
HAL Id: hal-00840744
https://hal.science/hal-00840744v1

Submitted on 24 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OpenMOLE, a workflow engine specifically tailored for
the distributed exploration of simulation models

Romain Reuillon, Mathieu Leclaire, Sebastien Rey-Coyrehourcq

To cite this version:
Romain Reuillon, Mathieu Leclaire, Sebastien Rey-Coyrehourcq. OpenMOLE, a workflow engine
specifically tailored for the distributed exploration of simulation models. Future Generation Computer
Systems, 2013, 29 (8), pp.1981-1990. �10.1016/j.future.2013.05.003�. �hal-00840744�

https://hal.science/hal-00840744v1
https://hal.archives-ouvertes.fr


OpenMOLE, a workflow engine specifically tailored for
the distributed exploration of simulation models

Romain Reuillona,b, Mathieu Leclairea,b, Sebastien Reya,b

aGéographie-cités - UMR 8504
13 rue du Four

75006 Paris
bInstitut des Systémes Complexes

57-59 rue Lhomond
75005 Paris

Abstract

Complex-systems describe multiple levels of collective structure and organi-
zation. In such systems, the emergence of global behaviour from local interac-
tions is generally studied through large scale experiments on numerical models.
This analysis generates important computation loads which require the use of
multi-core servers, clusters or grid computing. Dealing with such large scale ex-
ecutions is especially challenging for modellers who don’t possess the theoretical
and methodological skills required to take advantage of high performance com-
puting environments. That’s why we have designed a cloud approach for model
experimentation. This approach has been implemented in OpenMOLE (Open
MOdel Experiment) as a Domain Specific Language (DSL) that leverages the
naturally parallel aspect of model experiments. The OpenMOLE DSL has been
designed to explore user-supplied models. It delegates transparently their nu-
merous executions to remote execution environment. From a user perspective,
those environments are viewed as services providing computing power, therefore
no technical detail is ever exposed. This paper presents the OpenMOLE DSL
through the example of a toy model exploration and through the automated
calibration of a real-world complex system model in the field of geography.

Keywords: Model exploration, Distributed computing, Workflow, Cloud
computing, Complex-systems

Introduction

A complex-system can be defined as a “system comprised of a great num-
ber of heterogeneous entities, among which local interactions create multiple
levels of collective structure and organization”[1]. The emergence of the col-
lective structure from numerous local interactions is generally unpredictable
analytically. Therefore scientists use simulation models as a medium to study
complex-systems. Like the physical system they represent, the behaviour of

Preprint submitted to Elsevier July 2, 2013



such models are unpredictable and counter intuitive. That’s why large scale nu-
merical experimentation is required in order to understand how patterns emerge
from one scale to another.

Complex-system models are often multi-scale, stochastic and individual cen-
tred. Therefore, their execution is generally computationally intensive. Fur-
thermore, the numerical experimentation on such models might imply million
of executions [2, 3]. This huge computational load can only be carried out by
high performance computing environments.

Dealing with such broad computational loads is brain consuming, techni-
cally tricky, error prone and far from the specific field of expertise of modellers.
Hopefully, most model exploration algorithms expose a naturally parallel as-
pect: the large number of independent executions of the model is with no doubt
the most computationally intensive part. In this paper we describe how we
leveraged this natural parallelism to design a generic formalism for distributed
experimentation on complex-system models. This formalism has been imple-
mented in a platform called OpenMOLE (Open MOdeL Experiment)1, which
provides a convenient way to explore home-brewed models with quickly evolv-
ing implementations using advanced design of experiments. The contributions of
OpenMOLE are twofold: it exposes a language for describing reusable design of
experiments for simulation models and it provides an execution platform which
distributes these experiments on high performance computing environments in
a transparent manner.

This paper demonstrates the central concepts of the OpenMOLE formal-
ism. This platform is mature and used daily to explore real-life complex-system
models. However for the sake of the comprehension of this paper, OpenMOLE’s
concepts are illustrated here by the exploration of a toy complex-system model.
The first section presents the goal of the platform. Then the test model is
exposed. After that, this model is explored through several numerical experi-
ments of increasing complexity. Finally, the last section describes a real case
experiment on a multi-agent geographical model.

1. Distributed model exploration

1.1. The naturally parallel aspect of model experimentation

In the physical world, experimenting on complex systems (such as: human
societies, neural networks, insect swarms..) is generally impossible, unethical or
very costly. That’s why scientists design numerical models in order to facilitate
the study of such systems. The numerical modelling of a complex phenomena
especially eases the experimentation required to understand how general pat-
terns emerge from local interactions to global behaviour. The experiments are
thus achieved in-silico, according to methods designed for this purpose.

Among the available methods for numerical experiment on models, one of
the classics is the Design of Experiments (DoE) based on statistics [4]. DoE

1http://www.openmole.org

2



have been widely studied to produce sensitivity analysis on deterministic and
stochastic simulations [5]. Most DoE generate a set of samplings values for the
input of the model. Each of them is evaluated through one or several model
executions depending on the stochastic nature of the model. In DoE, each
evaluation is independent and constitutes a naturally parallel aspect.

Apart from DoE other methods have been designed to automate the model
calibration phase. Indeed, during the modelling process some parameters might
lack an empirical value. They are thus fixed during a calibration phase. This
task is time consuming, that’s why some methods have been designed to au-
tomate it. They are generally based on an optimization algorithm (like in [6])
that aims at minimizing the difference between the model behaviour and an
expected behaviour. Automated calibration algorithms repeatedly evaluate the
model for various set of parameters in order to find a global minima. Evaluating
several configurations in parallel speeds up the optimisation process, therefore
automated calibration processes can also be considered as naturally parallel.

More recently, novel methods have been developed to explore fitness land-
scape, based on particle swarm optimization [7] and on genetic algorithms [8].
These methods are particularly well suited to map model dynamics. Swarm op-
timisations and genetic algorithms both consider a population of solutions. The
evaluation of the fitness of the individuals of the population can be processed
in a concurrent manner. Once again, that kind of method exposes a naturally
parallel aspect.

Another example of this naturally parallel aspect of the model exploration
methods arises from a recent work of ours. We have applied viability theory[9]
to explore all possible dynamics of a model under a given set of constraints (this
work is presented in [2]). In this experiment the model is evaluated millions of
times. Most of these evaluations are independent from each others, exposing
once again a naturally parallel aspect.

The list of methods in this section is not exhaustive, yet it shows that when
dealing with model exploration many methods expose naturally parallel aspects.
This natural parallelism concerns the numerous executions of the model which
are required in order to understand its dynamics. This aspect is however rarely
leveraged to enhance computation speed. It is even called embarrassingly par-
allel by some authors.

1.2. A generic platform for distributed model experimentation

Using distributed execution environment efficiently requires methodological
and technical skills. People possessing those skills are generally not present in
the community where model experimentation at large scale would be required.
That’s why we have designed a platform that completely hides the burden of
distributed computing for model exploration.

The platform called OpenMOLE is based on a workflow formalism. This
formalism is very suitable for representing parallel processes. Several platforms
already propose workflow engines for scientific computing (for a review on scien-
tific workflow platforms see [10]). The most popular free and open-source ones

3



are Kepler [11] 2, Taverna [12] 3, Triana [13] 4, Pegasus 5 [14] and P-Grade [15]
6. Unlike those platforms, the design of OpenMOLE has been focused on au-
tomating distributed experiments on complex-systems simulation models. This
requirement has led to a significantly different design.

The design of OpenMOLE has been driven by the practices of the com-
plex system modellers. For instance, the quickly evolving implementations of
complex-system models, in heterogeneous languages, and the need to experi-
ment all along the modelling process made it crucial to easily embed contin-
uously changing user software components in the platform. Other workflow
platforms can generally use external calls to users-provided programs but they
are not able to delegate them transparently to a remote execution environment.
In OpenMOLE, we have made it easy to embed models based on diverse lan-
guages (such as all JVM languages (java, scala, groovy, clojure), NetLogo 7,
native executables (C / C++ / Python / Fortran / Scilab / Octave...), etc) and
to delegate their executions to remote execution environments.

To delegate the model executions, OpenMOLE enforces a cloud approach.
Following the cloud concepts, it exposes remote execution environments as if
they were services that provide computing power. It accesses them without ex-
posing any technical specificities to the user. To do so, the workload is delegated
transparently directly from the user computer to remote execution environments
[16] following a zero-deployment approach: required software components are
installed transparently and on-the-fly.

Finally, the necessity of carrying advanced design of experiments, such as ge-
netic algorithms or iterative refinement of the exploration space, has pushed the
design of the OpenMOLE toward a very flexible workflow formalism. This for-
malism provides processing structures which are not yet available in many other
workflow platforms: cycles (loops), conditional branching, nested workflows and
implicit representation of massively parallel workflows.

2. The OpenMOLE domain specific language

2.1. The toy model

In this paper, the key aspects of OpenMOLE are demonstrated through the
exploration of a toy model in NetLogo. However, OpenMOLE handles models as
black-boxes, therefore everything presented here is transposable to other models
in other languages.

The Fire model, shown on 1, “simulates the spread of a fire through a forest.
It shows that the fire’s chance of reaching the right edge of the forest depends

2http://kepler-project.org
3http://www.taverna.org.uk
4http://www.trianacode.org
5http://pegasus.isi.edu
6http://portal.p-grade.hu
7http://ccl.northwestern.edu/netlogo

4



Figure 1: Visualisation of the fire model in NetLogo.

critically on the density of trees. This is an example of a common feature of
complex systems, the presence of a non-linear threshold or critical parameter”
8.

This model is simpler that most of model we usually work with. However it
is representative enough to show how it is possible to use OpenMOLE to explore
a model.

Listing 1: Embed the Fire NetLogo model in OpenMOLE

1 // Declaration of the variables

2 val seed = Prototype[Int]("seed")

3 val density = Prototype[Double ]("density")

4 val burned = Prototype[Double ]("burned")

5
6 // Describe the model task

7 import org.openmole.plugin.task.netlogo5._

8
9 val fire =

10 NetLogo5Task(

8http://ccl.northwestern.edu/netlogo/models/Fire

5



11 "Fire",

12 "Fire.nlogo",

13 List("random -seed ${seed}", "setup", "while [any? turtles] [

go]")

14 )

15
16 // Describe input and output of the task

17 fire addInput seed

18 fire addNetLogoInput (density , "density")

19 fire addNetLogoOutput ("burned -trees", burned)

20
21 // Describe values for inputs

22 fire addParameter (density , 59.0)

23 fire addParameter (seed , 42)

24
25 // Describe the display hook

26 import org.openmole.plugin.hook.display._

27
28 val display = ToStringHook ()

29
30 // Describe the workflow

31 val execution = (fire hook display) toExecution

32 execution start

To explore models, OpenMOLE exposes a DSL (Domain Specific Language)
for distributed model exploration. This DSL has been built on top of the Scala
language 9. The Scala syntax has been extended in order to specify tasks and
transitions which are the central concepts in a workflow. The script of the List-
ing 1 exploit the OpenMOLE DSL 10 to execute the model a single time and
displays the output density; it is directly executable in the console of Open-
MOLE version 0.8.

The first part of the script declares variables. Those variables constitute
the data-flow, which can be exchanged between tasks along the transitions.
OpenMOLE variables are typed, which makes OpenMOLE worflows statically
typed. As a result, formal verification of the data-flow is enforced before its
execution. This formal verification ensures the correctness of the data-flow,
which is a exhausting task when performed manually on large workflows. This
very important feature is novel, when compared to other workflow systems.

The type system of OpenMOLE is very complete as it supports native types
(int, double, long...), files, directories and all java and scala types. Furthermore,
additional user-defined types can be provided as plugins in the form of Scala or
Java classes.

In the Listing 1, 3 variables are considered:

• the seed, an integer to initialize the pseudo-random number generator of
the model,

• the input value of the model representing the densities of trees,

9http://www.scala-lang.org/
10http://www.openmole.org/documentation/console/api/

6



• the output value of the model representing the number of burned trees.

In workflows, a task is an atomic execution component. Several tasks are
linked with each-others by transitions to design the workflow topology. More
specifically, in OpenMOLE tasks are all portable, reentrant, immutable software
components which can be run concurrently. This means that tasks have been
designed so they have no interfering side effects. Therefore they can be safely
dispatched on several threads, processes or computers. As far as we know, this
conception of portable tasks is also a unique feature of OpenMOLE among all
the workflow platforms. For us, this feature is crucial, as it makes it possible to
delegate the workload entirely transparently from a user perspective, enabling
the cloud aspect of OpenMOLE.

The concept of task is reflected in OpenMOLE by an interface (Scala trait).
It is polymorphic and extensible. Each implementation provides a new service.
Even if OpenMOLE is implemented in Scala, tasks have been designed to embed
many kind of software components through a non intrusive black box approach.
For instance:

• JVM tasks run user code on top of the Java Virtual Machine, this code is
provided as byte-code packaged in jars (including Java, Scala, Groovy...),

• the Netlogo tasks run NetLogo 11 simulations,

• the system execution task runs native binary code,

• the workflow task runs nested OpenMOLE workflows...

The Listing 1 shows how to declare a task in OpenMOLE. After the variable
declaration part, a task that embed models written in NetLogo version 5 is
instantiated. This task has been called the “NetLogo5Task”. At creation time,
this task requires: a name, the path of the file containing the Netlogo model
and the NetLogo commands that run the model. The file “Fire.nlogo”, which is
provided to OpenMOLE, is an unmodified version of the fire model distributed
with NetLogo.

When executed, a task accesses variables provided by the data-flow. Those
variable, which are required for the task execution, are called “input data”.
When execution of a task has been completed, it produces data injected into
the data-flow. This data is called “output data”. The output data of a task can
be used as input data in subsequent tasks in the workflow.

Lines 16 to 19 of the listing describe input and output data of the NetLogo
task. This task requires a seed and a variable called density. The density input
is mapped to the density variable of the model. The variable seed is used in
the launching commands to initialize the pseudo-random number generator of
NetLogo. Once executed the task brings out the value of the NetLogo variable
“burned-trees” which is mapped to the burnedTrees variable of OpenMOLE.
Lines 21 to 23 set default values for the seed and the density.

11http://ccl.northwestern.edu/netlogo

7



Tasks have been designed to be free of side effects: like pure functions, they
compute output values (return values) from input values (arguments). It is
a requirement to make it possible to execute them in a concurrent manner.
Therefore, output operations (display, writing results in files or database...)
are performed by other components called “Hooks”. Hooks listen to the task
executions and perform output operations once a task’s execution has ended. In
the Listing 1, the lines 25 to 28 instantiate a hook that displays every variable
produced by the NetLogo task.

At the end of the the Listing 1, the workflow is described. This workflow
contains a single task, a hook, and no transition. Its execution produces the
output: “{burned=12448.0}”.

2.2. Tracing the distribution law of the output

Fire is a stochastic model. The “burned-trees” output is therefore a random
variable. To draw the probability distribution of this variable many indepen-
dent executions of the model should be carried out. The OpenMOLE platform
benefits from our previous work on the DistME platform [17] to automatically
distribute stochastic simulation. Thus, it can distribute the replications of a
stochastic model in a rigorous manner. Computing independent replications in
the NetLogo platform means initializing the seed of the pseudo-random number
generator with different values prior to each run.

Listing 2: Explore the distribution of “burned trees” output variable

1 /* ... Description of the fire task ... */

2
3 // Describe the exploration task

4 import org.openmole.plugin.domain.distribution._

5 import org.openmole.plugin.domain.modifier._

6
7 val replication =

8 ExplorationTask(

9 "replication",

10 Factor(seed , UniformIntDistribution () take 100000)

11 )

12
13 // Describe the hook to write into a file

14 import org.openmole.plugin.hook.file._

15
16 val write = AppendToFileHook("result.txt", "${burned }\n")

17
18 // Describe the execution environment

19 import org.openmole.plugin.environment.glite._

20
21 val complexSystemsVO = GliteEnvironment("vo.complex -systems.eu")

22
23 // Import the job grouping strategy

24 import org.openmole.plugin.grouping.batch._

25
26 // Describe the workflow

27 val wf =

28 replication -< (fire hook write on complexSystemsVO by 500)

8



T1 T2
a: R a: S >: R

Figure 2: Single transition between two tasks.

29
30 val execution = wf toExecution

31 execution start

The worflow shown in Listing 2 distributes 100,000 replications of the fire
model over the European grid EGI (European Grid Infrastructure). The first
part of the script is identical to Listing 1, so it has been omitted.

An OpenMOLE workflow that replicates a model execution is generally com-
posed of two tasks. The first task generates the seeds for the pseudo-random
number generator and the second task uses the seed to execute the replications.

In a workflow tasks are linked with each-other by precedence constraints
called “Transitions”. Figure 2 represents a transition between two tasks: T2
is executed once T1 is completed. The typed variable values of the data-flow
circulate along transitions. For instance in Figure 2, the task T1 produces a
variable value called a of type R. The execution of task T2 depends on a variable
a of type S. The type S should be the same type as R or a super-type of R,
noted: S >: R.

In OpenMOLE, workflow level parallelism [18] is achieved by specifying sev-
eral transitions from one task to several others. This formalism makes it possible
to define independent tasks for which the executions can be can safely executed
concurrently. This pattern is called “divergent transitions”. This pattern is
illustrated on Figure 3: in this workflow tasks T2 and T3 can be executed con-
currently, however they both depend on a variable value produced by task T1
that should be executed before T2 and T3.

The dual of the divergent pattern is the “convergent transitions” pattern. In
this pattern, several transitions lead to a single task. This formalism makes it
possible to resynchronize execution streams which have previously been desyn-
chronized by a divergent transitions pattern. In a convergent pattern, variables
with the same name are aggregated in arrays. Each array is typed with the least
common type (the more-specific common type) among all the super-types of the
aggregated variables. On Figure 4, tasks T1 and T2 both produce a variable
a. By consequence, the task T3 receive a variable a of type array of R which is
the least common super-type of S and U.

The three previously presented patterns (flat, divergent, convergent) are
based on a single type of transition for which parallelism should be explicitly
represented by workflow topology. In order to design massively parallel work-
flow executions in a concise manner, OpenMOLE proposes a notation to specify
massive parallelism implicitly. This notation is called the “exploration transi-

9



T1
T3

T2
a: R

a: S >: R

a: U >: R

Figure 3: Divergent transitions pattern.

T1

T2
T3

a: S <: R

a: U <: R

a: R[]

Figure 4: Convergent transitions pattern.

10



T1 T2

sampling

a: S >: Ra: R[]

Figure 5: Exploration transition.

tion”. It is exposed in Figure 5, in which two tasks are linked by an exploration
transition. Task T1 is a special task called “exploration task”. It generates a
set of values according to a strategy for generating samples. This strategy is
called a “sampling”. There are numerous sampling strategies implemented in
OpenMOLE. Among other strategies, they provide common design of experi-
ments such as full factorial sampling, latin hypercube sampling as well as the
ability to read values in a file formatted with Comma Separated Values (CSV).
Advanced users can even define their own samplings, thanks to the extensible
design of OpenMOLE. In the workflow of the Figure 5, for each sample produced
by the sampling of the task T1 a new execution stream is created and an in-
stance of task T2 is scheduled for execution. When using distributed execution
environments each execution of the task T2 is run on a separated processing
unit. The distribution of the many executions of a model generated by a design
of experiments is a requirement to explore complex-system models. That’s why,
contrary to other workflow platforms, this kind of distribution has been made
central in OpenMOLE.

In the OpenMOLE DSL transitions are represented by arrows. In Listing 2
the exploration task issues a sampling of 100,000 different seed values following
a uniform distribution. Then, an exploration transition (noted − <) gener-
ates 100,000 independent executions streams, one for each seed. Each stream
compute a replication of the model.

In the example exposed in the previous section, the result value was displayed
on the standard output. In this workflow 100,000 values are generated and
stored into a file. Lines 13 to 16 instantiate the hook that perform the storage
operation. Each time a model execution is completed, the hook writes a new
line containing the value of the variable “burnedTrees” in the file “result.txt”.

This workflow computes 100,000 executions of the model. Even for fast mod-
els that would run in about 2s, the workflow would require 55 hours of com-
putation on a single core to complete. To tackle the problem of the workload
generated by model explorations OpenMOLE provides a seamless distribution
of the computation load on remote computing resources. As written in [19]: “A
lesson to be learned from Grids is that the abstractions that Grids expose to

11



the end user, to the deployers and to application developers are inappropriate
and they need to be at a higher level.” To solve this issue, OpenMOLE enforces
a novel approach inspired from the cloud paradigm. As stated in the section
1.2, from the user point of view distributed execution environment are services
providing computing power. From the internal OpenMOLE perspective, it au-
tonomously discovers available resources and renders the management of data
transfer, job execution and software installation transparent to the end user.

OpenMOLE enforces a Platform as a Service (PaaS) approach on top of
environments that were not conceived to provide such a functionality (grids,
clusters...). Apart from failure management, resource discovery and file trans-
fers, one of the biggest problems is to hide the complexity of the applications
deployment phase from the user. This has been solved using a zero-deployment
approach that discovers and installs required execution components on-the-fly
on the remote execution host, at execution time (more details about this aspect
of OpenMOLE are exposed in the paper [16]). Zero-deployment is not provided
by any other scientific workflow platform, however it is required in order to
launch rapidly evolving home-brewed models of complex-systems.

Zero-deployment implies that a workflow is independent from any specific
kind of execution environment. Its execution can scale from a laptop host up to
multi-core severs, clusters and grids. Environments are switchable in a declar-
ative manner as explained in [16]. For now, seven execution environments are
implemented in OpenMOLE: local computer, multi-thread local computer, re-
mote multi-core server, Portable Batch System (PBS) cluster, SLURM (Simple
Linux Utility for Resource Management) cluster, Glite / European Middleware
Initiative (EMI) and a versatile desktop grid based on a daemon distributed
along with OpenMOLE. The support for other environments are being devel-
oped for cluster systems (Sun Grid Engine) and for the research (Stratus Lab
12) and commercial IaaS (Infrastructure as a Service) providers.

The cloud aspect of OpenMOLE is taken advantage of in the example of
Listing 2. The executions of the model are delegated to the virtual organization
for complex-systems computation of the European grid EGI. Since execution
environments are exposed as services by OpenMOLE, only access information
should be provided. For EGI this information comprises only the name of the
virtual organization.

As stated previously, massive parallelism is achieved by executing each model
execution in an independent job on the execution environment. However for a
fast model such as Fire, the overhead of several minutes implied by the grid
submission system is not negligible. That’s why grouping strategies have been
implemented in OpenMOLE. They make it possible to run several model exe-
cutions in a single grid job. For instance, in Listing 2, a grouping strategy is
specified in the workflow description: the executions of the model are grouped
by 500 and delegated to the grid.

12http://stratuslab.eu

12



0

100

200

300

400

500

600

0 10000 20000 30000
Number of burned trees

C
ar

di
na

lit
y

Figure 6: Distribution of the number of burned trees for a density of 59% of
trees.

The workflow produces 100,000 independent samplings of the random vari-
able burned trees. Figure 6 shows the distribution of those sampling. The law
of the burned trees random variable looks multi-modal.

2.3. Compute statistics on the output

In the previous section we have shown how to compute the distribution of
the variable. This one explains how to automate the computation of the median
of this distribution.

In order to compute global indicators over all the executions of a model, the
results of the model executions should first be gathered and stored in an array.
While an exploration transition creates many execution streams for massively
parallel executions, its dual, called “aggregation transition”, gathers the results
among many executions streams generated by an “exploration transition”. For
instance, in the workflow shown on Figure 7, task T2 is executed once for
each value generated by T1. After each execution of T2, an execution of T3
is scheduled. The transition between T3 and T4 is an aggregation transition.
This means that the transition is fired only when all executions of T3 have
been completed. If a variable named a of type T is produced by T3, T4 should
expect a variable a of type array of T containing all the values of a produced by
the executions of T3. By default an aggregation transition is triggered when the
execution streams initiated by the corresponding exploration transition are all
terminated. However a stopping condition can also be triggered when a specified

13



T1 T2

sampling

T3 T4
a: R a: S[] >: R[]

Figure 7: Aggregation transition.

state is reached. If this condition is satisfied, then all the execution streams for
the exploration are killed and the aggregation transition is fired.

Listing 3: Compute the median of the distribution of the output variable burned
trees

1 /* ... Description of the fire tasks ... */

2
3 // Describe the replication task

4 import org.openmole.plugin.domain.distribution._

5 import org.openmole.plugin.domain.modifier._

6
7 val replication =

8 ExplorationTask(

9 "replication",

10 Factor(seed , UniformIntDistribution () take 100)

11 )

12
13 // Declare variable to store the median

14 val burnedMed = Prototype[Double ]("burnedMed")

15
16 // Describe the median task

17 import org.openmole.plugin.task.stat._

18
19 val median = MedianTask("median")

20 median addSequence (burnedTrees.toArray , burnedMed)

21
22 // Describe the display hook

23 import org.openmole.plugin.hook.display._

24
25 val display = ToStringHook ()

26
27 // Describe the workflow

28 val wf =

29 replication -< fire >- (median hook display)

30
31 val execution = wf toExecution

32 execution start

The code of Listing 3 uses the aggregation transition to compute the median
among 100 independent replications of the model. First an exploration task is
created to generate 100 different values for the seed. Each seed value is used

14



to compute an independent realisation of the output variable. All those values
are then aggregated in an array by the aggregation transition (noted > −).
Then the “median” task computes the median of this array. This result is then
displayed by the hook: “{burnedMed=13696.5}”.

2.4. Exploration of the model input

Understanding complex-system models generally requires an exploration of
a wide space of parameters and to gather samples according to various design
of experiments (for a review on design of experiments see [20]). Concerning the
Fire model it might be interesting to explore the values taken by the median of
the distribution of the burned trees depending on the density of trees. Listing
4 shows how to achieve it with OpenMOLE.

Listing 4: Explore the variation of the distribution depending on the density of
trees

1 /* .. Definition of exploration , replication and median tasks ..

*/

2
3 import org.openmole.plugin.domain.collection._

4
5 val exploration =

6 ExplorationTask(

7 "exploration",

8 Factor(density , 0.0 to 100.0 by 1.0 toDomain)

9 )

10
11 // Describe the hook to write into a file

12 import org.openmole.plugin.hook.file._

13
14 val write =

15 AppendToCSVFileHook(

16 "distribution.txt",

17 density ,

18 burnedMed

19 )

20
21 // Describe the execution environment

22 import org.openmole.plugin.environment.pbs._

23
24 val cluster = PBSEnvironment("rreuillo", "avakas.mcia.univ -

bordeaux.fr")

25
26 import org.openmole.plugin.grouping.batch._

27
28 // Decribe the workflow

29 val replicationCaps = StrainerCapsule(replication)

30 val medianSlot = Slot(StrainerCapsule(median))

31
32 val wf =

33 exploration -< replicationCaps -< (fire on cluster by 100) >- (

medianSlot hook write)

34
35 val densityTransmission = replicationCaps -- medianSlot

15



36
37 val execution = (wf + densityTransmission) toExecution

38 execution start

In this script an exploration task is instantiated. It explores the density
from 0 to 100 by step of 1. For each value density value, 100 replications of
the model are executed to compute the median. Thus the workflow execution
launches in total 10,000 executions of the model. This computational load is
distributed on a computing cluster (described lines from 21 to 24). In addition
to the authentication, the only information required by OpenMOLE to take
advantage of cluster is the user login and the address of the master node of the
cluster.

In this workflow, the output file should contain the median number of burned
trees given a density of trees. Therefore the density value should circulate all
along the workflow to be written in the result file. In this script we use a func-
tionality called strainer capsule to implicitly transmit this value from one task
to another. Actually, in OpenMOLE workflows, tasks are not directly linked
to each-other by transitions, they are first encapsulated in capsules. This con-
venience makes it possible to use a single task at several locations in the same
workflow by encapsulating it in several capsules. In the previous examples the
capsules were implicitly instantiated when the workflow was described. This
workflow is a bit more complex, therefore explicit capsule instantiation is re-
quired. Line 29 encapsulates the “replication” task in a capsule. This capsule
is a strainer capsule, meaning that the output of the previous capsules in the
workflow are automatically transmitted through this capsule and to the next
capsules. In the workflow, the capsule previous to the “replication” task (the
one containing the exploration task) produces 1 output: the density. Thus, the
density is transmitted through the strainer capsule to the model and to the
“median” task.

Another new concept, the “Slot”, is used in this listing. In order to describe
iterative refinement of the space of parameters (see section 2.5), the OpenMOLE
formalism provides seamless iterative transitions allowing cyclic workflows. To
distinguish synchronization points (convergent transition pattern) from iterative
transitions, the concept of “input slots” has been introduced: a task may possess
multiple input slots and the execution of a task is triggered when all the incoming
transitions belonging to the same input slot have been passed through. For
instance in Figure 8, task T1 owns two input slots. When transition tr1 is fired,
task T1 is executed. Then when transition tr2 is fired, task T2 is executed.
At the end of T2, if the condition is true, both transitions tr3 and tr4 are fired
and two executions streams are generated to execute T1 and T3 concurrently.

As previously stated, the density should be transmitted to the median task in
order to associate the density with the median in the result file. To transmit the
density to the end of the workflow, a transition is used (line 35). This transition
reaches the same slot as the aggregation transition in a convergent pattern,
meaning that the array of values of burned trees (aggregated output results
among the executions of the model) and the density (output of the replication

16



T1

condition

T2 T3
tr1

tr2

tr3

tr4

Figure 8: Iterative transition.

capsule) are both made available for the median task. The median task is placed
in a strainer capsule, therefore the density is implicitly transmitted through this
capsule and available to the hook.

The execution of the workflow produces a csv file, from which an extract
is shown in Listing 5. A graphical representation of those results produces the
curve on Figure 9. This curve shows the non linearity of the model. A fast
transition occurs between densities of 55 and 60.

Listing 5: Result file of the exploration

1 density ,burnedMed

2 70.0 ,43127.0

3 17.0 ,52.0

4 3.0 ,8.0

5 7.0 ,19.0

6 34.0 ,173.5

7 47.0 ,531.0

8 ...

2.5. Solving an inverse problem

The Fire model is a percolation model. Percolation models generally expose
a threshold separating percolating dynamics from non-percolating dynamics.
This section exposes, how to use OpenMOLE to estimate this threshold.

An inverse problem is a question posed on the outputs of a model that aims
at understanding which values of the inputs lead to the production of some
dynamics or some patterns. To illustrate how to solve that kind of problem
with OpenMOLE, this section exposes how to frame the threshold of the density
producing the brutal transition from a dynamics that don’t percolate trough the
entire space from those that do. In order to estimate the threshold, the workflow
shown in Listing 7 (in the appendix section of this article) iteratively refines the
input parameter space.

This workflow uses a slightly modified version of the Fire model. In addition
to the number of burned trees, this version computes an additional boolean

17



0

20000

40000

60000

0 25 50 75 100
Density

M
ed

ia
n 

of
 b

ur
ne

ed
 tr

ee
s

Figure 9: Effect of the density input on the median of the distribution of burned
trees.

18



which is true if the fire has percolated through the entire forest (from left to
right). The lines added to the original model are shown in Listing 6 in the
appendix section.

To frame the threshold, the workflow first generates 100 density samples
from 0 to 100. For each of those sample the model is replicated 1000 times.
For a given density, we consider that the model percolates if at least 50% of the
replications have percolated. Once the percolation criterion computed for the
100 densities, new bounds are computed for the next exploration cycle (given
the densities that led to percolation and the ones that didn’t). The condition
set on the transition, line 101, makes it possible to repeat the exploration while
the distance of the 2 bounds is greater than 0.1.

When executed, this worfklow displays the results: {down=59.0, up=60.0},
{down=59.23, up=59.28}. It computes bounds on the threshold by refining
iteratively the search space. At the end, the last bounds should have been
distant from 0.01, but they aren’t. It means that the model is not precise enough
to compute the threshold accurately. To gain in accuracy the simulation space
should be enlarged.

3. The automatic calibration of a model of system of cities

OpenMOLE is mature and has already helped modellers in the production of
significant scientific results in various application fields: food processing [21, 2],
biology [22], bayesian networks [23], environmental sciences [24], geography [3]...
This section describes a real case study: the automated calibration of a model
in the domain of quantitative geography.

3.1. Geographical background

Geographical simulation models of systems of cities are based on the assump-
tion that the micro-geographic interactions are likely to support the emergence
of “stylized dynamics” on macro-geographical scales. These dynamics constitute
one of the recurring characteristics of these complex systems [25].

The description of individual-centred dynamics, the non-linearity of the in-
teractions and the importance of the historical context lead geographers to
use agent based models (ABM) as support of reflection and experimentation
[26, 27, 28]. For example, the SimPop models family [29] has been designed
to study the dynamics of exchange between cities. In this family a simplified
model, called SimPopLocal describes the emergence of a system of cities where
an endogenous process of innovation and exchange generates growth.

3.2. The calibration process

In geography a successful modelling process aims at creating a set of mech-
anisms which can be validated against empirical data or theoretical knowledge
with a high confidence interval [30]. This phase of calibration is generally con-
ducted manually following a trial and error strategy, by introducing values for
the parameters and verifying that the outputs of the model correspond to an

19



expected result. Such a manual calibration is very difficult and tiresome: multi-
agent models comprise non-linear interactions, they contain parameters that
don’t have empirical equivalence and each increment in the process of the cal-
ibration can produce completely unexpected dynamics. The limitation of this
manual process resulted in performing only a hundred simulations during the
validation of a consolidated version of the model “SimPop2” [31]. Using this
method one cannot reach a reasonable stage where the model could be consid-
ered as validated. Consequently, we decided to create an automated calibration
procedure for SimPopLocal.

In order to calibrate SimPopLocal, we have considered the calibration as
an objective function that should be reached. The goal was to find a set of
parameters that minimizes the gap between the dynamic of the model and a
dynamic that matches the geography theory. The reduction of this gap became
a guide to feed one optimization algorithm. By doing so, we have answered
the question: do there exist combinations of parameters that produce realistic
dynamics for the growth of the system of cities?

3.3. The workflow

The calibration of the SimPopLocal model was automated by using a genetic
algorithm [32]. These algorithms scan the search space following strategies
inspired by natural processes to solve optimisation problems. Since we had
multiple objectives we uses a popular multi-objective genetic algorithm called
NSGA-II [33].

In its most effective implementation one execution of SimPopLocal lasts on
average 3 seconds on a cutting edge processor. This model is stochastic, thus the
evaluation of the adequacy of a single set of parameters requires the executions
of 100 independent replications (300s) in order to compute the statistical indica-
tors. To converge, a genetic algorithm evaluates the fitness function numerous
times. Thus a 300 seconds fitness function is very computationally difficult.
That’s why we distributed NSGA-II using OpenMOLE.

Figure 10 represents the workflow we designed to distribute NSGA-II. First
it generates genomes that are candidate solutions. Those candidate solutions are
evaluated in a parallel manner. Finally, new candidate solutions are generated
based on the best fit solutions already produced. The entire process is iterated
until a convergence is reached (the algorithm doesn’t improve the set of solution
during a significant number of iterations).

The automatic calibration required almost 400 million executions of the
model. It represents nearly 23 consecutive years of computing on single pro-
cessing unit. These impressive figures illustrate well the difficulty of the cali-
bration task in the absence of a priori knowledge of the behaviour of the model.
OpenMOLE made it possible to apply, for the first time, an automatic calibra-
tion procedure on a multi-agent model intended to simulate the emergence of a
system of urban settlements. It allowed a decisive advance in the validation of
this model on two very important points: on the one hand, we proved that the
SimPopLocal model is able to generate a satisfactorily evolution of an urban
hierarchy; on the second hand, we estimated with a high degree of accuracy the

20



explo. evaluat.

genomes

generat.

! converged

Figure 10: Genetic algorithm workflow.

values for parameters that are essential to this emergence, whereas these pa-
rameters remain generally unknown to historians and geographers specialists.

Conclusion

This paper shows the DSL proposed by OpenMOLE to perform large scale
model exploration. This DSL is both a model independent way of describing
reusable model experiment processes and a simple and efficient way of using
high performance environments. Based on the cloud principle, the intensive
computational work-load of the numerical experiment is transparently delegated
to remote high performance computing environments. This paper demonstrates
the adequacy of OpenMOLE for its purpose through a detailed study of a toy
model in the complex-system field and by exhibiting a large scale experiment
on a real use case for which OpenMOLE produced high-quality scientific results
that wouldn’t have been computable otherwise.

Acknowledgements

Acknowledgement for the funding received from the European Community’s
ERC project GeoDivercity. Results obtained in this paper were computed on the
biomed and the vo.complex-system.eu virtual organization of the European Grid
Infrastructure (http://www.egi.eu). We thank the European Grid Infrastruc-
ture and its supporting National Grid Initiatives (France-Grilles in particular)
for providing the technical support and infrastructure.

References

[1] P. Bourgine, P. Chavalarias, E. Perrier, F. Amblard, F. Arlabosse, et al.,
French roadmap for complex systems 2008-2009 (2009).

21



[2] M. Sicard, N. Perrot, S. Mesmoudi, S. Martin, R. Reuillon, I. Alvarez, De-
velopment of a viability approach for reverse engineering in complex food
processes: Application to a camembert cheese ripening process. adapta-
tion of the viability theory, Journal of Food Engeneering (EFG) (2011)
submitted.

[3] R. Reuillon, S. Rey, C. Schmitt, M. Leclaire, D. Pumain, Algo-
rithmes évolutionnaires sur grille de calcul pour le calibrage de modéles
géographiques, in: Conférence France-Grilles, 2012, pp. 12–16.

[4] R. Fisher, The design of experiments. (1971).

[5] J. Kleijnen, Design of experiments: overview, in: Simulation Conference,
2008. WSC 2008. Winter, IEEE, 2008, pp. 479–488.

[6] H. Madsen, Automatic calibration of a conceptual rainfall–runoff model
using multiple objectives, Journal of hydrology 235 (2000) 276–288.

[7] D. R. Harp, V. V. Vesselinov, An agent-based approach to global uncer-
tainty and sensitivity analysis, Computers and Geosciences 40 (2012) 19 –
27.

[8] J. Mouret, J. Clune, Uncovering phenotype-fitness maps using mole, con-
nections 5 (2012) 10.

[9] J.-P. Aubin, Viability theory, Birkhauser Boston Inc., Cambridge, MA,
USA, 1991.

[10] E. Deelman, D. Gannon, M. Shields, I. Taylor, Workflows and e-science: An
overview of workflow system features and capabilities, Future Generation
Computer Systems 25 (2009) 528 – 540.

[11] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, Y. Zhao, Scientific workflow management and the kepler
system: Research articles, Concurr. Comput. : Pract. Exper. 18 (2006)
1039–1065.

[12] P. Missier, S. Soiland-Reyes, S. Owen, W. Tan, A. Nenadic, I. Dunlop,
A. Williams, T. Oinn, C. Goble, Taverna, reloaded, in: Proceedings of the
22nd international conference on Scientific and statistical database manage-
ment, SSDBM’10, Springer-Verlag, Berlin, Heidelberg, 2010, p. 471–481.

[13] I. Taylor, M. Shields, I. Wang, A. Harrison, Visual Grid Workflow in
Triana, Journal of Grid Computing 3 (2005) 153–169.

[14] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M. hui
Su, K. Vahi, M. Livny, Pegasus: Mapping scientific workflows onto the grid,
2004.

[15] Z. Farkas, P. Kacsuk, P-grade portal: A generic workflow system to support
user communities, Future Gener. Comput. Syst. 27 (2011) 454–465.

22



[16] R. Reuillon, F. Chuffart, M. Leclaire, T. Faure, N. Dumoulin, D. Hill,
Declarative task delegation in OpenMOLE, in: HPCS, 2010, pp. 55–62.

[17] R. Reuillon, M. K. Traore, J. Passerat-Palmbach, D. R. Hill, Parallel
stochastic simulations with rigorous distribution of pseudo-random num-
bers with distme: Application to life science simulations, Concurr. Comput.
: Pract. Exper. 24 (2012) 723–738.

[18] T. Glatard, J. Montagnat, D. Lingrand, X. Pennec, Flexible and efficient
workflow deployment of Data-Intensive applications on grids with MO-
TEUR, Int. J. High Perform. Comput. Appl. 22 (2008) 347–360.

[19] S. Jha, A. Merzky, G. Fox, Using clouds to provide grids with higher levels
of abstraction and explicit support for usage modes, Concurr. Comput. :
Pract. Exper. 21 (2009) 1087–1108.

[20] J. P. C. Kleijnen, Design of experiments: overview, in: Proceedings of
the 40th Conference on Winter Simulation, WSC ’08, Winter Simulation
Conference, 2008, p. 479–488.

[21] S. Mesmoudi, N. Perrot, R. Reuillon, P. Bourgine, E. Lutton, Optimal
viable path search for a cheese ripening process using a multi-objective ea,
in: ICEC 2010, International Conference on Evolutionary Computation,
2010. 24-26 oct, Valencia, Spain.

[22] I. Junier, R. K. Dale, C. Hou, F. Kepes, A. Dean, CTCF-mediated tran-
scriptional regulation through cell type-specific chromosome organization
in the beta-globin locus, Nucleic Acids Research 40 (2012) 7718–7727.

[23] A. Tonda, E. Lutton, R. Reuillon, G. Squillero, P. H. Wuillemin, Bayesian
network structure learning from limited datasets through graph evolution,
Genetic Programming (2012) 254–265.

[24] R. Lardy, A.-I. Graux, B. Bachelet, D. R. Hill, G. Bellocchi, Steady-
state soil organic matter approximation model: application to the pasture
simulation model, in: International Environmental Modelling and Software
Society, 2012, pp. 769–776.

[25] D. Pumain, Une approche de la complexité en géographie, Géocarrefour:
Revue de géographie de Lyon 78 (2003) 25–31.

[26] L. Sanders, Objets géographiques et simulation agent, entre thématique et
méthodologie, Revue Internationale de Géomatique 17 (2007) 135–160.

[27] M. Batty, Fifty years of urban modelling : Macro-statics to macro-
dynamics, in: The Dynamics of Complex Urban Systems, Springer, 2008,
pp. 1–21.

[28] A. Heppenstall, A. Evans, M. Birkin, Genetic algorithm optimisation of
an agent-based model for simulating a retail market, Environment and
Planning B: Planning and Design 34 (2007) 1051–1070.

23



[29] D. Pumain, Une thérie géographique des villes, BSGLg 55 (2011) 5 – 15.

[30] R. Sargent, Verification and validation of simulation models, Winter Sim-
ulation Conference, Orlando, Florida, 2005, pp. 130–143.

[31] A. Bretagnolle, E. Daudet, D. Pumain, From theory to modelling : urban
systems as complex systems, Cybergeo (2006) 1–17.

[32] J. Holland, Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence,
MIT press, 1992.

[33] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: Nsga-ii, Lecture
notes in computer science 1917 (2000) 849–858.

4. Appendix

Listing 6: Addition to Fire.nlogo code for percolation detection

1 globals [

2 ;; same as Fire.nlogo

3 percolate ;; fire touch the right border

4 ]

5
6 to setup

7 ;; same as Fire.nlogo

8 set percolate false

9 end

10
11 to ignite

12 ;; same as Fire.nlogo

13
14 if pxcor = max -pxcor [set percolate true]

15 end

Listing 7: Approximate the percolation threshold by iterative refining

1 // Declaration of the variables

2 val seed = Prototype[Int]("seed")

3 val density = Prototype[Double ]("density")

4 val percolate = Prototype[Boolean ]("percolate")

5 val down = Prototype[Double ]("down")

6 val up = Prototype[Double ]("up")

7
8 // Describe the model task

9 import org.openmole.plugin.task.netlogo5._

10
11 val fire =

12 NetLogo5Task(

13 "Fire",

24



14 "FirePercolation.nlogo",

15 List("random -seed ${seed}", "setup", "while [any? turtles] [

go]")

16 )

17
18 // Describe input and output of the task

19 fire addInput seed

20 fire addNetLogoInput (density , "density")

21 fire addNetLogoOutput ("percolate", percolate)

22
23 // Describe the exploration task

24 import org.openmole.plugin.domain.distribution._

25 import org.openmole.plugin.domain.modifier._

26
27 val replication =

28 ExplorationTask(

29 "replication",

30 Factor(seed , new UniformIntDistribution take 1000)

31 )

32
33 import org.openmole.plugin.task.groovy._

34
35 val count =

36 GroovyTask(

37 "count",

38 "percolate = percolate.count(true) > 500"

39 )

40
41 count addInput percolate.toArray

42 count addOutput percolate

43
44 val newBounds =

45 GroovyTask(

46 "newBounds",

47 "results = [density , percolate ]. transpose ().sort{it[0]}\n" +

48 "down = results.takeWhile{it[1] == false}.last()[0]\n" +

49 "up = results.reverse ().takeWhile{it[1] == true}.last()[0]"

50 )

51
52 newBounds addInput percolate.toArray

53 newBounds addInput density.toArray

54 newBounds addOutput down

55 newBounds addOutput up

56
57 import org.openmole.plugin.domain.range._

58
59 val exploration =

60 ExplorationTask(

61 "exploration",

62 Factor(density , Range[Double ]("${down}","${up}", "${(up -

down) / 100}"))

63 )

64
65 exploration addInput down

66 exploration addInput up

67 exploration addOutput down

68 exploration addOutput up

25



69
70 exploration addParameter (down , 0.0)

71 exploration addParameter (up, 100.0)

72
73 // Describe the hook to write into a file

74 import org.openmole.plugin.hook.display._

75
76 val display = ToStringHook ()

77
78 // Describe the execution environment

79 import org.openmole.plugin.environment.glite._

80
81 val complexSystemsVO = GliteEnvironment("vo.complex -systems.eu")

82
83 // Decribe the workflow

84 import org.openmole.plugin.grouping.batch._

85
86 val explorationCaps = Capsule(exploration)

87 val replicationCaps = StrainerCapsule(replication)

88 val countSlot = Slot(StrainerCapsule(count))

89 val newBoundsCaps = Capsule(newBounds)

90
91 val wf =

92 Slot(explorationCaps) -< replicationCaps -< (fire on

complexSystemsVO by 500) >- countSlot >- (newBoundsCaps

hook display)

93
94 val densityTransmission = replicationCaps -- countSlot

95
96 val iter = newBoundsCaps -- (Slot(explorationCaps), "(up - down)

> 0.1")

97
98 val execution = (wf + densityTransmission + iter) toExecution

99 execution start

26


