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Flow pattern in the vicinity of self-propelling hot Janus particles

Thomas Bickel,1 Arghya Majee,1, 2 and Alois Würger1, 3
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2Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany

3ZHS, Universität Leipzig, Burgstraße 21, 04103 Leipzig, Germany

We study the temperature field and the resulting flow pattern in the vicinity of a heated metal-
capped Janus particle. If its thickness exceeds about ten nanometers, the cap forms an isotherm
and the flow pattern comprises a quadrupolar term that decays with the square of the inverse
distance ∼ r−2. For much thinner caps the velocity varies as ∼ r−3. These findings could be relevant
for collective effects in dense suspensions and for the circular tracer motion observed recently in the
vicinity of a tethered Janus particle.

PACS numbers: 82.70.Dd, 66.10.cd,47.15.G-

I. INTRODUCTION

The design of artificial micro- and nano-swimmers that
propel themselves in a viscous fluid is a key issue in nan-
otechnology [1]. In the realm of biology, autonomous mo-
tion of microorganisms is ubiquitous and relies on surface
waves or periodic body deformations [2]. Several swim-
ming devices inspired by living systems have been built
recently [3, 4], although their actuation mechanism re-
quires external forces or torques. An alternative way
toward self-propulsion is achieved using colloidal parti-
cles with non-uniform surface properties [5]. This class
of rigid swimmers relies on phoretic transport, i.e. the
force-free motion driven by the gradient of an external
field [6]. In the case of self-phoresis, however, asymmetric
particles are able to generate their own gradient within
an otherwise homogeneous medium and thus to convert
the available energy into mechanical work [7, 8].

The simplest realization of autonomous swimmers is
obtained with Janus particles, which are colloidal ob-
jects with two sides differing in their physical or chemi-
cal properties [9]. For example, a bimetallic particle in
a peroxide solution generates a electrochemical gradient
which in turn gives rise to a flow in the surrounding fluid
and thus causes self-propulsion [10]. At short times this
results in linear motion, whereas at longer times the ran-
dom reorientations lead to enhanced diffusion [11, 12].
Similar findings have been reported for photophoresis of
hot Janus particles, which move in their own tempera-
ture gradient with an effective diffusion coefficient that
increases linearly with the heating power [13–15].

Heating of metal capped Janus particles provides a ver-
satile means of actuation which, in particular, can be
switched on and off almost instantaneously. Heat absorp-
tion of the metal cap is achieved upon illumination by a
defocused laser beam [13–16] or when subject to an ac
magnetic field [17]. The metal patch absorbs the energy
and converts it into heat; asymmetric heat release then
drives the colloid via a mechanism of thermophoresis [6].

In this article we address the temperature profile and
the fluid velocity in the vicinity of a hot Janus particle.
In view of its large thermal conductivity we treat the

metal cap as an isotherm and, as a consequence, obtain
a class of hydrodynamic multipoles that are absent when
neglecting heat conduction in the cap. These aditionall
terms result in a flow pattern which is strongly asym-
metric with respect to the particle midplane, and could
affect the hydrodynamic coupling between neighboring
swimmers or with a bounding wall [18–20]. On the other
hand, a fixed Janus particle is expected to act as a micro-
pump. Visualization of the local convective flow by par-
ticle tracking velocimetry indeed revealed vortices close
to a Janus particle tethered on a glass support [13]. The
description of tracers trajectories thus requires a detailed
knowledge of both the temperature and the velocity fields
around a Janus particle.

FIG. 1: (Color online) Map of the reduced temperature
(T−T0)/∆T in the (xOz) plane, inside and outside the metal-
coated colloid. The thick line represents the metal layer,
where the temperature is at its maximum. It then decreases
monotonically to the bulk value.
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II. TEMPERATURE FIELD

In a first step we derive the temperature profile from
Fourier’s law

κ∇2T = q(r) , (1)

where q is the power absorbed by the metal cap, and
κ the thermal conductivity of both the particle and the
surrounding fluid (taken to be the same for simplicity).
The cap conductivity κc is usually much higher than κ; if
their ratio is larger than the ratio of particle radius and
cap thickness, κc/κ > a/d, the cap forms an isotherm.
Since this condition is satisfied for a 50 nm gold cap on
micron-size silica or polystyrene beads, we assume in the
following a constant cap temperature T0 + ∆T . Typical
values for the excess temperature ∆T with respect to the
bulk are of the order of a few Kelvins.

Because of the mixed boundary conditions, constant
temperature on the metal cap and heat flux continuity
on the upper hemisphere, there is no straightforward so-
lution of Eq. (1). As shown in the Appendix, the global
constraint on the isotherm can be implemented by a
method based on auxiliary functions. Here we merely
quote the temperature profile in the liquid phase (r > a)

T (r, θ) = T0 +
∆T

π

∞
∑

n=0

tnPn(c)
(a

r

)n+1

, (2)

with c = cos θ and the Legendre polynomial Pn. The
coefficients tn are given by

t2k = −t2k+1 =
(−1)k

2k + 1
, (3)

except for the first one that reads t0 = 1+π/2. A similar
expression with the same coefficients is found inside the
particle (r < a), albeit with (r/a)n instead of (a/r)

n+1
.

Identifying the power P absorbed by the metal cap with
the total outward heat flow, one readily establishes the
relation with the excess temperature: P = (2π+4)κa∆T .
The map of the temperature field is shown in Fig. 1. The
role of the isotherm assumption is illustrated by compar-
ing with the case of a very thin cap where κc/κ < a/d.
Then the heat conductivity of the metal structure can be
neglected, and we show in the Appendix that the even co-
efficients of the temperature profile vanish: t2k = 0 [13].

III. BOUNDARY VELOCITY

The temperature gradient modifies the particle-solvent
interactions in a boundary layer of thickness ℓ. For
electric-double layer forces ℓ is given by the Debye length,
and for depletion forces by the gyration radius of the
polymers. In both cases ℓ is much smaller than the ra-
dius a of micron size colloidal particles, such that the flow
pattern in the liquid can be evaluated in boundary layer
approximation [6, 21, 22]. The excess enthalpy density h
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FIG. 2: (Color online) Quasi-slip velocity us(θ) as a function
of the polar angle θ. For comparison, we plot the infinite
series (4) (solid line), the dipolar approximation (series trun-
cated at n = 1, dotted line) and the quadrupolar approxima-
tion (series truncated at n = 2, dashed line). Inset: surface
temperature [T (a, θ) − T0]/∆T as a function of θ.

results in a quasi-slip velocity of the liquid with respect
to the particle [23].

The boundary velocity is proportional to the tem-
perature gradient parallel to the surface of the particle
us = −(ℓ2h̄/ηT0)∇T||, where η is the viscosity and h̄ the
characteristic value of the excess enthalpy. With Eq. (2)
one has

us(θ) = u0

∞
∑

n=1

tn
dPn(c)

dθ
, (4)

where the prefactor u0 gives the velocity scale,

u0 = − ℓ2h̄

πηa

∆T

T0

. (5)

The first term in Eq. (4) corresponds to the dipolar ap-
proximation: us(θ) = u0 sin θ [6]. Keeping the first
two terms of the series, the surface velocity is that of
a “squirmer” with positive stresslet β = 2/3 [19, 24].

For positive slip velocity u0, i.e., negative enthalpy h̄,
the liquid flows toward the warmer side of the Janus par-
ticle. Note that us is largest on the upper half-sphere
close to mid-plane; it vanishes on the lower half-sphere
because of the constant temperature of the metal cap –
see Fig. 2. The expression ℓ2h̄ has the dimension of a
force, and has been evaluated for several thermophoretic
mechanisms. Ruckenstein pointed out the positive slip
velocity (u0 > 0) due to the enthalpy of the electric dou-
ble layer, ℓ2h̄ = − 1

2
εζ2 [25], with the surface potential ζ

and the solvent permittivity ε. In many instances, how-
ever, the slip velocity is dominated by the thermoelectric
effect ℓ2h̄ = 3

2
εζST0, where the electrolyte Seebeck co-

efficient S may take either sign [26–28]. Upon adding
polymer to the solution, thermal depletion forces result
in u0 < 0 [29]. For a micro-size particle with ∆T = 1 K,
the slip velocity is a few microns per second.
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IV. BULK VELOCITY FIELD

The quasi-slip velocity on the surface of the particle
induces a flow in the surrounding liquid. The general ax-
isymmetric solution v =vrer + vθeθ of the Stokes’ equa-
tion has been known for a long time [24, 30]. Here we
give the series expansion of Ref. [31], where the radial
and tangential components are given by

vr = u0

∞
∑

n=1

an

rn

(

pn + qn+2

a2

r2

)

Pn(c) , (6a)

vθ = u0s

∞
∑

n=1

an

rn

(

pn
n − 2

n(n + 1)
+

qn+2

n + 1

a2

r2

)

P ′
n(c) , (6b)

with P ′
n = dPn/dc and s = sin θ. The coefficients pn

describe the inhomogeneous solutions of Stokes’ equa-
tion with finite pressure, whereas the qn’s are related
to the zero-pressure homogeneous solutions. The coeffi-
cients are set by the boundary conditions at the surface
of the particle. First, the far field v has to match the sum
of the particle velocity upez and the quasi-slip velocity

v|r=a = upez + useθ . (7)

The second condition is a global constraint and involves
the total force Fz = −4πηu0ap1. In the following we
evaluate the coefficients for a particle that is either freely
moving of fixed at a given position.

V. MOVING PARTICLE

First we consider a free Janus particle that self-propels
due its own temperature gradient. Since there is no exter-
nal force, the global constraint imposes the well-known
condition p1 = 0 [6]. Yet, the no-force condition does
not affect the inhomogeneous coefficients of higher order.
Noting ez = c er−s eθ, one obtains the radial and tangen-
tial projections of Eq. (7), vr = cup and vθ = −sup + us.
Inserting Eqs. (6a) and (6b), one readily gets for n = 1

p1 = 0 , and q3 = −2

3
t1 =

2

3
, (8)

and for higher orders

pn = −qn+2 =
n(n + 1)

2
tn (n ≥ 2) . (9)

The particle velocity is then in opposite direction to the
quasi-slip and is equal to two thirds of its amplitude

up = q3u0 =
2

3
u0 . (10)

This implies that self-propulsion is driven by the dipolar
term q3 only; higher Fourier coefficients of the temper-
ature gradient, tn with n > 1, do not contribute to the
particle velocity.
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FIG. 3: (Color online) Flow streamlines around a moving
Janus particle in the laboratory frame. a) The cap forms an
isotherm with tk as in (3). b) Dipolar approximation with t1
only. c) Thin-cap limit, with t2k = 0.

We emphasize two major differences with respect to
the thin-cap limit, where t2n = 0 and the dipolar approx-
imation where t1 is the only non-zero coefficient. First,
the temperature coefficient t2 results in a radial velocity
contribution that decays with the square of the inverse
distance and shows quadrupole characteristics. In the
thin-cap and dipolar approximations the velocity decays
as r−3. Second, Fig. 3a) shows that the rotational pat-
terns of the stream lines are located close to the metal
cap; for comparison, we also plot the dipolar flow field
with the only coefficient q3 and the thin-cap limit with
t2k = 0 [13]. The corresponding streamlines in Fig. 3b)
and c) are symmetric with respect to midplane.

In Fig. 4 we plot both vr and vθ as a function of θ at
a distance r = 1.5a from the center of the particle; we
compare the whole series with the dipolar approxima-
tion (n = 1 only), and the quadrupolar approximation
(n = 1, 2). The dipolar terms are simply given by sine
and cosine functions. The quadrupolar correction is by
no means small or insignificant; for example, vr changes
sign at small θ, and vθ at angles close to π. Retain-
ing the higher-order corrections again changes the flow
pattern drastically. As the most striking feature, note
the large positive derivative dvr/dθ close to midplane;
together with the positive value of the tangential compo-
nent vθ this implies the existence of vortices at the edge
of the metal cap.

VI. IMMOBILE PARTICLE

Now we turn to the situation where the Janus particle
is fixed at a given position. This requires a finite external
force that counteracts the self-propelling surface stress in
the boundary layer. The particle velocity is then zero,
up = 0, so that the quasislip velocity matches to the
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FIG. 4: (Color online) Radial and tangential components of
the velocity of a moving particle at distance r = 1.5a from its
center. The plots correspond to the series (6a) and (6b) trun-
cated at n = 1 (dipolar approximation, dotted lines), trun-
cated at n = 2 (quadrupolar approximation, dashed lines),
and to the infinite series (solid lines).

tangential component of the far-field uθ = vθ, whereas
the radial component vanishes vr = 0. One obtains the
coefficients for the flow pattern

pn = −qn+2 =
n(n + 1)

2
tn (n ≥ 1) . (11)

With the coefficient p1 = −1 one finds the external force
Fz = 4πηau0. It is required to immobilize the particle
which otherwise would move at a velocity up = 2

3
u0, and

thus corresponds to the well-known Stokes drag 6πηaup.
In Fig. 5a) we plot the flow pattern v(r, θ). Contrary to

that of the moving particle, there are no vortices close to
the particle; the liquid flows smoothly around the immo-
bile particle. Comparison of the coefficients shows that
this difference is only due to the lowest-order coefficients
p1 = −1 and q3 = 1; in other words, the large long-
range contribution p1 hides the vortices that accompany
a moving particle but are invisible in the case where the
particle is fixed.

VII. MOTION OF A TRACER PARTICLE

Finally, we consider a small tracer in the neighborhood
of a fixed Janus particle. Its velocity ut is given by the
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FIG. 5: (Color online) Map of the tracer velocity ut for dif-
ferent values of the parameter ξ.

sum of the convective flow and of thermophoretic drift in
the temperature gradient of the Janus particle

ut = v(r) − DT∇T , (12)

with v(r) given by Eqs. (6) and (11). The mobility co-
efficient DT is expressed by the enthalpy density and
thickness of the boundary layer of the tracer [22]. The
vector fields v and ∇T have different characteristics: at
large distance, the first is isotropic and the second one
of quadrupolar symmetry; close to the particle higher
order terms lead to an even more intricate variation.
The relative importance of the two terms in (12) is ex-
pressed by the mobility ratio of tracer and Janus particle,
ξ = DT /D̂T , which depends on their surface properties.
Either term in Eq. (12) may be dominant, and they may
even carry opposite sign.

In Fig. 5 we plot the tracer velocity ut for ξ = 0,
2 and 10. As the most striking feature, the tracer is
pushed toward the colder half of the Janus particle from
above but is strongly repelled from the warmer side. For
ξ = 0 (no thermophoresis), the tracer first flows toward
the Janus particle, then creeps slowly toward the metal
cap, and finally is repelled from it. For intermediate value
ξ = 2, transport alongside the surface has ceased and
tracer particles either accumulate at the upper side or
are pushed away from the lower side. For the larger value
ξ = 10, the flow pattern shows additional vortices close
to the midplane of the Janus particle, so that tracers are
brought back to the colder side.

Experimentally, flow circulation around a heated Janus
particle tethered to a glass surface has been reported re-
cently [13]. Tracking of fluorescent particles moreover
revealed that the concentration of tracers is higher on
the non-coated side and lower on the coated side. It is
thus likely that the observed flow pattern results from
the competition between convection and thermophoresis,
as expressed by Eq. (12).
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VIII. CONCLUSION

In summary, we have characterized the flow around a
heated Janus colloid. The discontinuity of surface prop-
erties has a major impact on the fluid velocity field not
only in the vicinity of the particle but also in the bulk.
In particular, we have shown that the dipolar approxi-
mation which is usually considered for simplicity is only
a poor approximation of the full series. Taking into ac-
count higher order terms leads to a complex flow field
that can be relevant at finite concentration, where col-
lective effects come into play [20, 32].

Appendix A: Temperature profile around a

metal-capped colloid

In this appendix, we solve the heat equation around a
spherical colloid with inhomogeneous surface properties.
More precisely, we consider a bead of radius a and ther-
mal conductivity κin in a fluid of thermal conductivity
κout. For the sake of convenience, we assume here that
the metal-capped hemisphere is the upper one, whereas
the opposite assumption was made in the text. Still, one
just has to multiply the coefficients by a factor (−1)n to
switch from one configuration to another.

We assume that the sphere is centered at r = 0. Inside
and outside the particle, the temperature is solution of
the stationary heat equation

∇2T = 0 , (A1)

whose general axisymmetric solution reads

Tin(r, θ) = T0 +

∞
∑

n=0

αn

( r

a

)n

Pn(cos θ) , (A2a)

Tout(r, θ) = T0 +
∞
∑

n=0

αn

(a

r

)n+1

Pn(cos θ) , (A2b)

with Pn the Legendre polynomials. Note that we have
enforced the continuity condition Tin(a, θ) = Tout(a, θ).
We have also assumed that the temperature remains fi-
nite far away from the particle: T (r ≫ a, θ) = T0.

The coefficients {αn} are obtained from the appropri-
ate boundary conditions. Heat flux continuity on the
lower part of the sphere reads

κin∂rTin = κout∂rTout . (A3)

In most practical cases heat conductivities of the solvent
and of the colloid are very close to one another, so that
we can set κin = κout = κ.

The situation on the capped hemisphere is more elab-
orate. The upper part of the sphere is covered with a
thin metal layer of thickness d and thermal conductivity
κc. Inside the metal layer, one would have to solve the
heat equation with a constant source term Q accounting
for heat absorption; heat flux continuity should then be

enforced at the boundaries. The approach that we de-
velop below is less involved and takes advantage of the
separation of length scales. Indeed, the thickness of the
metal layer (d ≃ 50 nm) is usually much smaller than
the size of the particle (a ≃ 1 µm). The metal cap is
then treated as a boundary condition, and two limiting
situations will be considered:

• κcd ≪ κa : in the thin cap limit, the thermal con-
ductivity of the cap is irrelevant and the heat flux
condition reads

−κout∂rTout(a, θ) + κin∂rTin(a, θ) = q , (A4)

with q = Qe. This situation was considered for
instance by Jiang et al. [13] and is summarized in
Sec. A 1.

• κd ≫ κpa : in the thick cap limit, heat conductivity
is so large that the cap is at constant temperature

T (a, θ) = T0 + ∆T , (A5)

where ∆T can be related to Q by evaluating the
total heat flux. This limit is discussed in Sec. A 2.

1. Thin cap limit

In this limit, it is assumed that the continuity of flux
at the particle surface (r = a) including laser heat ab-
sorption reads

−κout∂rTout + κin∂rTin = q(θ) , (A6)

with q(θ) = q for 0 ≤ θ < π/2, and q(θ) = 0 for
π/2 < θ ≤ π. To solve the problem, we expand q(θ)
as a Legendre-Fourier series

q(θ) =

∞
∑

n=0

qnPn(cos θ) , (A7)

the coefficients {qn} being given by

qn =
2n + 1

2

∫ π

0

q(θ)Pn(cos θ) sin θdθ

=
q

2
(2n + 1)

∫ 1

0

Pn(x)dx . (A8)

The integral In =
∫ 1

0
Pn(x)dx is readily evaluated [33]:

I0 = 1, I2k = 0 for k ≥ 1, and

I2k+1 =
(−1)k(2k)!

22k+1k!(k + 1)!
. (A9)

From the general solution (A2), the boundary condi-
tion (A6) can then be expressed as

∞
∑

n=0

[(n + 1)κout + nκin]αnPn(cos θ) = aq(θ) , (A10)
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so that we get

αn =
aqn

(n + 1)κout + nκin
. (A11)

This completely solves the problem. If we set κin =
κout = κ, the coeficients {αn} are finally given by

α0 =
aq

2κ
, (A12a)

α2k = 0 for k ≥ 1 , (A12b)

α2k+1 = α0

(−1)k(2k)!

22k+1k!(k + 1)!
. (A12c)

2. Thick cap limit

We now assume that the capped hemisphere is held
at constant temperature, whereas heat flux continuity is
imposed on the lower hemisphere. To solve this mixed
boundary value problem, we follow closely the derivation
of Ref. [34]. For the sake of simplicity we shall assume
that κin = κout. The boundary conditions (A3) and (A5)
then lead to the following relations

∞
∑

n=0

αnPn(cos θ) = ∆T , 0 ≤ θ < π/2 , (A13a)

∞
∑

n=0

(2n + 1)αnPn(cos θ) = 0 , π/2 < θ ≤ π . (A13b)

To solve the problem, it is useful to introduce two auxil-
iary functions g(θ) and h(θ) according to

g(θ) = − 1

sin θ

d

dθ

∫ π/2

θ

h(u)√
cos θ − cos u

du , (A14)

for 0 ≤ θ < π/2, and g(θ) = 0 for π/2 < θ ≤ π. We can
therefore write

∞
∑

n=0

(2n + 1)αnPn(cos θ) = g(θ) , ∀θ ∈ [0, π] . (A15)

Note that Eq. (A15) actually defines the Fourier coeffi-
cients of g(θ).

The strategy is then the following : starting from the
definition of g(θ), we derive a relation between the coeffi-
cients {αn} and the (yet unknown) function h(θ). Using
the boundary condition Eq. (A13a), we next establish an
explicit expression for the function h(θ) from which we
obtain the coefficients {αn}.

According to the orthogonality condition of Legendre
polynomials, the coefficients αn can be expressed as

αn =
1

2

∫ π

0

dθ sin θPn(cos θ)g(θ)

=
1

2

∫ π/2

0

du
h(u)

sinu
× I ′(u) ,

where the integral I(u) is defined as [34]

I(u) =

∫ u

0

dθPn(cos θ)
sin θ√

cos θ − cos u
.

To evaluate I(u), we use the representation of Legendre
polynomials as Mehler’s integrals [33]

Pn(cos θ) =

√
2

π

∫ θ

0

dx
cos(n + 1/2)x√

cos x − cos θ
.

The integral I(u) then reads

I(u) =
√

2

∫ u

0

dx cos(n+1/2)x =

√
2

n + 1/2
sin(n+1/2)u ,

so that we get

αn =
1√
2

∫ π/2

0

du h(u)
cos(n + 1/2)u

sinu
. (A16)

We still need to get an explicit expression for the (yet
unknown) function h(θ). To this aim, we substitute the
expression (A16) for αn into Eq. (A13a). Interchanging
the order of integration and summation we get for 0 ≤
θ < π/2

1√
2

∫ π/2

0

du
h(u)

sin u

∞
∑

n=0

Pn(cos θ) cos(n + 1/2)u = ∆T .

As a matter of fact, the latter series is given by [33]

∞
∑

n=0

Pn(cos θ) cos(n + 1/2)u =
1√
2

H(θ − u)√
cos u − cos θ

,

for 0 < u, θ < π, with H the Heaviside function. We then
obtain

1

2

∫ π/2

0

du
h(u)

sinu

H(θ − u)√
cos u − cos θ

= ∆T ,

for 0 ≤ θ < π/2. This equation can readily be inverted in
order to get an explicit expression for the function h(u)

h(u) =
2

π
∆T sinu

d

du

(
∫ u

0

dθ
sin θ√

cos θ − cos u

)

=
2
√

2

π
∆T sin u cos u/2 . (A17)

Eqs. (A16) and (A17) give the solution of the problem.
We finally obtain

αn =
2

π
∆T

∫ π/2

0

du cos u/2 cos(n + 1/2)u ,

so that

α0 =

(

1

2
+

1

π

)

∆T , (A18a)

α2k = α2k+1 =
(−1)k

2k + 1

∆T

π
. (A18b)
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