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Abstract. This paper studies online change detection in exponential
families when both the parameters before and after change are unknown.
We follow a standard statistical approach to sequential change detection
with generalized likelihood ratio test statistics. We interpret these statis-
tics within the framework of information geometry, hence providing a
unified view of change detection for many common statistical models and
corresponding distance functions. Using results from convex duality, we
also derive an efficient scheme to compute the exact statistics sequen-
tially, which allows their use in online settings where they are usually
approximated for the sake of tractability. This is applied to real-world
datasets of various natures, including onset detection in audio signals.

Keywords: Change detection, exponential families, generalized likeli-
hood ratio, information geometry, onset detection, segmentation.

1 Introduction

Let us consider a time series x1, x2, . . . of observations that are sampled ac-
cording to an unknown discrete-time stochastic process. In general terms, the
problem of change detection is to decide whether there are changes in the distri-
bution of the process or not. This decision is often coupled with the estimation
of the times when such changes occur. These time instants are called change
points and delimit contiguous temporal regions called segments.

Historically, change detection has been addressed from a statistical perspec-
tive [12, 19–21, 24, 26]. We refer to the seminal book [4] for a thorough review,
and to [22,23] for up-to-date accounts. Modern approaches have also intersected
machine learning, notably kernel methods [6, 8, 14], optimization techniques
[15,16,29], and have provided enhanced statistical frameworks [1, 11,13,28].

In online approaches, the procedure generally starts with an empty window
tx ← (), and processes the data incrementally. Then, for each time increment
n = 1, 2, . . . , we concatenate the incoming observation xn with the previous
ones as tx← tx |xn, and attempt to detect a change. If a change is detected, then
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we discard the observations before the estimated change point i, and restart the
procedure with an initial window tx← (xi+1, . . . , xn). In the framework of abrupt
change detection, it is thus usual to reduce the problem to that of finding one
change point in a given window sx = (x1, . . . , xn).

We follow a standard approach to sequential change detection seen as a prob-
lem of multiple hypothesis testing with dominated parametric statistical mod-
els, mutually independent random variables, and test statistics based on likeli-
hood ratios. In this context, many approaches assume known parameters before
change [4, 22, 23]. This is suitable for applications such as quality control where
a normal regime is known, but this is limited in many real-world applications.
However, considering unknown parameters before change breaks down the com-
putational efficiency of standard cumulative sum algorithms. Therefore, some
simplifications of the exact statistics are generally made to accommodate these
situations, such as learning the distribution before change on the whole window,
or in a dead region at the beginning of the window where change detection is
turned off, leading to approximate generalized likelihood ratio schemes.

A few specific exact generalized likelihood ratio statistics have yet been stud-
ied, notably under normality assumptions [27]. Nonetheless, normal distributions
do not always model reliably the signals considered. A more general Bayesian
framework for independent observations in exponential families has been pro-
posed recently [17]. This Bayesian framework, however, relies on a geometric
prior on the time between change points, which is not always well-suited for
arbitrary signals. Moreover, it requires prior knowledge on the distributions of
the parameters in the respective segments, which is not always available. To
overcome this, we seek to formulate a generic sequential change detection with
unknown parameters before and after change, but without any a priori informa-
tion on the respective distributions of the change points and parameters. Our
contributions in this context can be summed up as follows.

We study the generalized likelihood ratio test statistics in the light of dually
flat information geometry for exponential families. We restrict the study to full
minimal steep standard families. While standardness and minimality are actually
unrestrictive, fullness and steepness are crucial to the existence and simplicity of
maximum likelihood estimates. In this framework, we show that the generalized
likelihood ratios find both statistical and geometrical grounds. It therefore pro-
vides a unifying view of change detection for many common statistical models
and corresponding distance functions.

Using results from convex duality, we also derive a computationally efficient
scheme for computing the exact statistics sequentially. This scheme thus ad-
dresses the shortcomings inherent to the traditional approaches based on cumu-
lative sum statistics and on approximation heuristics for estimating the unknown
parameters before change. Due to its generic nature, the proposed paradigm ap-
plies to many common statistical models. It is showcased on real-world datasets
of various natures, including an evaluation for onset detection in audio signals.

For complementary information on the work presented here and further ap-
plications in audio segmentation, we refer the interested reader to [9, 10].
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2 Change detection framework

2.1 Multiple hypothesis statistical decision

Let S = {Pξ}ξ∈Ξ be a dominated parametric statistical model on a measur-

able space (X ,A), and let X1, . . . , Xn be n > 1 mutually independent random
variables that are distributed according to probability distributions from S. The
problem of change detection is to decide, on the basis of sample observations
sx = (x1, . . . , xn) ∈ Xn, whether the random variables X1, . . . , Xn are identically
distributed or not. As discussed previously, we suppose that there is at most one
change point, so that the problem reduces to a statistical decision between mul-
tiple hypotheses: the null hypothesis of no change and the alternative hypothesis
of a change at time i, respectively defined as

H0 : X1, . . . , Xn ∼ Pξ0 ; (1)

Hi
1 : X1, . . . , Xi ∼ Pξi0 , and Xi+1, . . . , Xn ∼ Pξi1 . (2)

To assess the plausibility of the alternative hypotheses compared to the null
hypothesis, some test statistics are needed. A standard decision rule is then
applied as follows. If at least one of the statistics is above a threshold λ > 0,
then we reject the null hypothesis in favor of the corresponding alternative and
detect a change. Otherwise, we fail to reject the null hypothesis and no change is
detected. In the case where a change is detected, the change point is estimated
as the first time point where the maximum of the statistics is reached.

2.2 Generalized likelihood ratio test statistic

When both the parameters before and after change are unknown, the hypothe-
ses are composite and we cannot use simple likelihood ratios. A common ap-
proach is to replace the unknown parameters ξ0, ξ

i
0, ξ

i
1 with their m.l. estimators

pξ0,
pξi0,

pξi1 : Xn → Ξ, and define a generalized likelihood ratio at time i

pΛi(sx) = −2 log

∏n
j=1 ppξ0(sx)(xj)∏i

j=1 ppξi0(sx)(xj)
∏n
j=i+1 ppξi1(sx)(xj)

. (3)

Some approximations of the generalized likelihood ratios have been proposed
to keep the simplicity and tractability of the likelihood ratios in cumulative sum
schemes [4]. Most of the time, the parameters before change are assumed to be
known, and are in practice estimated either on the whole window, or in a dead
region at the beginning of the window where change detection is turned off.
Such approximations work when the time intervals between successive changes
are important so that the approximation is valid, but fail because of estimation
errors as soon as changes occur too often. We argue after that we can still employ
computationally efficient decision schemes based on exact generalized likelihood
ratios, for the large class of exponential families, without such approximations.
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3 Application to exponential families

3.1 Information geometry of exponential families

A standard exponential family is a parametric statistical model {Pθ}θ∈Θ⊆Rm

on the Borel subsets of Rm, which is dominated by a σ-finite measure µ, and
whose respective probability densities pθ with respect to µ can be written as
pθ(x) = exp(θ>x − ψ(θ)), where ψ : Θ → R is the log-normalizer, θ the natural
parameter, x the sufficient observation. The family is called full if Θ = N , where
N = {θ ∈ Rm :

∫
Rm exp(θ>x)µ(dx) < +∞} is the natural parameter space. The

family is minimal if dimN = dimK = k, where K is the convex support of µ.

More general exponential families can be defined as models that reduce to
standard families under sufficiency, reparametrization, and proper choice of a
dominating measure. Examples include Bernoulli, Dirichlet, Gaussian, Laplace,
Poisson, Rayleigh, exponential, beta, gamma, categorical, multinomial models.
Since the reduced standard family can be chosen minimal [3,5], we consider min-
imal standard families without restriction. These families possess useful proper-
ties. First, ψ is a strictly convex function with convex effective domain domψ =
N . Moreover, ψ is smooth on intN , where its gradient is one-to-one, so that we
can reparametrize the family with the expectation parameter η(θ) = ∇ψ(θ).

It is also convenient to require that limn→+∞∇ψ(θn) = +∞ for any se-
quence of points θ1, θ2, . . . ∈ intN that converges to a boundary point of N .
This ensures that ψ is essentially smooth, and the family is called steep. Con-
sidering the framework of convex duality [25], ψ is then of Legendre type with
Legendre-Fenchel conjugate ϕ. The conjugate ϕ is also of Legendre type and we
have ∇ϕ = (∇ψ)

−1
. We further have ∇ψ(intN ) = intK, so that ∇ψ actually

defines a homeomorphism of intN and intK. In this context, there is existence
and uniqueness of the m.l. estimator pθ for the full model based on i.i.d. sam-
ples sx, which is given as the average 1

n

∑n
j=1 xj of the sufficient observations in

expectation parameters, as soon as that average lies in intK.

These notions are interpretable within the framework of information geom-
etry [2]. In particular, a minimal standard exponential family S = {Pθ}θ∈intN
endowed with the well-known Fisher information metric g, is a Riemannian man-
ifold and can be enhanced with a family of dual affine α-connections ∇(α). The
statistical manifold (S, g) is a Hessian manifold since the metric g is induced by
the Hessian of ψ. In addition, (S, g,∇(1),∇(−1)) is a dually flat space in which θ
and η form dual affine coordinate systems. This dually flat geometry generalizes
the standard self-dual Euclidean geometry, with two dual Bregman divergences
Bψ and Bϕ instead of the self-dual Euclidean distance, where the Bregman diver-
gence Bφ : Ξ×Ξ → R, generated by a smooth strictly convex function φ : Ξ → R
on a convex open set Ξ, is defined as Bφ(ξ‖ξ′) = φ(ξ)−φ(ξ′)− (ξ − ξ′)>∇φ(ξ′).
Finally, these two dual divergences between parameters are linked on intN
with the Kullback-Leibler divergence between the corresponding distributions,
through the relation K(Pθ‖Pθ′) = Bψ(θ′‖θ) = Bϕ(η(θ)‖η(θ′)).
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3.2 Results on generalized likelihood ratios

We now derive results on exact generalized likelihood ratio statistics for full
minimal steep standard exponential families.

Theorem 1. The generalized likelihood ratio pΛi at time i verifies

1

2
pΛi(sx) = iK

(
P

pθi0(sx)

∥∥∥P
pθ0(sx)

)
+ (n− i)K

(
P

pθi1(sx)

∥∥∥P
pθ0(sx)

)
, (4)

as soon as sx ∈ Ki0 ∩ Ki1, where Ki0 = {sx ∈ (Rm)n : 1
i

∑i
j=1 xj ∈ intK}, and

Ki1 = {sx ∈ (Rm)n : 1
n−i

∑n
j=i+1 xj ∈ intK}.

Proof. Assuming the samples lie in Ki0 ∩ Ki1, the m.l. estimates over the full
family do exist, belong to intN , and are given in expectation parameters by the
average of the sufficient observations. The generalized likelihood ratios then read

1

2
pΛi(sx) =

i∑
j=1

{
(pθi0(sx)− pθ0(sx))

>
xj − ψ(pθi0(sx)) + ψ(pθ0(sx))

}
+

n∑
j=i+1

{
(pθi1(sx)− pθ0(sx))

>
xj − ψ(pθi1(sx)) + ψ(pθ0(sx))

}
. (5)

We add and subtract the m.l. estimates pθi0(sx), pθi1(sx), and their log-normalizers

ψ(pθi0(sx)), ψ(pθi1(sx)), to make Bregman divergences Bψ appear as

1

2
pΛi(sx) = i Bψ(pθ0(sx)‖pθi0(sx)) + (n− i)Bψ(pθ0(sx)‖pθi1(sx)) . (6)

The result follows by rewriting the Bregman divergences on the natural parame-
ters as Kullback-Leibler divergences on the swapped corresponding distributions.

The statistics can be interpreted as computing the divergence between the
m.l. estimates over the full family before/after change and the m.l. estimator
with no change, and weighting by the number of samples before/after change.
Using convex duality, we also find an alternative expression for the statistics.

Corollary 1. The generalized likelihood ratio pΛi at time i verifies

1

2
pΛi(sx) = i ϕ(pηi0(sx)) + (n− i)ϕ(pηi1(sx))− nϕ(pη0(sx)) . (7)

Proof. Rewriting the statistics with Bregman divergences Bϕ leads to

1

2
pΛi(sx) = i Bϕ(pηi0(sx)‖pη0(sx)) + (n− i)Bϕ(pηi1(sx)‖pη0(sx)) . (8)

Developing the Bregman divergences and regrouping the terms, we obtain

1

2
pΛi(sx) = i ϕ(pηi0(sx)) + (n− i)ϕ(pηi1(sx))− nϕ(pη0(sx))

− (i pηi0(sx) + (n− i) pηi1(sx)− n pη0(sx))
>∇ϕ(pη0(sx)) . (9)
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Fig. 1. Change detection in real-world datasets.

The last term vanishes since the m.l. estimate for all samples in H0, is the
barycenter of the m.l. estimates for the samples before and after change in Hi

1.

Since the m.l. estimates between successive windows are related by simple
time shifts or barycentric updates in expectation parameters, the above result
provides an efficient scheme for calculating the exact statistics sequentially.

4 Experimental results

4.1 Sample examples from real-world datasets

We first considered two well-known real-world time series from finance and geo-
physics, consisting respectively of 19344 and 4050 continuous univariate mea-
sures, namely the daily log-return of the Dow Jones and well-log data. For the
first dataset, we chose univariate normal distributions to detect changes in vari-
ance mainly. For the second dataset, we chose univariate normal distributions
with a fixed variance to detect different regimes related to the mean.

The results are represented in Figure 1, and show that the proposed scheme
has been able to detect relevant change points regarding variance and mean
respectively. The changes in the first dataset reflect financial fluctuations that
can a posteriori be related to politic and economical events [1, 16]. Concerning
the second dataset, changes in the mean carry geological information that is
interpretable in terms of rock stratification structure [11,13,28].

4.2 Evaluation for onset detection in audio signals

Finally, we assessed qualitative improvements of the approach on a difficult
dataset for musical onset detection with standard methodological guidelines for
evaluation [18]. The audio was represented through normalized magnitude spec-
tra with a frame size of 1024 samples and a hop size of 126 samples at a sampling
rate of 12600 Hz, leading to discrete histograms of 513 dimensions, modeled with
categorical distributions. We compared the proposed approach (GLR) to a base-
line spectral flux method based on the Kullback-Leibler divergence with the very
same analysis parameters (SF), and to a recent information-geometric approach
based on a symmetrized Kullback-Leibler divergence coupled with a more elab-
orate representation via a filter bank on a logarithmic frequency scale (IG) [7].

The obtained results show that both GLR and IG largely outperform SF, with
respective F -measures of 64.52 %, 57.72 %, 37.53 %, hence proving the relevancy
of an information-geometric approach to onset detection in audio signals. The
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baseline SF method is actually a crude approximation of the exact GLR scheme,
with search for a change point in a sliding window of two observations, and
with rough estimation of the unknown parameters before change using the first
observation only. The results thus confirm the benefits in using exact statistics
instead of approximation heuristics, though spectral flux is still considered as
a reference method in the literature. Finally, even if the sound representation
considered in GLR is simplistic, it still significantly improves the results over
IG. This is because IG relies on a heuristic detection procedure defined over
a somewhat ad hoc geometry, whereas both the detection procedure and the
geometry are tied to relevant statistical considerations in GLR.

5 Conclusion

We discussed the problem of online change detection in exponential families with
unknown parameters before and after change. We considered a standard statisti-
cal approach based on generalized likelihood ratio test statistics. We interpreted
these statistics in the framework of information geometry, hence providing a
unified view of change detection for many statistical models and corresponding
distances functions. We also discussed a tractable scheme for change detection
based on exact generalized likelihood ratios and applied it to various datasets.
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Paris, France, Dec. 2012.

10. A. Dessein and A. Cont. An information-geometric approach to real-time audio
segmentation. IEEE Signal Processing Letters, 20(4):331–334, Apr. 2013.



8 Arnaud Dessein and Arshia Cont

11. P. Fearnhead. Exact and efficient Bayesian inference for multiple changepoint
problems. Statistics and Computing, 16(2):203–213, 2006.

12. M. A. Girshick and H. Rubin. A Bayes approach to a quality control model. The
Annals of Mathematical Statistics, 23(1):114–125, Mar. 1952.
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15. Z. Harchaoui and C. Lévy-Leduc. Multiple change-point estimation with a total
variation penalty. Journal of the American Statistical Association, 105(492):1480–
1493, Dec. 2010.

16. R. Killick, P. Fearnhead, and I. A. Eckley. Optimal detection of changepoints with
a linear computational cost. Technical report, Lancaster University, Lancaster,
UK, 2011.

17. T. L. Lai and H. Xing. Sequential change-point detection when the pre- and
post-change parameters are unknown. Sequential Analysis: Design Methods and
Applications, 29(2):162–175, Apr. 2010.

18. P. Leveau, L. Daudet, and G. Richard. Methodology and tools for the evaluation
of automatic onset detection algorithms in music. In 5th International Conference
on Music Information Retrieval, pages 72–75, Barcelona, Spain, Oct. 2004.

19. G. Lorden. Procedures for reacting to a change in distribution. The Annals of
Mathematical Statistics, 42(6):1897–1908, Dec. 1971.

20. E. S. Page. Continuous inspection schemes. Biometrika, 41(1–2):100–115, June
1954.

21. M. Pollak and D. Siegmund. Approximations to the expected sample size of certain
sequential tests. The Annals of Statistics, 3(6):1267–1282, Nov. 1975.

22. A. S. Polunchenko and A. G. Tartakovsky. State-of-the-art in sequential change-
point detection. Methodology and Computing in Applied Probability, 14(3):649–684,
Sept. 2012.

23. V. H. Poor and O. Hadjiliadis. Quickest Detection. Cambridge University Press,
New York, USA, 2009.

24. S. W. Roberts. A comparison of some control charts procedures. Technometrics,
8(3):411–430, Aug. 1966.

25. R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, USA,
1970.

26. A. N. Shiryaev. On optimum methods in quickest detection problems. Theory of
Probability and Its Applications, 8(1):22–46, 1963.

27. D. Siegmund and E. S. Venkatraman. Using the generalized likelihood ratio statistic
for sequential detection of a change-point. The Annals of Statistics, 23(1):255–271,
Feb. 1995.

28. R. Turner, Y. Saatci, and C. E. Rasmussen. Adaptive sequential Bayesian change
point detection. In NIPS Workshop on Temporal Segmentation, Whistler, Canada,
Dec. 2009.

29. J.-P. Vert and K. Bleakley. Fast detection of multiple change-points shared by
many signals using group LARS. In Advances in Neural Information Processing
Systems, volume 23, pages 2343–2351. NIPS Foundation, La Jolla, USA, 2010.


