness to the variables νA and νB

mainly depends on the difference νB − νA.
Thus, by approximating ζ0 = 0 and replacing parameters νA and νB by νB −

νA, we get a function of only 2 parameters for which we propose the following
approximation

r0(φ, νB − νA) =

{

log(1 + α φβ)/ log
(

1 + α (π/2)β
)

if φ ∈ [0, π2 [

1 if φ ∈ [π2 , π]
(28)

with α = 0.17/
(

µB−µA

σγ

)10.49
and β = 8.85. The numerical values α and β were

found with a non-linear optimization algorithm which optimizes the bistatic height
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Figure 6. Average correction coefficient r0 and our analytical approximation for different configurations.
Variations of the normalized height h0 = ζ0/

√
2σζ has a low impact on r0 (a, c, e). It depends mostly on

νB − νA, wich is equal to 0.15 and 0.01 in (a,c,e) and in (b,d,f), respectively.

illumination function Sζ(ζ0, A)Sζ(ζ0, B | A). We compared the difference between
the results obtained with our analytical approximation of r0 with the results ob-
tained with the numerically integrated r0 from Equation (27). Our approximation
produces a maximal error of 1.1% on the bistatic height illumination function.
Comparisons between the numerically integrated r0 and our approximation are
shown in Figure 6. These results were computed with the code provided in the
Appendix. Also, since r0 does not depend on the surface heights, we can easily
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S̄ζ(B) = 1
1+Λ(µB) S̄ζ(B | A) = 1

1+r0Λ(µB)

µA = 0.1, σγ = 1

µA = 0.1, σγ = 2

µA = 0.5, σγ = 1

µA = 0.5, σγ = 2

Figure 7. Comparison between the height-averaged illumination function S̄ζ(B) and the conditional

height-averaged illumination function S̄ζ(B | A) for several values of µA and σγ . The probabilities are
displayed in gray-scale level (white=1 and black=0). The points on the hemisphere are associated to the
direction B and the arrow points to the direction A. In the red zone µB < µA, our model does not apply.

integrate to compute the conditional height-averaged expression

S̄ζ(B | A) =

∫ ∞

−∞
Pζ(ζ0)

r0Λ(µB) pζ(ζ0) dζ0 (29)

=
1

1 + r0Λ(µB)
(30)

Figure 7 illustrates the effect of the factor r0 in the conditional height-averaged
illumination function for several values of µA and σγ .

2.3.8. Conclusion

For a 2-D surface and observation directions A and B such that µA < µB, the
bistatic illumination function is expressed as

S(F,A ∩B) = Sγ(γ0x, γ0y, A ∩B) Sζ(ζ0, A) Sζ(ζ0, B | A)
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The probability Sζ(ζ0, A) = Pζ(ζ0)
Λ(µA) is expressed from Eq. (5) (θ → θA)

and the probability Sζ(ζ0, B | A) = Pζ(ζ0)
r0Λ(µB). In addition, the probability

Sγ(γ0x, γ0y, A ∩B) is expressed from Eq. (10).
The slope-averaging is discussed in subsection 2.3.1, and the slope-averaged ex-

pression is

S̄(ζ0, A ∩B) = S̄γ(A ∩B) Sζ(ζ0, A) Sζ(ζ0, B | A)

Since r0 does not depend on the height, we can easily integrate to compute the
height-averaged expression

S̄(γ0x, γ0y, A ∩B) = Sγ(γ0x, γ0y, A ∩B)

∫ ∞

−∞
Sζ(ζ0, A) Sζ(ζ0, B | A) pζ(ζ0) dζ0

= Sγ(γ0x, γ0y, A ∩B)

∫ ∞

−∞
Pζ(ζ0)

Λ(µA)+r0Λ(µB) pζ(ζ0) dζ0

=
Sγ(γ0x, γ0y, A ∩B)

1 + Λ(µA) + r0Λ(µB)
(31)

The height- and slope-averaged expression is

¯̄S(A ∩B) =
S̄γ(A ∩B)

1 + Λ(µA) + r0Λ(µB)
(32)

3. Results

Figure 8 presents comparisons of the surface average bistatic illumination function
¯̄S(A∩B) in function of the azimuthal difference φ between A and B. We compare
the following results:

• Monte Carlo: we use 3000 samples per configuration to integrate the bistatic
illumination on an artificially-generated Gaussian surface with Gaussian auto-
correlation function.

• Bistatic 1-D is the result obtained when A and B are in the same plane. In this
case, ¯̄S(A ∩ B) = ¯̄S(A). This result is constant in Figure 8, because it assumes
φ = 0.

• Bistatic 2-D uncorrelated is the separable product ¯̄S(A∩B) = ¯̄S(A) ¯̄S(B). This
result is constant in Figure 8 because it is not a function of the variable φ.

• Bourlier’s model takes account of the slope correlation, but neglects azimuthal
correlation in the height illumination functions. He evaluates

¯̄S(A ∪B) = S̄γ(A ∩B) S̄ζ(A ∩B) =
S̄γ(A ∩B)

1 + Λ(µA) + Λ(µB)

• Our model is Bourlier’s model where Λ(µB) is multiplied with our analytic ap-
proximation of the correction coefficient r0

¯̄S(A ∪B) = S̄γ(A ∩B) S̄ζ(A ∩B) =
S̄γ(A ∩B)

1 + Λ(µA) + r0Λ(µB)

The plot of the Monte-Carlo simulation show that the correlation effect is im-
portant when φ is small and when the observation angle θ is high (grazing angles).
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Figure 8. Comparison of Monte Carlo results with different bistatic illumination functions. The parameters
of the configuration are the normalized slopes ν = µ/

√
2σγ .

Intuitively, the less the point is visible, the more the correlation effect becomes
significant.

4. Conclusion

In this paper, we have shown that the correlation between the transmitter and re-
ceiver illumination functions is an important effect and should be taken in account.
We have proposed a model based on the Smith formulation in which we modified
the formula by using the information of the first ray to modify the surface statis-
tics in the computation of the second ray. We have shown that the information



July 2, 2013 15:21 Waves in Random and Complex Media Main*Document

16 E. Heitz, C. Bourlier and N. Pinel

provided by the first ray can be modelled in the final formulae by introducing a
factor r0 for which we proposed a simple and accurate analytical approximation.
We used the hypothesis of independent heights and slopes to model the infor-

mation provided by a measure point on the surface. Bourlier et al. [4] showed that
this correlation is not important in monostatic configurations, but it may be more
significant in the bistatic case. We also limited our approach to isotropic Gaussian
surfaces. This work could be extended to other kinds of surfaces, since illumination
functions have been studied on more general surface statistics [3, 5].
This work is an attempt to step in a difficult problem not addressed in current

previous work. While our derivation has some limitations, we hope that this lead
will motivate and inspire future work on this topic.
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Appendix A. Matlab code for r0

� �
function [r0] = r0_approx(h_0, nu_A, nu_B, phi)

% Output

% r0: azimuthal correction coefficient (approximation)

% Input

% h0: normalized height

% nu_A: normalized slope of ray A

% nu_B: normalized slope of ray B

% phi: azimuthal difference between A and B

if phi >= pi/2 % No correlation

r0 = 1;

return;

endif

a = 0.17/abs(nu_B-nu_A)^10.49;

b = 8.85;

r0 = log(1 + a*phi^b) / log(1 + a*(pi/2)^b);

endfunction

� �� �
function [r0] = r0_numerical(h_0, nu_A, nu_B, phi)

% Output

% r0: azimuthal correction coefficient (numerical evaluation)

% Input

% h0: normalized height

% nu_A: normalized slope of ray A

% nu_B: normalized slope of ray B

% phi: azimuthal difference between A and B

% Compute unnormalized parameters

zeta_0 = sqrt(2) * h_0; % Unnormalized height (sigma_zeta=1)

mu_A = sqrt(2) * min(nu_A, nu_B); % Unnormalized slope (sigma_gamma=1)

mu_B = sqrt(2) * max(nu_A, nu_B); % Unnormalized slope (sigma_gamma=1)

% Extreme cases

if phi == 0 % Bistatic 1D

r0 = 0;

return;

endif

if phi >= pi/2 % No correlation

r0 = 1;

return;

endif

% Computation of r0, Eq. (27)

r0_numerator = 0; % First integral along tau_B, Eq. (27)

r0_denominator = 0; % Second integral along tau_B, Eq. (27)

% Numerical integration loop

% (stop when zeta_B > 4.0)

dtau_B = 0.01;

for tau_B = 0.01 : dtau_B : (4.0-zeta_0)/mu_B

zeta_B = zeta_0 + tau_B*mu_B; % Height on B

p_zeta = exp(-0.5*zeta_B^2) / sqrt(2*pi); % Height PDF

P_zeta = 1.0 - 0.5 * erfc( zeta_B/sqrt(2) ); % Height CDF

S_A_nB = P_zeta_zetaB(zeta_0, tau_B, zeta_B, mu_A, phi); % Eq. (17)

% Numerical integration of S_A_B, Eq. (18)

% (start when zeta_B_ > -4.0)

S_A_B = 0;

dzeta_B_ = 0.01;

for zeta_B_ = -4.0 : dzeta_B_ : zeta_0+tau_B*mu_B

p_zeta_ = exp(-0.5*zeta_B_^2) / sqrt(2*pi);

S_A_B = S_A_B + dzeta_B_ * p_zeta_ * P_zeta_zetaB(zeta_0, tau_B, zeta_B_, mu_A, phi);

end

% Update integrals

r0_numerator = r0_numerator + dtau_B * p_zeta * S_A_nB / S_A_B; % Eq. (27)

r0_denominator = r0_denominator + dtau_B * p_zeta / P_zeta; % Eq. (27)

end

% Compute r0

r0 = r0_numerator / r0_denominator; % Eq. (27)

endfunction

� �
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� �

function [P_zeta_zetaB] = P_zeta_zetaB(zeta_0, tau_B, zeta_B, mu_A, phi)

% Output

% P_zetaA_zetaB: Conditional height CDF, Eq. (21)

% Input

% zeta_0: height of starting point

% tau_B: abscissa along ray B

% zeta_B: height below ray B

% mu_A: slope of ray A

% phi: azimuthal difference between A and B

% Distance to point below A

d = tau_B * tan(phi);

% Abscissa along A

tau_A = tau_B / cos(phi);

% Height on A

zeta_A = zeta_0 + tau_A * mu_A;

% Conditional mean below A, Eq. (19)

mean_zeta_A = zeta_B / (1 + d^2);

% Conditional variance below A, Eq. (20)

var_zeta_A = d^2 / (1 + d^2);

% Conditional height CDF, Eq. (21)

P_zeta_zetaB = 1.0 - 0.5 * erfc( (zeta_A-mean_zeta_A) / sqrt(2*var_zeta_A) );

endfunction

� �
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