

Impact of topographic obstacles on the discharge distribution in open-channel bifurcations

Emmanuel Jean Marie Mignot, C. Zeng, G. Dominguez, C.W. Li, N. Rivière,

Pierre Henri Bazin

▶ To cite this version:

Emmanuel Jean Marie Mignot, C. Zeng, G. Dominguez, C.W. Li, N. Rivière, et al.. Impact of topographic obstacles on the discharge distribution in open-channel bifurcations. Journal of Hydrology, 2013, 494, p. 10 - p. 19. 10.1016/j.jhydrol.2013.04.023 . hal-00840412

HAL Id: hal-00840412 https://hal.science/hal-00840412

Submitted on 2 Jul 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	IMPACT OF TOPOGRAPHIC OBSTACLES ON THE DISCHARGE DISTRIBUTION				
2	IN OPEN-CHANNEL BIFURCATIONS				
3	Emmanuel Mignot ^{*1} , Cheng Zeng ² , Gaston Dominguez ¹ , Chi-Wai Li ³ , Nicolas				
4	Rivière¹ & Pierre-Henri Bazin⁴				
5	¹ LMFA, CNRS-Universite de Lyon, INSA de Lyon, Bat. Joseph Jacquard, 20 avenue A. Einstein,				
6	69621 Villeurbanne Cedex, France. Tel: 0033-4-72438070, Fax: 0033-4-72438718				
7	² College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, P. R.				
8	China				
9	³ Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong				
10	⁴ Irstea, UR HHLY, 3 bis quai Chauveau CP220, 69336 LYON Cedex 09, France				
11	* Corresponding author, E-mail: <u>emmanuel.mignot@insa-lyon.fr</u>				
12					
13	Abstract				
14	When simulating urban floods, most approaches have to simplify the topography of the city and cannot				
15	afford to include the obstacles located in the streets such as bus stops, trees, parked cars, etc. The aim of the				
16	present paper is to investigate the error made when neglecting such singularities in a simple flooded 3-branch				
17	crossroad configuration with a specific concern regarding the error in discharge distribution to the				
18	downstream streets. Experimentally, the discharge distribution for 14 flows in which 9 obstacles occupying				
19	1/6 of the flow section are introduced one after the other is measured using electromagnetic flow-meters. The				
20	velocity field for one given flow is obtained using horizontal-PIV. Additionally, all these flows are computed				
21	using a CFD methodology. It appears that the modification in discharge distribution is mostly related to the				
22	location of the obstacles with regards to the intersection, the location of the separating interface and is				
23	strongly impacted by the Froude number of the inflow while the influence of the normalized water depth				
24	remains very limited. Overall, the change in discharge distribution induced by the obstacles remains lower				
25	than 15% of the inflow discharge even for high Froude number flows.				
26					

27 Keywords

28 Subcritical open-channel flows, Bifurcation, Obstacles, Experimental, Numerical, Flooded urban streets.

30 1. Introduction

31 When an urban flood occurs, streets generally carry most of the flow from the upstream to downstream part 32 of the city, especially when the area is densely urbanized (Mignot et al., 2006). Flow in the streets is mostly 33 1D with mean velocities parallel to the building facades. However, in crossroads several flows collide and/or 34 separate and the flow pattern becomes complex (see Mignot et al., 2008) especially when artificial 35 topographies create additional flow structures such as wakes, recirculation zones and secondary flows. Bazin 36 et al. (2012) have studied the impact of obstacles on a junction flow where two subcritical flows collide. 37 They observed that this impact depends on the location of the obstacles and may i) strongly modify the local 38 velocity distribution and ii) the extensions of a recirculation zone. Moreover, the authors observed that if an 39 obstacle is located within a recirculation zone, the impact of the obstacle is strongly damped.

Within street bifurcations, with a single inflow separating into two outflows, artificial topographies can also affect the flow distribution reaching the downstream streets. The aim of the present paper is thus to investigate i) the impact of obstacles on the local flow characteristics in bifurcation flows and ii) the consequences of such modifications of the flow pattern on the modification of flow distribution to the downstream branches. The selected artificial topographies are squared emerging obstacles which would represent trees, bus-stop or any other impervious urban furniture located near crossroads.

46 The general pattern of a steady subcritical 3-branch bifurcation without obstacle is described by Neary et al. 47 (1999). A three-dimensional recirculating region develops in the lateral branch and secondary flows appear in 48 both outlets. The principal challenge in such separating flow lies in the prediction of flow distribution from 49 the incoming towards both outgoing flows. A review of analytical models developed to access such 50 prediction is given by Rivière et al. (2007). The models are based on the momentum conservation law (see 51 for instance Ramamurthy et al., 1990), but Rivière et al. (2006) showed that this balance alone does not 52 permit to calculate the flow distribution, and that additional equations must be introduced. These authors 53 proposed an improved relationship based on i) the momentum conservation law from Ramamurthy et al. 54 (1990), ii) suitable stage-discharge relationships for the downstream controls in the outflow channels and iii) 55 an empirical correlation obtained through experimental data. This approach proved to accurately predict the 56 flow distribution in three-branch bifurcations in ideal conditions: 90° angle, smooth walls and identical 57 horizontal rectangular sections in each branch. Riviere et al. (2011) then generalized the results to 4-branch 58 intersections.

Nevertheless, when singularities are introduced near or in the bifurcation, the flow pattern can be strongly affected and this analytical model obviously does not apply. The question raised by the present paper is to what extent an introduction of single or pairs of obstacles in the vicinity of the intersection affects the discharge distribution. Nine configurations of simplified square-shaped obstacles of typical size equal to 1/6 of the channel width are tested here. Their impact on the flow pattern and the downstream flow rates is analyzed for 14 flow configurations divided in 3 series.

For practical reasons, velocity field for all flow configurations with all obstacles could not be measured experimentally. The selected approach is rather based on a mix of experimental measurements and 3D calculations. After verification of their accuracy, these calculations are considered reliable enough to support the experimental investigation. In the first and second sections we describe the experimental and numerical methodologies respectively along with the selected flow and obstacle configurations. In a third section, we describe the impact of the obstacles on the flow pattern and discharge distribution and finally discuss the impact of the base flow (before introducing obstacles) characteristics on such results.

72

73 2. Experimental methodology

74 2.1 Experimental set-up

75 The experiments were performed in the channel intersection facility at the Laboratoire de Mécanique des 76 Fluides et d'Acoustique (LMFA) at the University of Lyon (Insa-Lyon, France). The facility consists of three 77 horizontal glass channels 2m long and b=0.3m wide each. The channels intersect at 90° with one upstream 78 branch (with the flow rate Q_u), one downstream branch (flow rate Q_d) aligned with the upstream one and one 79 lateral branch (flow rate Q_b). The upstream branch is connected to a large upstream storage tank where the 80 flow is straightened and stabilized by passing through a honeycomb. The flow separates in the bifurcation 81 and is finally collected by the downstream and lateral tanks. The lateral tank is connected to the downstream 82 tank and the lateral discharge Q_b is measured using an electromagnetic flow-meter (see Figure 1). When 83 pumped from the downstream tank to the upstream tank, the upstream flow-rate Q_u is measured using a 84 second electromagnetic flow-meter. In order to control the flow conditions, PVC channels (length 60 cm) 85 fitted with sharp crested weirs are added to the ends of the two exit channels so that $L_d=L_b=2.6m$ while 86 L_{μ} =2m. A more detailed description of the experimental set-up can be found in (Rivière *et al.*, 2011).

For each flow configuration, the three boundary conditions to be set are: the upstream flow rate Q_u and the height of the sharp crest weirs C_d (for the downstream branch) and C_b (for the lateral branch). The stage discharge relationship $(h_n, C_n, Q_n, n=b \text{ or } d)$ is calibrated experimentally for each weir: h_b and h_d are measured using a digital point gauge at a length equal to 2 channel width upstream from the weirs. Similarly, the upstream water depth h_u used to characterize the upstream velocity and Froude number is measured one channel width upstream from the entry section of the bifurcation (see Figure 1). A point gauge is used to measure backwater curves in the main and the branch channel for most flow configurations.

94 Upstream water depth h_u ranges from 25 to 71 mm and discharge Q_u from 1.6 to 7.0 L/s. The corresponding

95 Reynolds number ranges between 18000 and 65000 and the corresponding Froude number from 0.23 to 0.69.

96 Moreover, the roughness height k_s was measured using a roughness meter which revealed that the maximum

97 roughness is smaller than 1 µm and the average roughness smaller than 0.1 µm. Given the hydraulic

98 diameter, ranging from $D_h = 0.08$ m to 0.2m, the maximum relative roughness k_s/D_h is estimated to about 10⁻⁵,

99 corresponding to a hydraulically smooth regime in the Moody diagram.

100 2.2 Dimensional analysis and flow series

101 Dimensional analysis is applied to the present flow configuration. The 13 variables to be included in the

102 dimensional analysis of discharge distribution law without obstacle are the channel width b and roughness k_s ,

103 the acceleration due to gravity g, the three flow rates and associated water depths Q_u and h_u , Q_b and h_b , Q_d

104 and h_d , the two weir crest heights C_d and C_b and finally the fluid density ρ and dynamic viscosity μ .

105 5 available straightforward equations are:

106 - the mass conservation, which yields $Q_u = Q_b + Q_d$, permitting to remove the Q_d parameter.

107 - both calibrated stage discharge relationships (h_b, C_b, Q_b) and (h_d, C_d, Q_d) , permitting to remove the C_b and C_d 108 parameters.

109 - the momentum balance in the bifurcation along the main flow axis (x) as proposed by Ramamurthy *et al.*

110 (1990) relating (h_u, h_d, Q_b) and thus permitting to remove the h_d parameter

111 - the empirical discharge distribution law proposed by Riviere et al. (2007) in their equation 2b which links

112 the discharge distribution Q_b/Q_u with h_b through three parameters: $Q_d/(b.g.h_d^{3/2})$, h_d/b and h_b/h_d , thus

113 permitting to remove h_b .

114 The 8 remaining variables are then b, g, Q_b , Q_u , h_u , k_s , ρ and μ_i including three scales, *i.e.* a time scale b^3/Q_u , a

115 length scale *b* and a mass scale ρb^3 .

116 Among the 5 final dimensionless parameters that rule the flow, two of them are discarded in this study. First

- 117 one is the Reynolds number Re= $4\rho Q_u/[\mu(b+2h_u)]$, as its values are reasonably high (see section 2.1) to ensure
- 118 fully turbulent flows. Second one is the dimensionless roughness height k_s/D_h , with D_h the hydraulic

- 119 diameter. As the flow regime is hydraulically smooth (see section 2.1), effect of the roughness parameter is
- 120 not considered hereafter.
- 121 The 3 final dimensionless parameters considered herein are then:
- 122 the upstream Froude number $F_u = Q_u / [b.h_u.(g.h_u)^{0.5}]$
- 123 the discharge distribution parameter $R_q = Q_b/Q_u$
- 124 the normalized upstream water depth h_u/b

125 These three parameters govern the flow distribution in the 3-branch bifurcation without obstacle. In the

- 126 sequel we investigate the impact of introducing obstacles in flows with varying value of each of these three
- 127 parameters at a time. The flow configurations before introducing any obstacle are labeled "0" or "base" flow.
- 128 Consequently, three series (S1, S2 and S3) of base flow configurations are considered in Table 1: S1 with
- 129 varying F_{u0} and fixed R_{q0} and h_{u0}/b , S2 with varying R_{q0} and fixed h_{u0}/b and F_{u0} and S3 with varying h_{u0}/b and
- 130 fixed R_{q0} and F_{u0} .

131 **2.3 Obstacle configurations**

132 For each base flow configuration (without obstacle) from Table 1, each obstacle is introduced one after the 133 other near the bifurcation as shown on Figure 2. 10 obstacle configurations are considered for each flow: 134 configuration labeled 0 is without obstacle (base); configurations labeled 1 to 7 comprise one obstacle; 135 configurations labeled 8 and 9 comprise two obstacles (obstacles 2 + 4 for configuration 8 and 2 + 6 for 136 configuration 9). The obstacles are square-shaped (section is 5x5cm), impervious, emerging (height is 20 137 cm), smooth blocks. They are led on the bottom and heavy enough to remain stable in the flow. They are 138 located at a distance of 4 cm from the closest wall and junction section (as for obstacle 5 on Figure 2) except 139 for obstacle 7 which is located at the center of the bifurcation.

140 **2.4 Methodology**

141 For each flow from Table 1:

- we adjusted the boundary conditions (C_d, C_b, Q_u) to obtain the desired base flow configuration without obstacle (labeled "0").

- we measured the corresponding discharges Q_{b0} , Q_{d0} without obstacle as shown on Figure 1.

- 145 we introduced each of the 9 obstacles one after the other without changing the boundary conditions (C_d , C_b ,
- 146 Q_{u}) and in each case, we measured the downstream discharges Q_{bi} , Q_{di} , with "i" the obstacle number.

- 147 we computed the indicator of discharge distribution modification corresponding to the introduction of each
- 148 obstacle $\Delta R_q = 100.(R_{qi} R_{q0}) = 100.(Q_{bi} Q_{b0})/Q_u$, i = 1...9.
- 149 This methodology thus permits to investigate i) the impact of each obstacle on the discharge distribution for
- 150 each flow from Table 1 and ii) the evolution of such impact with the evolution of the characteristics of the
- 151 base flow $(F_{u0}, R_{q0} \text{ and } h_{u0}/b)$.
- 152 2.5 Velocity fields measured through PIV

153 In addition to discharge measurements, the horizontal velocity field is measured using PIV at a selected 154 elevation z=3cm for the flow configuration in bold in Table 1. This configuration is the slowest flow from the 155 list and thus leads to the better measurement accuracy. Moreover, no PIV measurement could be performed 156 using obstacle 7 as a large portion of the intersection would be in the shade of the obstacle.

157 Polyamid particles (50 µm diameter) are added to the water which re-circulates in our closed loop. A 158 generator emmiting white light through a slot is used to create a plane, 5 mm thick, light sheet at the 159 measurement elevation (z=3 cm) in the channel junction and the branch channel. A 1280x1920 pixel 160 progressive CCD-camera with 8 mm opening objective and 25ms time-exposure connected to a PC computer 161 through a Firewire acquisition card is located above the free surface at an elevation of about 1.1 m. Inserting 162 the whole set-up in the dark finally permits to record the particle motion at the lightened elevation at a fixed 163 frame-rate of 30Hz during 133s. 4000 images are then recorded. The dimension of the measurement region is 164 350x500 mm with a horizontal resolution of 0.5 mm per pixel with 256 grey-levels. The commercial 165 software Davis (from Lavision) permits to correct the optical distortions, to subtract the background and to 166 compute each of the 4000 velocity fields over a 15x15 mm grid, that is about 20 points per channel section. 167 The data is then averaged over the whole recording time to obtain the time-averaged velocity fields shown in 168 Figure 5.

169

170 **3. Numerical Simulation**

171 **3.1 Numerical method**

172 In the numerical model, the 3D Unsteady Reynolds Averaged Navier-Stokes (URANS) equations for the 173 conservation of mass and momentum of fluid are solved. The Reynolds stresses are represented by the eddy 174 viscosity concept and the Spalart-Allmaras (SA) model is used for the turbulence closure. The σ -coordinate 175 transformation is used to map the irregular domain with variable free-surface and bottom topography to a 176 rectangular prism. A split-operator finite difference method with non-uniform rectilinear grid is employed to 177 solve the governing equations. In each time interval, the equations are split into three steps: advection, 178 diffusion and pressure propagation. In the advection step a characteristics-based scheme is used. In the 179 diffusion step a centered difference scheme is used. In the pressure propagation step a Poisson equation is 180 derived and solved by a stable and robust conjugate gradient method CGSTAB. A comparison of the velocity 181 profiles in a bifurcation flow (without obstacle, measured by Barkdoll, 1997) computed by Li and Zeng 182 (2009) using the present SA model and by Neary et al. (1999) using a k- ω model reveals that the two sets of 183 results are quite similar. Further details of the present model can be found in (Lin and Li, 2002) and 184 applications of the numerical model to flow division problems in open channels were performed by Li and 185 Zeng (2010).

186 For the present application, the boundary conditions used are as follows. At the channel inlet the discharge 187 Q_{μ} is prescribed, the velocity profile is assumed uniform and the eddy viscosity profile is specified by using 188 the mixing length model, the surface elevation gradient is set to zero and the pressure is assumed hydrostatic. 189 At both channel outlets the water depth and the discharge are related by the experimental weir equations 190 (h_b, C_b, Q_b) and (h_d, C_d, Q_d) and the streamwise gradients of the pressure and of the three velocity components 191 are set to zero. At the free surface, the pressure is assumed atmospheric (zero relative pressure), the gradients 192 of the velocity components are set to zero and the free surface elevation is tracked by solving the kinematic 193 equation. At solid boundaries (channel walls and obstacles) the normal gradients of pressure and velocity are 194 set to zero, and the velocity components along the boundaries are specified by the standard wall function, 195 considering smooth walls. All 14 flow cases given in Table 1 with the base (no obstacle) and 9 obstacle 196 configurations are replicated in the numerical simulation. The grid system used is rectilinear and non-197 uniform, with the finest grid size used near solid boundaries. The total number of grid points is 182160.

198

3.2 Validation of numerical method

199 A comparison between the computed and measured outlet discharges for all flow configurations using each 200 obstacle configuration is given in Figure 3. The results are accurate, the difference between the computed and 201 corresponding measured downstream outlet discharges is generally within 5% of the inlet discharge. This 202 gives confidence regarding the model capacity to predict the flow distribution. Moreover, Figure 4 presents a 203 comparison of measured and computed water depth evolution along the main channel for the reference flow 204 configuration (see * in Table 1) without obstacle and with obstacle 7. The results are generally satisfactory 205 and within 5% difference of the water depth. Nevertheless, the computed outlet water depth without obstacle 206 is slightly higher than the measurements. Indeed, in the present case the downstream discharge is slightly 207 overestimated by the calculation and thus, using the downstream stage-discharge relationship, the

208 corresponding water depth is also overestimated. Overall, the tendency remains similar. Regarding the case 209 with obstacle 7, the discharge distribution is fairly estimated and thus also the downstream backwater curve, 210 but the computed head loss in the intersection is slightly lower than the measured one. Moreover, grid 211 refinement study was carried out. The number of grid points used in the fine grid system was four times of 212 that used in the original grid system. The corresponding computed backwater curves are shown in Fig. 4. The 213 maximum difference between the two set of results is approximately 2%. The discharge distribution and the 214 velocity profiles at various locations were also compared in Table 2. The difference in the discharge 215 distribution is within 3%. Finally, the sensitivity of the solution to the inlet velocity profile was also studied: 216 the replacement of the uniform velocity profile by a logarithmic profile only marginally affects the solution 217 (see Figure 4), showing that the length of the upstream channel is sufficiently long to eliminate inlet effects.

Finally, a comparison of five measured and computed velocity field in the intersection region for the bold flow from Table 1 is included in Figure 5: without obstacle (O_0) and with obstacles 1, 2, 4, 5. As computed data results from unsteady numerical simulations, a time-averaging process was applied to the computed data for a better comparison with the time-averaged measured data. The magnitude of the velocity is generally satisfactorily predicted, except for the accelerated upstream flow near the right bank for obstacle 2. To conclude, the numerical model is considered as validated. In the sequel, the analysis of the impact of obstacles on the flow pattern is performed both from experimental and numerical data.

225

226 **4. Results**

Measured and computed velocities (Figure 5) and depths (Figure 6) reveal that the obstacles cause pile up of water immediate upstream and generate downstream wake regions with recirculating flows, leading to flow and streamline deflections. In the first subsection the impact of the obstacles on a selected flow ("PIV measured flow" in Table 1) is analyzed and in the three following sub-sections, the influence of the base flow characteristics from each serie in Table 1 on the obstacle impact is discussed.

4.1 Impact of the obstacles on the flow pattern and discharge distribution on a selected flow

233 Considering the PIV measured base flow (bold in Table 1) and using Figures 5, 6, 7 and 8, it is observed that:

- Without obstacle, the main flow is separated into two parts by the plane interface. The velocity along *x* axis

thus decreases within the intersection. Maximum velocity along y axis is encountered in the lateral branch

along the left bank wall while a recirculation zone is observed along the right bank wall. The water depth

- 237 increases from the junction to the downstream branch while it decreases toward the lateral branch (see Figure
- 6). This behavior is in fair agreement with flow description in the literature by Neary *et al.* (1999)
- Introducing obstacle 1 strongly accelerates the right part of the upstream flow (-150mm>y>-300mm) in the
- section. Due to the increased momentum (inertia), the capacity of the flow to rotate towards the lateral branch
- 241 is strongly reduced and the discharge in the lateral branch decreases ($\Delta R_q < 0$ in Figure 7).
- Introducing obstacle 2 deflects a large portion of the upstream flow towards the opposite wall (y=0) where
- 243 it is accelerated. This reduces the flow entering the lateral branch ($\Delta R_q < 0$) and causes a reduction in the water
- depth in the lateral branch.
- Introducing obstacle 3 does not affect the flow pattern nor the discharge distribution as it is located within
 the very slow recirculation zone (dead zone, see Figure 8).
- Introducing obstacle 4 dramatically limits the section of the mean flow in the lateral branch near the
- 248 downstream wall (0.2m < x < 0.3m and -0.6m < y < -0.3m). The branch discharge is thus reduced ($\Delta R_a < 0$) and the
- flow pattern within the branch is also strongly modified.
- Introducing obstacles 5 and 6 limits the flow section in the downstream branch, causes pile-up of the junction water depth, which tends to increase the discharge in the lateral branch ($\Delta R_a > 0$).
- Introducing obstacle 7 tends to accelerate the flow along *x* axis within the junction on both sides of the obstacle (see Figure 8). The part of inflow deflected to the left bank (y>-150mm) reaches the downstream branch while the part deflected to the right bank is itself separated in two parts, each part reaching one outlet channel. The deflection towards right side enhances the flow reaching the lateral branch and thus leads to
- 256 $\Delta R_q > 0.$
- 257 To conclude, it appears that both upstream obstacles (1 2) lead to $\Delta R_q < 0$ while both downstream obstacles
- 258 (5 6) lead to $\Delta R_a > 0$. Oppositely, impact of both lateral obstacles (3 4) on ΔR_a differs. Moreover, Figure 7
- reveals that the impact of introducing obstacle configurations 8 (resp. 9) is about the sum of the impacts of
- the constituting obstacles, that is of obstacles 2+4 (resp. 2+6).

4.2 Impact of the inflow Froude number: $F_{u\theta}$ (Serie 1)

262 Figure 7 reveals that the sign (positive or negative) of ΔR_q for a given obstacle does not change with varying

263 Froude number of the base flow: none of the curves crosses the $\Delta R_q=0$ axis. It appears that as the Froude

number of the base flow increases, the impact of each obstacle raises: $|\Delta R_q|$ increases. Indeed, the Froude

265 number is the square root of the ratio between inertia force and gravity force. So, as the resistance force (drag 266 force) produced by the flow on an obstacle is proportional to the square of the flow velocity, the increase in 267 flow inertia leads to an increased resisting force on the obstacles. In return, as the Froude number of the flow 268 increases, the pile-up at the stagnation point in front of the obstacle and the intensity of the wake increase. 269 Both processes affect the flow pattern and thus the obstacle impact is enhanced. Moreover, Figure 7 reveals 270 that for the flows studied in Serie 1, magnitude of discharge distribution modification ranges between less 271 than 5% for the low Froude number configurations to a maximum of 10% for the highest Froude number. 272 Modifications are then limited for all flow and obstacle configurations.

4.3 Impact of the base discharge distribution: $R_{q\theta}$ Series 2

274 Figures 8 and 9 show the impact of introducing obstacles in flows which base discharge distribution R_{a0} 275 (without obstacle) varies between 0.2 and 0.8. Experimentally, increasing R_{a0} with constant F_{u0} and h_{u0}/b is 276 obtained by keeping the same upstream discharge Q_u and water depth h_u and by increasing (resp. decreasing) 277 the weir crest height in the downstream channel C_d (resp. branch C_b). Thus for constant upstream flow 278 conditions, varying R_{a0} affects (see Figure 8): i) the location of the interface-plane which separates the 279 upstream flow into a left portion reaching the downstream branch and a right portion reaching the lateral 280 branch, ii) the width of the recirculation region in the branch and iii) the tendency of the downstream flow to 281 detach from the left bank (y=0) and to initiate a recirculation zone in the downstream branch. Assuming a 2D 282 flow, the interface between both inflows starts in the upstream branch and ends at the downstream corner of 283 the junction. For $R_{a0}=0.5$, the upstream limit of the interface plane is located at the centerline of the upstream 284 branch (x<0, y=-b/2), while for $R_{q0}<0.5$ this plane starts at y<-b/2 and for $Rq_0>0.5$, it starts at y>-b/2. 285 Tendencies of ΔR_q for increasing R_{q0} with the nine obstacles are summarized in Table 3. The relative location 286 of this interface and each obstacle permits to explain most results:

- For low R_{q0} , the interface is located near the lateral branch side and thus far from **obstacle 1**. As obstacle 1 then tends to accelerate the flow, its rotation capacity towards the lateral branch decreases: $\Delta R_q < 0$ (see section 4.1). For increasing R_{q0} , the interface starts closer to obstacle 1 and part of upstream flow deflected to the right side of the obstacle passes to the right side of the interface of the base flow and finally reaches the lateral branch. Consequently, the $\Delta R_q < 0$ tendency described above decreases as R_{q0} increases.

- Oppositely, as R_{q0} increases the interface plane goes away from **obstacle 2** and the discharge distribution becomes less influenced by the obstacle: $|\Delta R_q|$ decreases. It should be noted that for very low R_{q0} , the base flow interface plane becomes located very close to the right bank of the inflow and thus the part of the flow 295 deflected by obstacle 2 to the right side of the inflow leads to an increase of ΔR_q compared to slightly higher 296 R_{q0} (see Figure 9).

- **Obstacle 4** is located in the major flow zone of the branch channel. Its blockage effect increases with the lateral outflow discharge, that is as R_{a0} increases.
- Obstacles 5 and 6 tend to block the flow in the downstream channel and thus to increase the branch discharge (see section 4.1). However, for increasing R_{q0} values, the discharge in the downstream channel decreases and thus also the velocity at this section. Corresponding pile-up and adverse pressure gradient thus
- 302 decreases. Consequently, introducing obstacles 5 and 6 always leads to $\Delta R_q > 0$ but this impact decreases as 303 R_{q0} increases.
- K_{q0} increases.
- For R_{q0} lower or close to 0.5, obstacles 7 tends to deflect most of the right part of upstream flow towards
- 305 the branch side leading to $\Delta R_q > 0$ (see section 4.1 and Figure 8). At the same time, the acceleration in the
- downstream channel suppresses the flow separation at the left bank. However, for R_{q0} much larger than 0.5,
- 307 part of the flow which reached the lateral branch when no obstacle was included is now deflected by obstacle
- 308 7 towards the left wall (y=0) and finally reaches the downstream channel. As a consequence, for very high
- 309 R_{q0} , obstacle 7 benefits the downstream channel and $\Delta R_q < 0$.
- 310 Obstacle configurations 8 and 9 follow the same trend as their constitutive obstacles (2+4 for obstacle 8
 311 and 2+6 for obstacle 9).

- The impact of **obstacle 3** is related to the recirculation width in the lateral branch. According to Figure 8, as R_{q0} increases, the width of the recirculation region in the lateral branch decreases and thus **obstacle 3** tends to pass from the recirculation zone to the main flow. As a consequence, for high R_{q0} , obstacle 3 tends to block off part of the lateral branch flow (increasing the water depth and creating and adverse pressure gradient), leading to $\Delta R_q < 0$.

317 4.4 Impact of the normalized water depth: h_{u0}/b (Serie 3)

Figures 10 and 11 show the influence of the upstream water depth of the base flow h_{u0} on the impact of each obstacle. First, it appears that the effect of water depth on the change in flow distribution is negligible except for the 3 configurations involving obstacle 2 (configurations 2, 8 and 9) where it still remains limited. For these configurations, as the base water depth increases (with similar Froude number and discharge distribution), the discharge in the branch is reduced: $\Delta R_q < 0$ decreases until a minimum value for $h_{u0}/b \sim 0.18$ and then increases again for higher water depths. Numerical results in Figure 10 show that varying the water 324 depth h_{u0} affects the wakes generated downstream from obstacles 1 and 2, even though all our experiments 325 belong to the "vortex street" flow type, when following Chen & Jirka (1995) approach. Indeed, the wake 326 parameter $S=f.a/(4h_u)$ ranges from 0.003 to 0.013 (*i.e.* S<0.2), with a=0.05m the obstacle width and f the 327 Darcy-Weisbach coefficient ranging from 0.02 to 0.027 considering smooth walls in our experiments. For 328 obstacle 1, the wake modification hardly affects the discharge distribution (see Figure 11) as the obstacle is 329 located far from the separation streamline. Oppositely, for obstacle 2, the wake modification appears to be 330 responsible for the modification in discharge distribution for configurations 2, 8 and 9. This information 331 revealed by the numerical results proves the interest of coupling experimental and numerical data for the 332 analysis.

333

5. Discussion and Conclusion

335 The aim of the present paper was to investigate how the flow is affected by obstacles located in a 3-branch 336 bifurcation with specific attention towards the impact on the discharge distribution to the downstream 337 branches. Two types of measurements were undergone: i) discharge distribution measurements for 14 flows 338 belonging to three series in which only one main parameter of the flow was varying at a time and in which 9 339 obstacles were introduced one after the other; and ii) horizontal velocity field for one selected flow with most 340 obstacle configurations using PIV techniques. In parallel all flows with all obstacle cases were computed 341 using a CFD approach. Combination of both experimental and numerical approaches permitted to explain the 342 outlet discharge modifications induced by obstacles by analyzing the changes in the flow pattern. The 343 following conclusions can be outlined:

- The computation results of the numerical model in terms of outlet discharges and flow field are in fair agreement with measurements and thus this CFD model represents a suitable predictive tool to further study localized urban flooding configurations where the flow is strongly complex and 3D.

347 The impact of an impervious obstacle on the discharge distribution in a subcritical 3-branch 348 bifurcation flow is strongly dependent on the location of the obstacle with regards to the intersection. 349 Obstacles located within the upstream branch increase the streamwise flow velocity and thus tend to reduce 350 the lateral and increase the downstream discharge (Rq_0 decreases up to 12%). Oppositely obstacles located 351 within the downstream branch tend to block off the flow in this branch and to reduce the corresponding 352 discharge while increasing the lateral discharge (Rq_0 increases up to 3%). Finally for obstacles located within 353 the lateral branch, their impact depends on the side of the channel in which they are introduced: i) towards 354 the downstream wall of the lateral branch, they tend to block off the lateral flow and thus promote the

downstream and reduce the lateral discharge (Rq_0 decreases up to 4.5%); ii) towards the upstream wall, the obstacle is usually located within the recirculation zone where it has no impact but as the width of this zone reduces, the obstacle can block off part of the lateral discharge (Rq_0 decreases up to 3%). Such influence of the location of the obstacles on the modifications of discharge distribution should be considered in flooded urban areas for car park planning. Moreover, for a given obstacle, as the Froude number of the inflow increases, the impact of the obstacle strongly increases. Oppositely, it appeared that the water depth in the intersection has very limited influence on the impact of obstacles.

For a given flow in which an obstacle is introduced, the impact on the discharge distribution is a
 direct consequence of the modifications of the following flow structures: i) streamwise and centrifugal flow
 acceleration, ii) width of the recirculation zone and iii) wake downstream the obstacle.

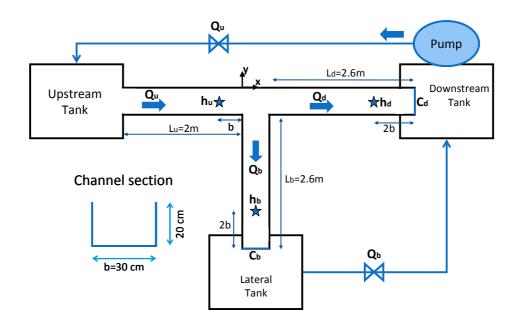
365 Overall, the impact of the obstacles remains limited to about 10 to 15% of the inflow discharge even 366 for very high Froude number flows. However, considering a scale ratio of about 25 between the experimental 367 set-up and a real street (leading to a 7.5m wide street) and using a Froude similarity, the equivalent velocity would reach 1 to 2 m/s and the Reynolds number $2x10^6$ to $8x10^6$. Assuming a typical street roughness height 368 369 of 5 mm, the flow regime at the street scale will be hydraulically rough which may introduce some 370 discrepancies when transferring the present results to real urban flood cases. Moreover, this impact is 371 expected to increase with the size of obstacles, which is not covered in the present study. For flooding 372 consideration, 10% to 15% change can be substantial. It is recommended to include these singularities as 373 impervious areas within the topography of a city in 3D or 2D urban flood simulation or by a calibrated head 374 loss term in 1D network simulation.

375

376 5. Acknowledgements

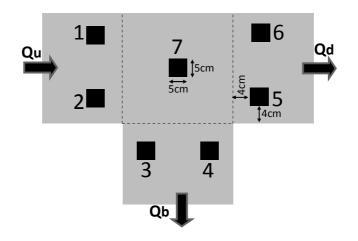
The work was supported by a grant from the PROCORE-France/Hong Kong Joint Research Scheme sponsored by the Research Grants Council and the Consulate General of France in Hong Kong (2011, project n°24664RB) and benefited from the support of the French CNRS, INSU, through grant EC2CO Cytrix 2011-231.

381 6. References


382 Barkdoll, B.D., 1997. Sediment control at lateral diversions, PhD dissertation, Civil and Environmental

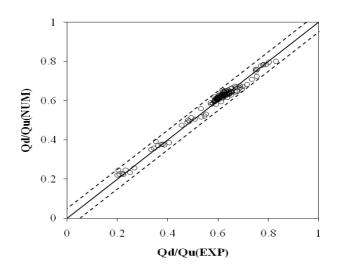
383 Engineering, University of Iowa, Iowa City, Iowa.

Bazin, P.H., Bessette, A., Mignot, E., Paquier, A., Riviere, N., 2012. Influence of detailed topography when


385 modeling flows in street junction during urban flooding. Journal of Disaster Research, 7 (5), 560-566.

- 386 Chen, D., Jirka, G.H., 1995. Experimental study of plane turbulent wakes in shallow water layer. Fluid
- 387 Dynamics Res. 16 (1), 11-41.
- 388 Li, C.W., Zeng, C., 2009. 3D Numerical modelling of flow divisions at open channel junctions with or
- 389 without vegetation, Advances In Water Resources, 32, 1, 49-60.
- 390 Li, C.W., Zeng, C., 2010. Flow division at a channel crossing with subcritical or supercritical flow. Intern. J.
- 391 for Num. Methods in Fluids. 62, 56-73.
- 392 Lin, P., Li, C.W., 2002. A sigma-coordinate three-dimensional numerical model for surface wave
- 393 propagation. International Intern. J. for Num. Methods in Fluids. 38, 1045-1068.
- 394 Mignot, E., Paquier, A., Ishigaki, T., 2006. Comparison of numerical and experimental simulations of a flood
- in a dense urban area. Water Science and Tech. 54, 65–73.
- 396 Mignot, E., Riviere, N., Perkins, R.J., Paquier, A., 2008. Flow patterns in a four branches junction with
- 397 supercritical flow. J. Hydr. Eng. 134(6), 701–713.
- 398 Neary, V.S., Sotiropoulos, F., Odgaard, A.J., 1999. Three-dimensional numerical model of lateral-intake
- 399 inflows. J. Hydr. Eng. 125(2), 126–140.
- 400 Ramamurthy, A.S., Tran, D.M., Carballada, L.B., 1990. Dividing flow in open channels. J. Hydr. Eng.
- 401 116(3), 449–455.
- 402 Rivière, N., Perkins, R.J., Chocat, B., Lecus, A., 2006. Flooding flows in city crossroads: 1D modelling and
- 403 prediction. Water Science and Techn. 54(6-7), 75–82.
- 404 Riviere, N., Travin, G., Perkins, R.J., 2007. Transcritical flows in open channel in tersections. 32nd IAHR
- 405 Congress, 1-6 July 2007, Venice, Italy.
- 406 Riviere, N., Travin, G., Perkins, R.J., 2011. Subcritical open channel flows in four branch intersections.
- 407 Water Resources. Res. 47, W10517.

410

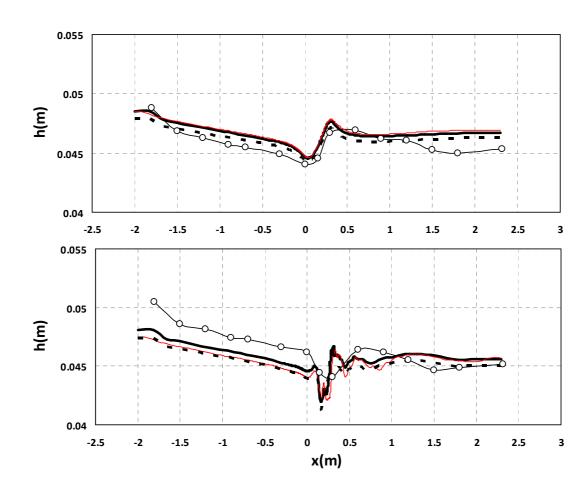
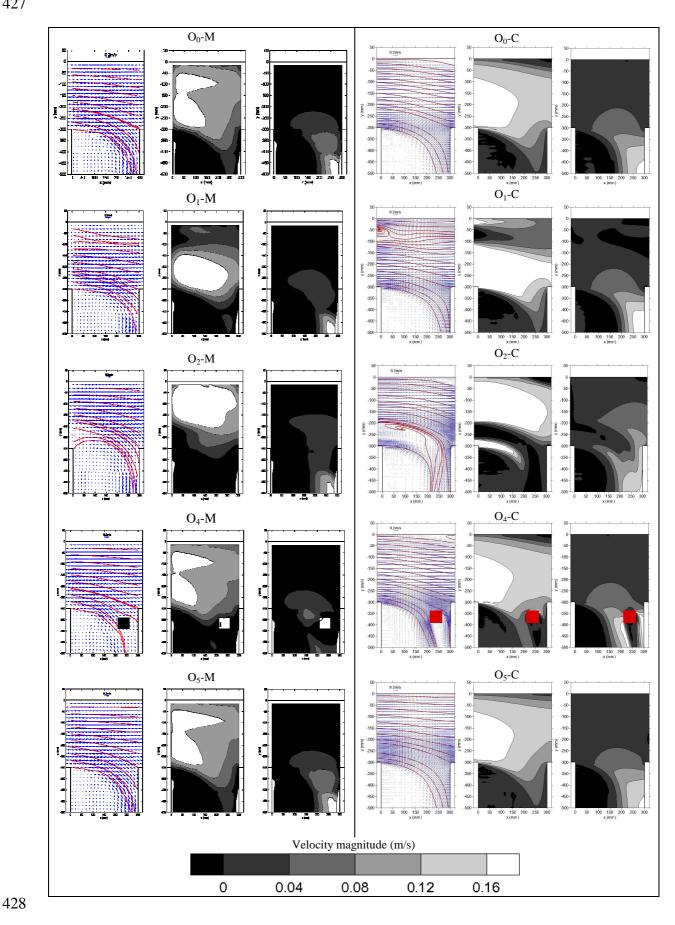
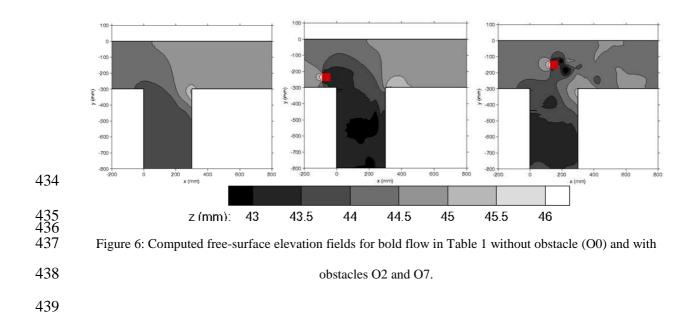

Figure 1: Scheme of the experimental set-up.

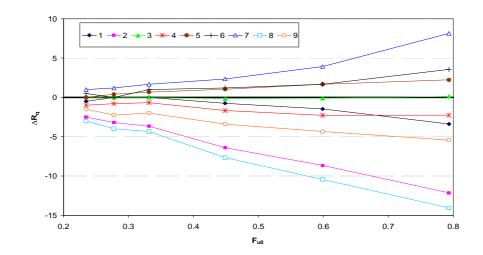
- 413
- 414

Figure 2: Location of the obstacles around the bifurcation.

417 Figure 3: Comparison between measured (M) and computed (C) discharge ratios for the 14 flow x 10

- 418 obstacle configurations. Dotted lines refer to +/-5% of Q_u
- 419


Figure 4: Measured (symbols) and computed backwater curves for the reference flow configuration (* in
Table 1) along the main channel at y=-0.22m without obstacle (O0, top) and with obstacle 7 (O7, bottom)
using the reference numerical configuration (plain thick line), the refined mesh (red line) and the reference
configuration with log profile at the inlet (dotted line).

- 430 Figure 5: Measured (M) and Computed (C) velocity fields at *z*=3cm for bold flow in Table 1 without obstacle
- 431 (O_0) and with obstacle configurations 1, 2, 4, 5. For each flow: left graph = velocity field with streamlines;
- 432 center graph = u time-averaged velocity (along x axis); right graph = v time-averaged velocity (along y axis).

Author-produced version of the article published in Journal of Hydrology, 2013, vol. 494, p. 10-19 The original publication is available at http://www.sciencedirect.com/ doi : 10.1016/j.jhydrol.2013.04.023

441 Figure 7: Measured impact of obstacles on the discharge distribution for flows in Serie 1 from Table 1 with 442 varying base upstream Froude numbers F_{u0} .

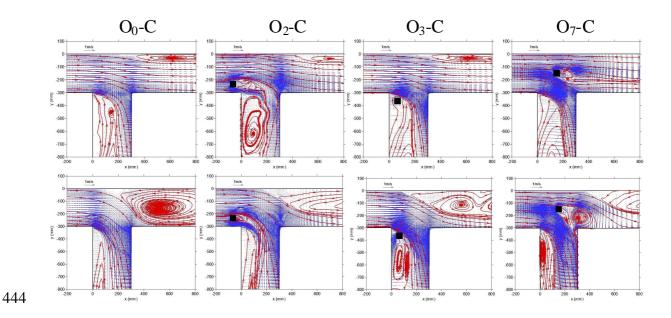
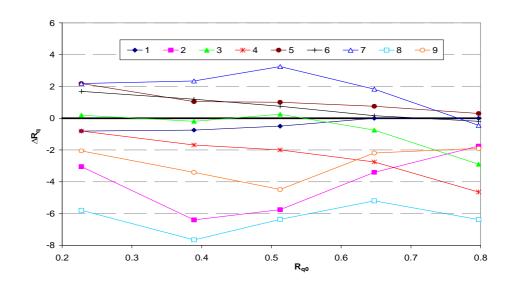
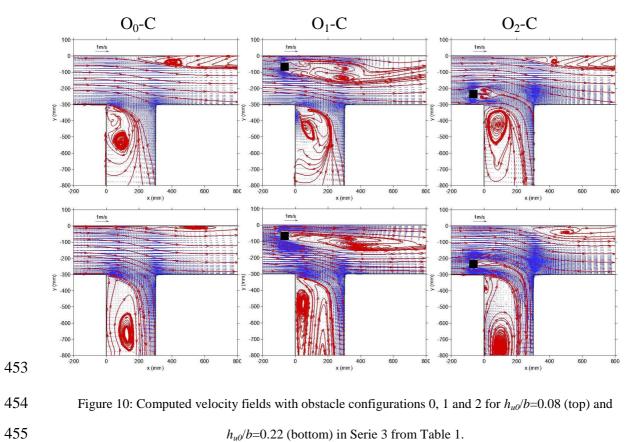



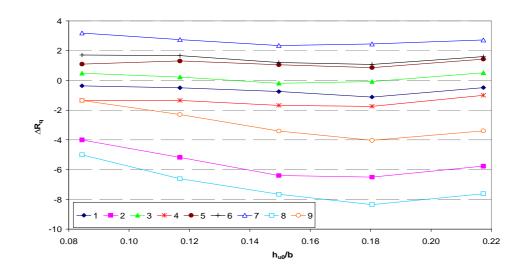
Figure 8: Computed velocity fields at z=3 cm with obstacle configurations 0, 2, 3 and 7 for $R_{q0}=0.39$ (top) and

446 $R_{q0}=0.8$ (bottom) in Serie 2 from Table 1.



449

450 Figure 9: Measured impact of obstacles on the discharge distribution for flows in Serie 2 from Table 1 with


451

varying base discharge distribution R_{q0}

456

457

458 Figure 11: Measured impact of obstacles on the discharge distribution for flows in Serie 3 from Table 1 with

varying base upstream water depths h_{u0}/b

- 461 Table 1: Non-dimensional parameters of the 14 flow configurations. The flow marked with an asterisk *
- 462 (common to the three series) is referred to as the "reference configuration". The first flow in bold, selected
- 463 for velocity field measurement, is referred to as "PIV measured flow".

Serie #	R_{a0}	$F_{\mu0}$	$h_{\mu 0}/b$
	0.38	0.23	0.14
	0.40	0.28	0.15
S1	0.39	0.33	0.15
	0.39*	0.45*	0.15*
	0.39	0.60	0.14
	0.39	0.79	0.13
	0.23	0.44	0.15
	0.39*	0.45*	0.15*
S2	0.51	0.45	0.15
	0.65	0.44	0.15
	0.80	0.45	0.15
	0.40	0.44	0.08
	0.38	0.45	0.12
S3	0.39*	0.45*	0.15*
	0.39	0.45	0.18
	0.39	0.45	0.22

466 Table 2 Grid refinement study of discharge distribution for the reference flow configuration (* in Table 1).

No obstacle	Q_u (L/s)	R_q	h_u (mm)	h_d (mm)	h_b (mm)
Original	4	0.355	45.9	47.7	44.6
Fine grid	4.02	0.353	45.9	47.7	43.7

469 Table 3: Evolution of ΔR_q as R_{q0} increases (Serie S2)

Obstacle #	Low R_{q0} : sign of ΔR_q (Fig.8)	Evolution of ΔR_q as $R_{q0} \uparrow$ (Fig.10)
1	<0	$\rightarrow 0$
2	<0	$\rightarrow 0$
3	≈0	$\Delta R_{q3} < 0$
4	<0	$\Delta R_{q4} \ll 0$
5-6	>0	$\rightarrow 0$
7	>0	$\rightarrow 0^*$
8	<0	*
9	<0	$\rightarrow 0$

470 * ΔR_{q7} becomes negative for $R_{q0} \ge 0.8$