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Abstract

Rankcluster is the first R package dedicated to ranking data. This package pro-
poses modelling and clustering tools for ranking data, potentially multivariate and par-
tial. Ranking data are modelled by the Insertion Sorting Rank (isr) model, which is
a meaningful model parametrized by a central ranking and a dispersion parameter. A
conditional independence assumption allows to take into account multivariate rankings,
and clustering is performed by the mean of mixtures of multivariate isr model. The
clusters parameters (central rankings and dispersion parameters) help the practitioners
in the interpretation of the clustering. Moreover, the Rankcluster package provides an
estimation of the missing ranking positions when rankings are partial. After an overview
of the mixture of multivariate isr model, the Rankcluster package is described and its
use is illustrated through two real datasets analysis.
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1. Introduction

Ranking data occur when a number of subjects are asked to rank a list of objects according
to their personal preference order. Such data are of great interest in human activities involv-
ing preferences, attitudes or choices like Psychology, Sociology, Politics, Marketing, etc. For
instance, the voting system single transferable vote occurring in Ireland, Australia and New
Zeeland, is based on preferential voting (Gormley and Murphy 2008). In a lot of applica-
tions, the study of ranking data discloses heterogeneity, due for instance to different political
meanings, different human preferences, etc.

Recently, Jacques and Biernacki (2012) proposed a model-based clustering algorithm in or-
der to analyse and explore such ranking data. This algorithm is able to take into account
multivariate rankings with potential partial rankings (when a subject did not rank all the
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objects). To the best of our knowledge, this is the only clustering algorithm for ranking data
with a so wide application scope. This algorithm is based on an extension of the Insertion
Sorting Rank (isr) model (Biernacki and Jacques 2013) for ranking data, which is a mean-
ingful and effective model obtained by modelling the ranking generating process assumed to
be a sorting algorithm. The isr model is parametrized by a position parameter (the modal
ranking) and a dispersion parameter. The heterogeneity of the rank population is modelled
by a mixture of isr whereas conditional independence assumption allows the extension to
multivariate rankings. Maximum likelihood estimation is performed through a SEM-Gibbs
algorithm, in which partial rankings are considered as missing data, what allows to simulate
them during the estimation process.

This algorithm has been implemented in C++ and is available through the Rankcluster

package for R, available on R-forge (and soon on the CRAN website) and presented at long in
the sequel of this paper.

The paper is organised as follows: Section 2 briefly presents the clustering algorithm proposed
in Jacques and Biernacki (2012). Section 3 discusses the functionalities of the Rankclus-

ter package for R, whereas Section 4 illustrates the use of Rankcluster through the cluster
analysis of two datasets: 1. Fligner and Verducci’s words dataset (univariate full rank-
ings, Fligner and Verducci (1986)), and 2. the votes of some European countries to the
last six editions of the Eurovision song contest (2007–2012) (multivariate partial rankings,
Jacques and Biernacki (2012)).

2. Overview of the model-based clustering algorithm

This section gives an overview of the model-based clustering algorithm for multivariate partial
rankings proposed in Jacques and Biernacki (2012). It relies on the univariate isr model that
we introduce first.

2.1. The univariate ISR model

Rank data arise when judges or subjects are asked to rank several objects O1, . . . ,Om accord-
ing to a given order of preference. The resulting ranking can be designed by its ordering rep-
resentation x = (x1, . . . , xm) ∈ Pm which signifies that Object Oxh is the hth (h = 1, . . . ,m),
where Pm is the set of the permutations of the first m integers. Based on the assumption
that a rank datum is the result of a sorting algorithm based on paired comparisons, and that
the judge who ranks the objects uses the insertion sort because of its optimality properties
(minimum number of paired comparisons), Biernacki and Jacques (2013) state the following
so-called isr model:

p(x;µ, π) =
1

m!

∑

y∈Pm

p(x|y;µ, π) =
1

m!

∑

y∈Pm

πG(x,y,µ)(1− π)A(x,y)−G(x,y,µ), (1)

where

• µ ∈ Pm, the modal ranking, is a location parameter. Its opposite ranking µ̄ (µ̄ = µ ◦ ē
with ē = (m, . . . , 1)) is the rank of smallest probability,
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• π ∈ [1
2 , 1], which is the probability of good paired comparison according to µ in the sort

algorithm, is a scale parameter : the distribution is uniform when π = 1
2 and the mode

µ of the distribution is uniformly more pronounced when π grows, being a Dirac in µ
when π = 1,

• the sum over y ∈ Pm corresponds to all the possible initial presentation orders of the
objects to rank (with identical prior probabilities equal to 1/m!),

• G(x, y, µ) is equal to the number of good paired comparisons during the sorting process
leading to return x when the presentation order is y,

• A(x, y) corresponds to the total number of paired comparisons (good or wrong).

The accurate definitions of G(x, y, µ) and A(x, y) can be found in Biernacki and Jacques
(2013).

2.2. Mixture of multivariate ISR

Let now redefine x = (x1, . . . , xp) ∈ Pm1
× . . . × Pmp as a multivariate rank, in which xj =

(xj1, . . . , xjmj ) is a rank of mj objects (1 ≤ j ≤ p).

The population of multivariate ranks is assumed to be composed of K groups in proportions
pk (pk ∈ [0, 1] and

∑K
k=1 pk = 1). Given a group k, the p components x1, . . . , xp of the

multivariate rank datum x are assumed to be sampled from independent isr distributions
with corresponding modal rankings µ1

k, . . . , µ
p
k (each µjk ∈ Pmj ) and good paired comparison

probabilities π1
k, . . . , π

p
k ∈ [1

2 , 1].

The unconditional probability of a rank x is then

p(x;θ) =
K
∑

k=1

pk

p
∏

j=1

1

mj!

∑

y∈Pmj

p(xj |y;µjk, π
j
k), (2)

where θ = (πjk, µ
j
k, pk)k=1,...,K ,j=1,...,p and p(xj |y;µjk, π

j
k) is defined by (1).

Each component xj of x can be full or partial. Frequently, the objects in the top positions
will be ranked and the missing ones will be at the end of the ranking, but our model does not
impose such situation and is able to work with partial ranking whatever are the positions of
the missing data (see details in Jacques and Biernacki (2012)).

2.3. Estimation algorithm

Let x = {x1, . . . , xn} be a sample of n multivariate rankings, and z = {z1, . . . , zn} the
corresponding latent cluster memberships. Let Ǐji and Îji be respectively the sets of indices

of observed and unobserved positions in the jth component xji of the ith observation xi.

Similarly, let x̌ji and x̂ji correspond to the previous notations for the jth component of the
ith observation, x̌i = {x̌1

i , . . . , x̌
p
i } and x̂i = {x̂1

i , . . . , x̂
p
i }. Let also define x̌ = {x̌i; i =

1, . . . , n} and x̂ = {x̂i; i = 1, . . . , n}. Finally yi = (y1i , . . . , y
p
i ) ∈ Pm1

× . . .× Pmp denotes the
presentation orders of the objects for the ith observation and y = {y1, . . . , yn}.
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Assuming that triplets (xi, yi, zi) arise independently (i = 1, . . . , n), the observed-data log-
likelihood of model (2) is:

l(θ; x̌) =
n
∑

i=1

ln







K
∑

k=1

pk

p
∏

j=1

1

mj!

∑

y∈Pmj

∑

x∈X
j

i

p(x|y;µjk, π
j
k)






,

where X ji = {x ∈ Pmj : xh = x̌jhi , ∀h ∈ Ǐ
j
i } is the set of all the rankings compatible with the

observed part x̌ji of xji .

Maximum likelihood estimation is not straightforward since several missing data occur: the
cluster memberships zi of the observations, the presentation orders yi and the unobserved
ranking positions x̂i (for partial rankings). In such a situation, a convenient way to maxi-
mize the likelihood is to consider an EM algorithm (Dempster et al. 1977). This algorithm
relies on the completed-data log-likelihood, and proceeds in iterating an E step, in which the
conditional expectation of the completed-data log-likelihood is computed, and a M step, in
which the model parameters are estimated by maximizing the conditional expectation com-
puted in the E step. Unfortunately, the EM algorithm is tractable only for univariate full
rankings with moderate m (m ≤ 7), respectively for mathematical and numerical reasons. In
particular, when partial rankings occur, the E step is intractable since the completed-data
log-likelihood is not linear for all three types of missing data (refer to Jacques and Biernacki
(2012) for its expression). A SEM-Gibbs approach is then proposed in Jacques and Biernacki
(2012) to overcome these problems.

The fundamental idea of this algorithm is to reduce the computational complexity that is
present in both E and M steps of EM by removing all explicit and extensive use of the
conditional expectations of any product of missing data. First, it relies on the SEM algorithm
(Geman and Geman 1984; Celeux and Diebolt 1985) which generates the latent variables at
a so-called stochastic step (S step) from the conditional probabilities computed at the E step.
Then these latent variables are directly used in the M step. Second, the advantage of the
SEM-Gibbs algorithm in comparison with the basic SEM ones relies on the fact that the latent
variables are generated without calculating conditional probabilities at the E step, thanks to
a Gibbs algorithm. Refer to Jacques and Biernacki (2012) for more details.
Let noticed that label switching can occur with the SEM algorithm when clusters are not
well separated. To avoid this situation, we recommend to use model selection criteria as
BIC (Schwarz 1978) or ICL (Biernacki et al. 2000) to select the number K of clusters.

3. Overview of the Rankcluster functions

This section presents first the main function, rankclust(), which performs cluster analysis,
and second several companion functions which can be helpful for additional ranking data
analysis.

3.1. The main function: rankclust()

Cluster analysis can be performed with the rankclust() function. Illustration of its use is
given in Section 4.
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Input arguments

This function has only one mandatory argument, data, which is a matrix composed of the
n observed ranks in their ordering representation. For univariate rankings the number
of columns of data is m (default value of argument m). For multivariate rankings, data

has m1 + . . . +mp columns: the first m1 columns contain x1 (first dimension), the columns
m1 + 1 to m1 + m2 contain x2 (second dimension), and so on. In this case, the argument
m must be filled with the vector of sizes (m1, . . . ,mj). If the user works with a ranking1

representation of the ranks, the convertRank() function can be used to transform ranking
representation into ordering one.

The number of clusters (1 by default) can be set up with option K. Vector of numbers of
clusters are possible (for instance K=1:10). In order to select the number of clusters, two
criteria are available: BIC, by default, and ICL, selected by criterion = "icl".

Additionally, several parameters allow to set up the different tuning parameters (iterations
numbers) used in the SEM-Gibbs estimation. Refer to Jacques and Biernacki (2012) and to
rankclust() help for more details. Section 4 gives also some examples of iterations numbers
choices. The option run allows to set the number of initializations of the SEM-Gibbs algorithm
(1 by default). In the case of multiple initializations, the best solution according to the
approximated log-likelihood is retained.

Finally, the computing times (total, for the SE and M steps and for the likelihood approxi-
mation) can be printed by setting the option detail to TRUE (FALSE by default).

Output arguments

The rankclust() function returns an instance of the ResultTab class. Its attributes will
contain 4 slots:

• K: a vector of the number of clusters,

• results: a list of ResultList class, containing the results for each number of clusters
(one element of the list is associated to one number of clusters),

• data: the data used for clustering,

• criterion: the model selection criterion used,

• convergence: a boolean indicating if none problem of empty class has been encountered
(for any number of clusters).

Each element of the list results contains all the results for a given number K of classes,
which are summarized in the following 18 slots:

• proportion: a K-vector of proportions p1, . . . , pK ,

• pi: a K × p-matrix composed of the scale parameters πjk (1 ≤ k ≤ K and 1 ≤ j ≤ p),

1The ranking representation x−1 = (x−1

1
, . . . , x

−1

m ) contains the ranks assigned to the objects, and means
that Object Oi is in the x−1

i th position (i = 1, . . . ,m). Notice that x is associated to the ordering representa-
tion.
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• mu: a matrix with K lines and m1 + . . . +mp columns in which line k is composed of
the location parameters (µ1

k, . . . , µ
p
k) of cluster k,

• ll, bic, icl: values of the log-likelihood, BIC criterion and ICL criterion,

• tik: a n ×K-matrix containing the estimation of the conditional probabilities for the
observed ranks to belong to each cluster,

• partition: a n-vector containing the partition estimation resulting from the clustering,

• entropy: a n×2-matrix containing for each observation its estimated cluster (column 2,
similar to partition) and its entropy (column 1), defined as −

∑K
k=1 tik log(tik) where

tik is the conditional probabilities for the ith observation to belong to cluster k, given by
tik. The entropy output illustrates the confidence in the clustering of each observation
(a high entropy means a low confidence in the clustering),

• probability: a n × 2-matrix similar to the entropy output, containing for each ob-
servation its estimated cluster (column 2, similar to partition) and its probability
p(xi;µk, πk) given its cluster. This probability is estimated using the last simulation
of the presentation orders used for the likelihood approximation. The probability

output exhibits the best representative of each cluster.

• convergence: a boolean indicating if none problem of empty class has been encountered,

• partial: a boolean indicating the presence of partial rankings,

• partialRank: a matrix containing the full rankings, estimated using the within cluster
isr parameters when the ranking is partial. When ranking is full, partialRank simply
contains the observed ranking. Available only in presence of at least one partial ranking.

• distanceProp, distancePi, distanceMu: distances between the final estimation and
the current value at each iteration of the SEM-Gibbs algorithm (except the burning
phase) for respectively: proportions pk, scale parameters πjk, location parameters µjk.

For µjk, the Kendall distance for ranking has been considered (Marden 1995). For pk
and πjk, the distance is the mean squared difference. distanceProp, distancePi and
distanceMu are lists of Qsem-Bsem elements, each element being a K × p-matrix.
These elements are reachable by res[k]@slotname[[iteration]].

• distanceZ: a vector of size Qsem-Bsem containing the rand index (Rand 1971) between
the final estimated partition and the current value at each iteration of the SEM-Gibbs
algorithm (except the burning phase). Let precise that the rand index is not affected
by label switching.

• distancePartialRank: Kendall distance between the final estimation of the partial
rankings (missing positions in such rankings are estimated) and the current value at each
iteration of the SEM-Gibbs algorithm (except the burning phase). distancePartialRank

is a list of Qsem-Bsem elements, each element being a matrix of size n × p. Available
only in presence of at least one partial ranking.

• proportionInitial, piInitial, muInitial, partialRankInitial: initializations
of the parameters in the SEM-Gibbs algorithm (for expert use only).
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If res is the result of rankclust(), each slot of results can be reached by res[k]@slotname,
where k is the number of clusters and slotname is the name of the slot we want to reach
(proportion, pi ...). For the slots ll, bic, icl, res[‘‘slotname’’] returns a vector of
size K containing the values of the slot for each number of clusters.

3.2. Companion functions

In addition to the main function, rankclust(), several companion functions are available in
Rankcluster:

• convertRank(): converts ranking representation x−1 of a rank to its ordering represen-
tation x, and vice-versa since x ◦ x−1 = x−1 ◦ x.

• criteria(): estimate the log-likelihood, BIC and ICL criteria from a dataset and a cor-
responding estimation of the isr model parameters (see details with help(criteria)).

• distCayley(), distHamming(), distKendall(), distSpearman(): compute usual
distances between rankings (refer to Marden (1995)) for either ranking or ordering
representation (refer to the help of the functions for details),

• frequence(): transform a raw dataset composed of a list of ranks into a matrix
rank/frequency, in which the last column is the frequency of observation of the rank.
Conversely, unfrequence() transform a rank/frequency dataset in a raw dataset, as
requested in input argument of rankclust(),

• khi2(): perform a chi-squared goodness-of-fit tests and return the p-value of the test
(refer to Biernacki and Jacques (2013) for details).

• kullback(): estimate the Kullback-Leibler divergence between two isr models,

• simulISR(): simulate a univariate and unimodal dataset of rankings according to the
isr model,

4. Rankcluster through examples

This section illustrates the use of the rankclust() function on two real datasets. The first
one, Words, is a well-known dataset in ranking study, due to Fligner and Verducci (1986),
which consists of words associations by students. The second one, Eurovision, presented in
Jacques and Biernacki (2012), consists of the votes of European countries during the Euro-
vision Song Contest. Both datasets are available in the Rankcluster package, as well as the
three other datasets analysed and described in Jacques and Biernacki (2012): APA, quiz,

sports.

4.1. The Words dataset

These data was collected under the auspices of the Graduate Record Examination Board
(Fligner and Verducci 1986). A sample of 98 college students were asked to rank five words
according to strength of association (least to most associated) with the target word "Idea": 1
= Thought, 2 = Play, 3 = Theory, 4 = Dream and 5 = Attention.
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Figure 1: Value of the BIC criterion with mixture of isr for the Words datatest.

First we start by installing and loading the Rankcluster package:
R> install.packages("Rankcluster", repos = "http://R-Forge.R-project.org")

R> library(Rankcluster)

and then loading the words dataset:
R> data(words)

Using the rankclust() function, a clustering with respectively 1 to 5 clusters is estimated:
R> res=rankclust(words$data,m=words$m,K=1:5,Qsem=1000,Bsem=100,Ql=1000,Bl=100,

maxTry=30,run=20)

The number of SEM-Gibbs iterations (Qsem) has been set to 1000, with a burning phase of
100 iterations (Bsem). The same values are considered for likelihood approximation (Ql and
Bl). Option maxTry=30 allows to restart the estimation algorithm in the limit of 30 times if
one cluster becomes empty (frequent for K = 5). Finally, the SEM-Gibbs algorithm is initial-
ized 20 times (run=20), and the best solution (according to the approximated likelihood) is
retained. Computing time on a laptop with 2.80GHz CPU is about 7 seconds per run et per
cluster (the number of runs can be reduced if the reader want to test this code more quickly).

The values of the BIC criterion, reached by res[‘‘bic’’] and plotted on Figure 1, tend to
select three clusters.

The parameter estimation for K = 3 are given below for proportions pk, probabilities πk and
modes µk:

> res[3]@proportion

[1] 0.3061224 0.4918367 0.2020408

> res[3]@pi

dim 1

cl 1 0.9060649

cl 2 0.9416822

cl 3 0.8642753

> res[3]@mu

dim 1

cl 1 2 5 3 4 1
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cl 2 2 5 4 3 1

cl 3 5 2 4 3 1

The words Thought is the most associated with Idea for all clusters. Regarding the rankings
of the four other words can suggest an interesting interpretation of the clusters. Indeed, the
first cluster, composed of about 30% of the students, is characterized by the following modal
ranking: Play, Attention, Theory, Dream, Thought. Students of this cluster are probably
literary-minded students, rankings the word Dream just after Thought. Students of the
second cluster (about half of total students) are probably more scientific since they rank the
word Theory just after Thought, and so before the word Dream: Play, Attention, Dream,
Theory, Thought. This cluster is also the most homogeneous, with a high scale parameter
value (low dispersion): π2 ≃ 0.94. Finally, the last cluster is characterized by the following
mode: Attention, Play, Dream, Theory, Thought. The only difference in the modal ranking
with the scientific students is the preference of Play rather than Attention. This cluster,
which is the smallest (20% of the students), can be qualified as intermediary cluster, probably
composed of a set of students not too scientific or too literary-minded, as evidenced by the
smallest of the three scale parameter values (π3 ≃ 0.86).

4.2. The Eurovision dataset

The Eurovision Song Contest is an annual competition held among active member countries
of the European Broadcasting Union. Each member country submits a song to be performed
on live television and then casts votes for the other countries’ songs to determine the most
popular song in the competition. The vote consists in ranking ten preferred song in order
of preference. We consider in these experiments the votes of the n = 34 countries who
participate to the competitions from 2007 to 2012. During these six years, only 8 countries
have participated to the six finals of the competition: 1: France, 2: Germany, 3: Greece, 4:
Romania, 5: Russia, 6: Spain, 7: Ukraine and 8: United Kingdom. The studied dataset is
then composed of multivariate rankings (p = 6 corresponding to the six contests between 2007
and 2012), each rank being of size m = 8 (only the votes for the 8 countries which participated
to the six finals are considered) and all rankings being partial. The absence of full ranking
signifies that none country participating to the votes has ranked all of the 8 previously cited
countries in its 10 preferences.

The eurovision dataset is loaded by:
R> data(eurovision)

This dataset is challenging since the number of observations (n = 34) is small compared to the
size of the ranks (m = 8 and p = 6) and the presence of partial rankings (precisely, 57.7% of
the rankings elements are missing). For this reason, large iterations numbers (Qsem=Ql=1000)
have been chosen to estimate a clustering with respectively 1 to 9 clusters:
R> res=rankclust(eurovision$data,m=eurovision$m,K=1:9,Qsem=1000,Bsem=100,

Ql=1000,Bl=100,maxTry=30,run=20) #caution: can be time consuming (see below)

With these large iterations numbers, rankclust() takes about 4 hours per number of clusters
and per run (laptop 2.80GHz CPU). Most of this computing time is due to the likelihood
approximation (detail of the computing time can be obtained by setting the input option
detail to TRUE). The reason is the high proportion of missing elements, which leads to a
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Figure 2: Value of the BIC criterion with mixture of isr for the Eurovision datatest.

large number of different multivariate modal rankings µ1
k, . . . , µ

p
k simulated during the SEM-

Gibbs algorithm and then to a large number of likelihood approximations (let recall that the
retained parameters at the end of the estimation algorithm are those leading to the highest
approximated likelihood). Nevertheless, the total computing time can be easily reduced by
parallelizing the rankclust() executions for each run and each number of clusters, thanks
to the doMC package for R. For instance, the following code launch parallel executions of
rankclust() for each number of clusters (nbcore being the number of available clusters):

R> library(’doMC’)

R> registerDoMC(nbcore)

R> ResFinal = foreach(k=1:9,.combine=’c’) %dopar% {

R> res=rankclust(eurovision$data,m=eurovision$m,K=k,Qsem=1000,Bsem=100,Ql=1000

,Bl=100,maxTry=30,run=30)

R> }

In the present work, large iterations numbers have intentionally be used in order to provide
results with reduced variability, which can be interpreted with confidence. But the reader
who want to test the package on this dataset can use less iteration numbers (dividing for
instance by ten the iterations numbers leads to 1 minute of computing time per cluster and
per run). In this case, the variability of parameter estimation will be larger, about two times
larger for 100 SEM-Gibbs iterations rather than 1000 according to the variability indicator
described at the end of this section (standard deviation of the distances between the final
parameter estimation and the current value at each step of the SEM-Gibbs algorithm).

The values of the BIC criterion (obtained with Qsem=Ql=1000) are plotted on Figure 2. They
tend to select five groups.

The printed outputs for K = 5 are given below: value of the log-likelihood (LL), values of
BIC and ICL criteria, estimation of the proportions pk’s, the probabilities πjk’s, the modes

µjk’s, the estimated partition and finally the conditional probability of the observations to
belong to each cluster (tik).

R> rankclust(eurovision$data,m=eurovision$m,K=5,Qsem=1000,Bsem=100,Ql=1000,

Bl=100,maxTry=30,run=30)
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******************************************************************

Number of clusters: 5

******************************************************************

ll= -1400.816

bic = 3027.319

icl = 3027.321

proportion: 0.3235294 0.1470588 0.2352941 0.1176471 0.1764706

pi:

dim 1 dim 2 dim 3 dim 4 dim 5 dim 6

cl 1 0.8373494 0.9195402 0.8596491 0.8588235 0.7891566 0.8400000

cl 2 0.9090909 0.9493671 0.8064516 0.8493151 0.7916667 0.8428571

cl 3 0.8771930 0.8728814 0.8800000 0.7920792 0.7983871 0.8914729

cl 4 0.9740260 0.8095238 0.9634146 0.8955224 0.8181818 0.8545455

cl 5 0.8543689 0.9047619 0.8333333 0.9263158 0.8200000 0.8854167

mu:

dim 1 dim 2 dim 3 dim 4

cl 1 3 5 7 4 2 6 1 8 3 5 7 6 4 2 8 1 3 8 1 4 5 2 6 7 3 2 6 4 1 8 5 7

cl 2 5 7 3 2 4 1 6 8 5 7 3 1 4 2 6 8 8 4 5 1 7 3 6 2 4 2 5 8 7 6 1 3

cl 3 7 3 5 2 4 6 1 8 3 5 7 1 6 4 8 2 1 8 2 3 5 6 7 4 3 4 2 1 6 8 7 5

cl 4 7 5 4 6 3 1 2 8 5 7 3 1 4 8 6 2 5 1 8 6 7 2 4 3 2 5 7 6 4 1 3 8

cl 5 7 5 8 4 2 3 6 1 7 5 3 4 8 1 2 6 8 1 4 3 2 5 7 6 2 4 1 8 3 6 7 5

dim 5 dim 6

cl 1 7 3 8 5 1 4 2 6 3 5 6 4 1 2 7 8

cl 2 7 5 8 6 4 3 1 2 4 5 7 2 1 3 8 6

cl 3 6 2 8 1 3 4 5 7 6 5 2 4 1 7 3 8

cl 4 5 8 3 1 2 7 4 6 5 2 3 7 1 8 6 4

cl 5 2 8 7 1 3 4 5 6 5 2 4 7 1 3 8 6

partition:

1 2 1 3 1 5 1 5 2 2 3 3 1 2 3 5 4 4 4 5 2 5 3 1 1 1 3 5 1 1 3 1 4 3

tik:

1 2 3 4 5

1 1.000000e+00 4.926687e-15 3.395961e-11 2.175299e-20 2.172081e-14

2 1.020925e-12 1.000000e+0 0 3.596271e-15 9.629061e-14 1.176418e-16

3 9.999993e-01 1.631053e-1 3 7.254845e-07 8.621185e-17 6.955543e-13

4 1.120337e-09 5.431846e-1 6 1.000000e+00 1.290113e-17 6.791088e-14

5 1.000000e+00 5.245435e-1 8 9.260641e-13 2.667931e-21 8.113361e-16

6 5.738516e-16 3.275921e-16 2.041697e-15 8.810364e-27 1.000000e+00

7 1.000000e+00 2.177675e-19 7.848022e-13 6.013325e-29 5.084076e-18

8 4.028680e-13 2.044741e-16 4.920668e-10 2.912902e-22 1.000000e+00

9 1.547418e-09 1.000000e+00 2.268076e-11 1.711549e-10 4.627540e-12

10 2.535008e-12 1.000000e+00 1.524028e-17 5.826940e-17 1.425966e-14

11 3.249961e-09 7.008065e-12 1.000000e+00 2.493183e-17 2.333494e-10

12 3.438573e-12 2.480877e-20 1.000000e+00 6.300352e-18 8.826780e-15

13 1.000000e+00 1.241974e-15 6.370072e-09 5.750960e-25 1.884747e-17

14 6.535477e-15 1.000000e+00 5.803484e-13 1.043131e-12 9.389025e-15

15 2.237704e-09 2.923127e-13 1.000000e+00 1.137870e-12 4.878962e-13

16 1.303839e-16 8.068278e-12 3.667421e-14 1.131581e-18 1.000000e+00
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17 1.142291e-15 7.192854e-11 2.523839e-13 1.000000e+00 1.012907e-19

18 9.853473e-23 9.429721e-17 8.455583e-18 1.000000e+00 1.746191e-21

19 1.320047e-15 2.978251e-16 1.266509e-14 1.000000e+00 7.754970e-11

20 8.550912e-12 2.466856e-13 4.301909e-10 5.708839e-23 1.000000e+00

21 5.288867e-13 1.000000e+00 1.220869e-14 1.212887e-15 1.316850e-14

22 7.037856e-14 1.914019e-18 2.234911e-14 4.996731e-23 1.000000e+00

23 3.835737e-03 1.161211e-03 9.949931e-01 5.409898e-11 9.921546e-06

24 1.000000e+00 3.673471e-22 3.072776e-11 1.504338e-24 1.937220e-16

25 1.000000e+00 2.579782e-13 2.734699e-10 2.205859e-15 2.174011e-09

26 1.000000e+00 4.005485e-17 2.967356e-13 3.898933e-20 7.700084e-15

27 1.807390e-02 3.457956e-07 5.457201e-01 9.152708e-10 4.362056e-01

28 4.262774e-15 3.084315e-13 2.330521e-13 1.932227e-20 1.000000e+00

29 9.999994e-01 1.060360e-09 5.685554e-07 2.121323e-16 5.110376e-08

30 8.980571e-01 2.670018e-11 1.019404e-01 1.149813e-15 2.475373e-06

31 1.112656e-13 2.914716e-19 1.000000e+00 2.719565e-17 6.941053e-17

32 1.000000e+00 1.530419e-11 1.757512e-12 3.221608e-13 3.433776e-11

33 5.265654e-15 1.111768e-14 1.023056e-17 1.000000e+00 2.158626e-20

34 2.900612e-14 1.798547e-20 1.000000e+00 1.473098e-26 6.098085e-16

******************************************************************

In addition to such information, the summary() function
R> summary(res)

gives an overview of the partition by printing the five ranks of highest probability (output
res[5]@probability) and the five ranks of highest entropy (output res[5]@entropy) for
each cluster. The ranks of highest probability are the best representatives of the cluster,
whereas the ranks of highest entropy are those for which their belonging to the cluster are the
less obvious. Notice that the full list of the cluster member with their probability and entropy
are available through the slots probability and entropy. Table 1 gives an example of these
outputs for cluster 1, which is composed of: Albania, Belgium, Bulgaria, Cyprus, Germany,
Romania, Russia, Serbia, Sweden, Switzerland and Turkey. Cyprus is the best representative
of the cluster, whereas the belonging of Switzerland to this cluster is relatively questionable
(high entropy in comparison to others).

country entropy country probability

Switzerland 6.587196e-01 Cyprus 8.290355e-14
Belgium 2.196254e-05 Germany 4.805708e-14
Sweden 1.935311e-05 Turkey 4.594954e-15
Germany 2.531678e-07 Belgium 2.308477e-15
Russia 1.036828e-07 Romania 6.515448e-16

Table 1: Countries with the highest probabilities and entropy in the first cluster.

The summary() function prints also the estimated full ranking for each partial ranking. For
instance, Table 2 gives the real votes of France to the Eurovision contest between 2007 and
2012 (top line of the table) and the estimated ones (bottom line). In the top line (real votes),
a “0” in the ranking means that the country ranked by France at this position does not belong
to the eight studied countries (1: France, 2: Germany, 3: Greece, 4: Romania, 5: Russia, 6:
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Spain, 7: Ukraine and 8: United Kingdom). This example suggests an interesting comment.
Of course, countries can not vote for themselves. However, if France could vote for itself,
we show in the estimated full rankings that France will often rank itself in a good position.
Indeed, France appears almost always in the second place of the missing positions.

2007 2008 2009
observed ranking 4 6 7 3 5 0 0 0 6 4 3 5 0 0 0 0 8 2 0 0 0 0 0 0
estimated ranking 4 6 7 3 5 2 1 8 6 4 3 5 7 1 8 2 8 2 3 1 5 6 7 4

2010 2011 2012
observed ranking 3 2 7 0 0 0 0 0 6 2 8 0 0 0 0 0 2 6 5 4 0 0 0 0
estimated ranking 3 2 7 4 1 6 8 5 6 2 8 4 5 1 3 7 2 6 5 4 7 1 3 8

Table 2: Votes of France to the Eurovision contest between 2007 and 2012: the top line is the
real ranking with missing position (0) and the bottom line is the estimated full ranking. (1:
France, 2: Germany, 3: Greece, 4: Romania, 5: Russia, 6: Spain, 7: Ukraine and 8: United
Kingdom)

A geographical representation of the estimated clustering is given by Figure 3. As noticed
in Jacques and Biernacki (2012), this clustering can suggest some geographical interpretation
of the clustering: indeed, the countries of a same groups seem to be geographically close.
For instance, the cluster 1 (black) is essentially composed of East Europe countries whereas
cluster 3 (green) mainly concerns West European countries. The geographical proximity of
clusters members can be due either to cultural proximity of these countries or to geographical
alliances, often suspected for this contest.

Finally, the variability of estimation of the model parameters can be achieved by the mean
of the distances between the final estimation and the current value at each step of the SEM-
Gibbs algorithm. These distances are available in the slots distanceProp, distancePi,

distanceMu of the output res[5]. The standard deviation of these distances can be used
for instance as an indicator of estimation variability. Let note also that a plot of these
distances (Figure 4) can be used to empirically judge if the burning phase size of the SEM-
Gibbs algorithm is sufficiently large. Indeed, we remark on Figure 4 that the variability
of estimation is larger for the first 50 iterations than for the following ones (we recall that
the first 100 iterations corresponding to the burning phase are not plotted on Figure 4). A
burning phase of 150 iterations rather than 100 iterations would probably be a wise choice.

Similarly, the slot distancePartition illustrates the convergence of the SEM-Gibbs algo-
rithm by given the rand index between the final partition and the current partition at each
SEM-Gibbs iteration (Figure 5). Notice that the partition is relatively stable at the end of
the algorithm iterations, although the cluster memberships of the observations are simulated
at each iteration of the SEM-Gibbs algorithm. This phenomenon is due to the data space
which is high-dimensional because of the complexity of the dataset (high proportion of miss-
ing ranking elements, low number of observations ...). Thus, even if the location and scale
parameters move during the SEM-Gibbs iterations (Figure 4), the clusters stay well separated
and the partition is stable.



14 Rankcluster: An R package for clustering multivariate partial rankings

Figure 3: Clustering of the European countries according to their votes at the Eurovision
contest between 2007 and 2012.

5. Conclusion

Rankcluster is the first R package dedicated to ranking data, allowing modelling and cluster
analysis for multivariate partial ranking data. Available on R-forge, this package is simple of
use with its main function, rankclust(), having only one mandatory argument, the ranking
dataset. By default a modelling is performed, and mentioning the number of desired clusters
leads to perform a cluster analysis, with selection of the number of clusters if several numbers
are given.
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Figure 4: Variability of the parameters estimation (proportion and scale and location pa-
rameters for the first dimension) along with the SEM-Gibbs iterations (without the burning
phase): cluster 1 in black, 2 in red, 3 in green, 4 in blue, 5 in cyan.
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