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Polymer gels have been shown to behave as viscoelastic materials but only a small amount of
data is usually provided in the glassy transition. In this paper, the dynamic moduli G′ and G′′ of
polyacrylamide hydrogels are investigated using both an AFM in contact force modulation mode
and a classical rheometer. The validity is shown by perfect matching of the two techniques.

Measurements are carried out on gels of increasing polymer concentration in a wide frequency
range. A model based on fractional derivatives is proposed, covering the whole frequency range. G0

N ,
the plateau modulus, as well as nf , the slope of the G′′ modulus, are obtained at low frequencies.
The model also predicts the slope a of both moduli in the transition regime, as well as a new
transition time λT . The whole frequency spectrum is recovered, and the model parameters contain
interesting information about the physics of such gels.

PACS numbers: 83.80.Kn, 64.70.Q-, 87.64.Dz, 47.57.Qk

Polymers exhibit interesting rheological behavior in
the sense that they can successively behave as liquids,
elastic materials showing a rubbery plateau, then un-
dergo a glassy transition before reaching the solid do-
main [1]. These processes are temperature-dependent.
Because of this broad range of properties, polymers are
widely used in industrial applications, as well as biologi-
cal processes. However, it is often difficult to character-
ize their material properties, as the range of frequencies
involved covers several decades [2, 3]. Techniques such
as classical rheometry, diffusing-wave spectroscopy, dy-
namic light scattering [4] or ultrasonic experiments have
been used to describe the complex behavior of polymers
each in its own range of frequencies [5, 6]. In particu-
lar, an important way to extend the linear viscoelastic
behavior (LVE) is found by using the time–temperature
superposition principle, wherein results obtained at var-
ious temperatures are shifted onto a reference tempera-
ture master curve [3]. These observations have motivated
quite a lot of theoretical studies. Different models pro-
viding relaxation spectra have been proposed, ranging
from multiple Maxwell models to continuous relaxation
spectra [2], involving both liquid and glassy modes. The
concept of soft glassy rheology [7, 8] appeared recently
and provides another alternative suited for many sys-
tems. Indeed it is based on the idea that sub–elements
in the microstructure are linked via weak interactions,
and are in a disordered metastable state. Based on this

∗claude.verdier@ujf-grenoble.fr

concept, many complex fluids can be described thanks
to this model, in particular packed colloidal suspensions,
the cell cytoskeleton [9] as well as foams or slurries.

Due to their cross-linked network, polymer gels share
similar properties [7] with polymers. They can be charac-
terized using modern microrheology techniques [10, 11],
as applied in particular for actin networks [12, 13]. The
behavior of classical gels is in fact similar in the glassy
transition domain, but no modelling attempt has been
made so far to characterize the entire frequency domain
covered by recent instruments. Therefore, it is interest-
ing to characterize a wide domain of frequency for various
polymeric gels, especially biological systems, and develop
a model for such behavior. This is the main purpose of
the work presented here. In addition, a new AFM–based
microrheology method [14–16] will be used allowing to in-
vestigate a wide range of frequencies, in combination with
classical rheometry. This technique to probe the mechan-
ical properties of biological cells locally using dynamic
AFM measurements was developped [14], but has not yet
been validated on a model system, like a polyacrylamide
gel. Here, we choose to characterize the behavior of poly-
acrylamide hydrogels due to their interesting mechanical
properties depending on the cross-linked network. These
gels are known to exhibit a viscoelastic behavior, with
an elastic modulus G′, and a frequency–dependent vis-
cous modulus G′′, usually one decade below in the clas-
sical rheology domain [0.01Hz− 10Hz] [17]. The elastic
modulus (G0

N ) has been investigated and increases with
acrylamide concentration [18]. Thus, changing the cross-
linked network and measuring the dynamical moduli in
a wide range of frequencies can bring forward new data
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related to the physical properties of the gels.
Polyacrylamide gels were synthesized by mixing acry-

lamide (30% w/w) at four different weight concen-
trations (5 − 7.5 − 10 − 15%), and N,N–methylene–
bisacrylamide 1% w/w at a fixed concentration 0.03%
in deionized water. This means that the hydrogels were
slightly crosslinked. Polymerization was then initiated
by incorporating N,N,N,N-tetramethylethylenediamine
(TEMED, Sigma) and ammonium persulfate 10% solu-
tion (APS), as described in [19]. Gels of thickness 70µm
were prepared on a pre–treated glass Petri dish for a
better adhesion [19]. Gels were always kept in humid
conditions, so that they were swollen and in equilib-
rium. They were set onto an AFM (JPK Instruments,
Berlin) equipped with an inverted microscope (Zeiss,
model D1, Berlin). The AFM chips (Bruker, MLCT,
pyramid shape, tip half–angle θ = 20◦) were mounted
onto the AFM glass block and calibrated using the ther-
mal fluctuations method. Then an initial indentation δ0
of the sample was made under a prescribed force F0 given
by Hertz model:

F0 =
3E tan θ

4 (1− ν2)
δ20 (1)

where E is Young’s modulus, ν is the Poisson ratio (usu-
ally assumed to be close to 0.5 for such gels [20]) and θ
as defined above. δ0 is chosen so that the tip penetration
depth into the sample is large enough to have a suffi-
cient contact area and not too large to remain within the
linear elasticity assumptions corresponding to the Hertz
model. In order to carry out microrheology measure-
ments, a small perturbation (frequency f from 1Hz to
0.5 kHz, and ω = 2πf is the angular frequency) was su-
perposed onto the initial indentation. The perturbation
being small, Eq. (1) can be linearized about the equi-
librium. By the correspondence principle of LVE, in the
ω–domain, one operates with complex quantities. Let δ∗,
F ∗ be the complex indentation and force. Substracting
the hydrodynamic drag iωb(0) [14], the complex shear
modulus G∗(ω) is given by:

G∗(ω) =
1− ν

3 δ0 tan θ
{
F ∗(ω)

δ∗(ω)
− iωb(0)} (2)

where b(h) is a function which contains the geometry
of the tip and depends on the height h from tip to sam-
ple, and was measured as in [14] by extrapolation of the
function at h = 0.
Rheometry measurements were carried out on a con-

trolled stress rheometer (Malvern, Gemini 150) at low
frequencies [0.001Hz− 2Hz] in the linear regime (defor-
mation of 1%). Interestingly, an excellent agreement was
found between these measurements and the AFM mi-
crorheology experiments for all gels, as seen in Fig. 1
where matching occurs around 2Hz in the case of the
10% concentration gel.
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FIG. 1: Superposition of rheometrical and AFM microrhe-
ological measurements. The acrylamide content is 10% in
this case. Typical error bars (not shown) are around 10%.
T = 25◦C.

The variations of the dynamic moduli (Fig. 1) show a
constant elastic plateau modulus (G0

N ) at low frequencies
(G0

N ≃ 2300Pa in Fig. 1). The gel undergoes a glassy
transition in the higher frequency regime as the AFM
measurements do show. The slopes of the moduli G′ and
G′′ (around 1.0) are similar above 100Hz.
To predict the observed behavior, a rheological model

was used. The complex modulus G∗(ω) can be related to
a relaxation function H(λ) using the general formalism
[2] :

G∗(ω) =

∫

∞

0

H(λ)
iωλ

1 + iωλ

dλ

λ
(3)

H(λ) is the continuous relaxation spectrum, the expres-
sion of which is shown in this work to model the LVE
response from flow to glassy state. In particular, the
flow regime is described with the corresponding function
Hf(λ) :

Hf(λ) =















nf G
0
N

(

λ

λmax

)nf

if λ ≤ λmax

0 if λ > λmax

(4)

This power law behavior will then describe the contin-
uous relaxation time distribution required to model the
plateau regime observed in Fig. 1 at low frequencies. This
model is unsuitable to describe the high frequency state
observed here. Another approach based on the BSW de-
scription [2] was found to be insufficient to predict the
data accurately. Therefore a fractional derivative model
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[21] is added to the previous one, to account for this be-
havior. The corresponding expression for the dynamic
complex modulus G∗

g(ω) is simply given by :

G∗

g(ω) = G1
(iωλ1)

b

1 + (iωλ1)a
(5)

where a and b are the orders of fractional derivatives [21].
Compatibility with thermodynamics requires 0 < a ≤ b
[3]. This type of model accounts for the slopes of the
glassy transition, as observed in the current data.
The coupling of the two linear models is insured by the

simple relationship G∗(ω) = G∗

f (ω) + G∗

g(ω), to account
for the whole frequency spectrum. The parameters of
this global model are G0

N , λmax, nf , a, b, G1 and λ1, .
G0

N appears naturally to be the classical elastic plateau
modulus (Fig. 2). λmax is the maximum relaxation time
corresponding to the flow domain. In the case of gels, this
specific time is out of reach since gels do not actually flow
and exhibit a plateau even at very low frequencies [22].
−nf is the slope of G′′ at low frequencies, in a log–log
plot and is found to lie between −0.8 and 0. b represents
the slopes of G′ and G′′ in the glass transition regime
(with b = a in Fig. 2). G1 is the high frequency limit
modulus of G′, and is far above our data, so comple-
mentary rheological experiments would be necessary to
reveal such high values of the limiting modulus [3]. λ1

is a time related to the microstructure and is not shown
in Fig. 2. Actually 1/λ1 is a typical crossover frequency
between the glass transition and solid domain. Finally
b − a would correspond to the limiting slope of G′ and
G′′ moduli at the highest frequencies, but is not shown
in Fig. 2. Here we used a = b, which was quite sufficient
for describing our data, and led to the optimal fit.

Fitting of the data was carried out for the four gels
characterized both in rheometry and AFM microrheol-
ogy. The best-fitting values of the parameters were de-
termined by minimizing a weighted sum of squared resid-
uals. The weights were chosen from the data. Mini-
mization was achieved using the Levenberg–Marquardt
method. The initial guesses followed the discussion on
the role of each single parameter (see Fig. 2). The best-
fitting values of the parameters are reported in Table I
and the associated curves are presented below in Fig-
ures 3. Very good agreement is shown.
Note that, as expected, the plateau modulus G0

N in-
creases with c, the acrylamide concentration. These
values are shown in Fig. 4 and the slope can be com-
pared to other available data from the literature. For the
lower frequency plateau, the relationship is of the kind
G0

N ∼ c3.0. Previous observations using combined light
scattering and mechanical tests [18] were reported, show-
ing an exponent 2.55 using dynamic mechanical measure-
ments (and 2.35 using dynamic light scattering) as com-
pared to the theory of de Gennes giving 2.25 for good

10
−4

10
−2

10
0

10
2

10
1

10
2

10
3

f(Hz)

G
′
,G

′
′
(P

a
)

 

 

G0

N

a

–nf

G′

G′′

FIG. 2: Significance of the model parameters G0

N , nf , and b =
a. λmax is not shown but should appear at lower frequencies
at the intersection of G′ and G′′ occuring for ω ∼ 1/λmax.
This does not occur in such gels since the flow region is not
reached at low frequencies. Similarly G1 corresponds to a
higher plateau modulus in G′ but is well above our data, this
being also the case for λ1.

TABLE I: Best-fitting values of parameters used in the model.

Gel G0

N (Pa) λmax(s) nf λ1(s) G1(Pa) a = b

5% 336 1.5× 104 0.73 1.3× 10−4 1.0× 104 0.82

7.5% 710 2.0× 105 0.18 2.4× 10−4 1.0× 104 0.85

10% 2 307 9.0× 109 0.08 2.4× 10−4 2.0× 104 1.00

15% 8 801 1.0 × 1010 0.06 2.0× 10−4 5.9× 104 1.00

solvents [23]. The value of the exponent for G0
N is also

close to the exponent 2.55, found for collagen gels [24, 25]
but is larger than the typical exponent of 1.4 obtained for
entangled actin solutions [26].

The longest relaxation time λmax does not seem to
play a significant role, because it is related to a possi-
ble crossover of the G′ and G′′ moduli at low frequen-
cies which does not occur for such gels (in our frequency
range) since they do not flow at low frequencies. How-
ever, −nf , the low–frequency slope of G′′, is an impor-
tant parameter here, and decreases as gel concentration
increases. This further emphasizes the fact that high
concentration gels exhibit moduli which have almost flat
G′ and G′′ moduli (see in particular Figures 3 at 10%
and 15% acrylamide concentration) and do not cross
at low frequencies. Note that values of G′ and G′′ at
low frequencies (0.001Hz) using the classical rheometry
setup are difficult to obtain, due to the long experimen-
tal times required, therefore a larger uncertainty is un-
avoidable for nf . For the four gels, λ1 was found to be
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FIG. 3: Gel rheology: 5%, 7.5%, 10% and 15% acrylamide
concentrations. Open circles are experimental data whereas
solid lines are the model best-fit curves.
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FIG. 4: Evolution of gel moduli G0

N vs. concentration. The
slope of the power law exponent corresponds to 3.0± 0.3.

almost constant within experimental error, as a function
of concentration c, revealing no clear difference in the
crosslinks relaxational processes of the acrylamide gels
at very high frequencies. Therefore, crosslinks appear to
link the acrylamide network in a regular mesh, and the
short relaxation time λ1 (∼ 2.0 × 10−4s) is gel indepen-
dant. This short time relaxation process corresponds to
a single Maxwellian mode with values of a and b ranging
between 0.82 and 1.0. In all cases, the optimal value of
b − a was found to be 0, so we used a = b in the opti-
misation method (see table I). Remember that values of
a (or b) are directly related to the fractional derivatives
present in the model.
Finally, the onset of the glass transition is an interest-

ing parameter for such gels, and corresponds to a typi-
cal transition time 1/λT . As can be seen in Figures 3,
the corresponding frequency (around 100Hz) is increas-
ing with polymer content, as curves are slightly shifted
towards the right. The angular frequency ωT = 1/λT

can be found analytically by investigation of the change
of slope of G′. On the plateau G′ ∼ G0

N and at the tran-
sition G′ ∼ G1 cos(πa/2)(ωλ1)

a since ωλ1 << 1. There-
fore the transition (angular) frequency ωT is given by:

ωT =
1

λ1

(

G0
N

G1 cos(πa/2)

)1/a

(6)

This can be checked easily from Table I. Indeed
G0

N

G1

increases with polymer concentration since G0
N varies

faster than G1, while cos(πa/2) decreases, thus the ra-

tio
G0

N

G1 cos(πa/2) increases and 1/a increases as well. Since

λ1 is almost constant, we deduce that ωT increases with
polymer concentration as shown experimentally. ωT is
linked to the ability of polymer crosslinks to move at
such frequencies, and its increase shows that such mo-
tions are restricted due to the polymer excess at higher
concentration (and constant crosslinker concentration).
This typical frequency could be an important parameter



5

to exhibit in future studies on gels.
Further extensions of the model may be considered for

other physical (or chemical) gels, as well as the study
of biological gels, involving cytoskeleton filaments such
as actin, tubulin, and finally living cells [14]. Therefore,
this model, coupled with the use of high frequency AFM
measurements, allows to investigate different types of fil-
amentous networks in order to determine their behavior
in a large range of frequencies, and could be applied to
investigate the microstructure of complex materials such
as living cells. In particular the determination of the
transition time λT could be of importance.
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