
HAL Id: hal-00840368
https://hal.science/hal-00840368

Submitted on 2 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symbolic Unfolding of Parametric Stopwatch Petri Nets
Claude Jard, Didier Lime, Olivier Henri Roux, Louis-Marie Traonouez

To cite this version:
Claude Jard, Didier Lime, Olivier Henri Roux, Louis-Marie Traonouez. Symbolic Unfolding of
Parametric Stopwatch Petri Nets. Formal Methods in System Design, 2013, 43 (3), pp.493-519.
�10.1007/s10703-013-0188-2�. �hal-00840368�

https://hal.science/hal-00840368
https://hal.archives-ouvertes.fr

Formal Methods in System Design manuscript No.
(will be inserted by the editor)

Symbolic Unfolding of Parametric Stopwatch Petri
Nets

Claude Jard · Didier Lime ·
Olivier H. Roux · Louis-Marie Traonouez

Received: date / Accepted: date

Abstract We address the problem of unfolding safe parametric stopwatch
time Petri nets (PSwPNs), i.e., safe time Petri nets (TPNs) possibly extended
with time parameters and stopwatches. We extend the notion of branching
process to account for the dates of the occurrences of events and thus define a
symbolic unfolding for PSwPNs. In the case of TPNs we also propose a method
based on our so-called time branching processes to compute a finite complete
prefix of the symbolic unfolding. The originality of our work relies on a precise
handling of direct conflicts between events, and the analysis of their effects on
the constraints between the firing dates of those events.

Keywords Time Petri nets · Unfoldings · Stopwatches · Parameters

1 Introduction

The analysis of concurrent systems is one of the most challenging practical
problems in computer science. Formal specification using Petri nets has the
advantage to focus on the tricky part of such systems, that is parallelism,
synchronization, conflicts and timing aspects. Among the different analysis
techniques, we chose to develop the work on unfoldings [13].

This work has been partially funded by ANR project ImpRo (ANR-2010-BLAN-0317)

Claude Jard
Université de Nantes, LINA CNRS UMR 6241, Nantes, France
E-mail: Claude.Jard@univ-nantes.fr

Didier Lime and Olivier H. Roux
École Centrale de Nantes, IRCCyN CNRS UMR 6597, Nantes, France
E-mail: {Didier.Lime,Olivier-h.Roux}@irccyn.ec-nantes.fr

Louis-Marie Traonouez
INRIA, IRISA CNRS UMR 6074, Rennes, France
E-mail: Louis-Marie.Traonouez@inria.fr

2 Claude Jard et al.

Unfoldings were introduced in the early 1990s as a mathematical model of
causality and became popular in the domain of computer aided verification.
The main reason was to speed up the standard model-checking technique based
on the computation of the interleavings of actions, leading to a very large state
space in case of highly concurrent systems. The seminal papers are [25] and
[12]. They dealt with basic bounded Petri nets.

Since then, the technique has attracted more attention, and the notion of
unfolding has been extended to more expressive classes of Petri nets (Petri
nets with read and inhibitor arcs [29,3], unbounded nets [1], high-level nets
[19], and time Petri nets [9]). It has also been applied to networks of timed
automata [8,7].

Advancing this line of works, we present in this paper a method to unfold
safe parametric stopwatch Petri nets. Stopwatch Petri nets (SwPNs) [5] are
a strict extension of the classical time Petri nets à la Merlin (TPNs) [26,4]
and provide a means to model the suspension and resumption of actions with
a memory of the “work” done before the suspension. This is very useful to
model real-time preemptive scheduling policies for example [20,22].

The contribution of this paper is a new unfolding algorithm addressing
the problem for stopwatch and parametric models for the first time. When
applied to the subclass of time Petri nets, it provides an alternative to [9] and
improves on the latter method by providing a more compact unfolding and
not requiring read arcs in the unfolding (if the TPN itself has no read arcs
of course). We also provide a way to compute a finite complete prefix of the
unfolding for (safe) TPNs. Note this is the best we can do as most interesting
properties, such as reachability, are undecidable in time Petri nets in presence
of stopwatches [5] or parameters [28]. A preliminary version of this paper was
published as [27].

While not extremely difficult from a theoretical point of view, we think
that the handling of parameters is of utmost practical importance: adding
parameters in specifications is a real need. It is often difficult to set them a
priori: indeed, we expect from the analysis some useful information about their
possible values. This feature of genericity clearly adds some “robustness” to
the modeling phase. It is important to note that, as for time, we handle these
parameters symbolically to achieve this genericity and the unfolding technique
synthesizes all their possible values as linear constraint expressions.

Finally, note that the lack of existence of a finite prefix in the stopwatch or
parametric cases is not necessarily prohibitive as several analysis techniques,
such as supervision, can do without it [17]. Practical experience also demon-
strates that even for very expressive models, such as Linear Hybrid Automata
[18], the undecidability of the interesting problems still allows to analyze them
in many cases.

This article is organized as follows: Section 2 recalls the basics of Petri
nets with read arcs, branching processes, and unfoldings. Section 3 presents
the time Petri net with read arcs model, and its concurrent semantics as time
processes. Section 3 introduces our symbolic unfolding approach in the simpler
case of time Petri nets, through the definition of time branching processes.

Symbolic Unfolding of Parametric Stopwatch Petri Nets 3

Section 5 defines a finite complete prefix of the symbolic unfolding for TPNs,
based on time branching processes. Finally, Section 6 extends the notions of
time processes, time branching processes and symbolic unfoldings to take time
parameters and stopwatches into account.

2 Petri Nets and Branching Processes

2.1 Petri Nets

Definition 1 (Petri Net) A (safe) Petri Net with read arcs is a 5-tuple
(P, T, F, Fr,m0) where:

– P is a finite set of places,
– T is a finite set of transitions, with P ∩ T = ∅,
– F ⊆ (P × T) ∪ (T × P) is the transition relation,
– Fr ⊆ P × T is the read relation,
– m0 ⊆ P is called initial marking.

This structure defines an alternated bipartite oriented graph such that:
(x, y) ∈ F ∪ Fr iff there exists an arc from x to y.

We further define for all x ∈ P ∪ T , the following sets: •x = {y ∈ P ∪
T |(y, x) ∈ F}, and x• = {y ∈ P ∪ T |(x, y) ∈ F}. And for all x ∈ T : ◦x = {y ∈
P |(y, x) ∈ Fr} . Those definitions naturally extend by union to the subsets of
P ∪ T .

For any transition t, we say that the places in •t are consumed by t, the
places in ◦t are read by t, and the places in t• are produced by t.

For any place p, the transitions (and the corresponding arcs) in •p are said
to be input transitions (or arcs) of p and those in p• are said to be output
transitions (or arcs) of p.

We suppose w.l.o.g. that for all transitions t, •t 6= ∅. If some transition t
consumes no place, we can simply add a new place p in P s.t. (p, t) ∈ F and
(t, p) ∈ F and add p in m0. The obtained net is completely equivalent to the
original net, even in the case of time or stopwatch Petri nets.

A marking of the net is a subset of P . We say that in the marking m,
p ∈ P contains a token if p ∈ m. A transition t ∈ T is enabled by marking
m if •e ∪ ◦e ⊆ m. We denote by Enabled(m) the set of transitions enabled
by marking m. A transition t ∈ Enabled(m) can be fired, leading to the new

marking m′ = (m \ •e) ∪ e•. We denote this by m
e−→ m′. A marking m is

reachable if there exists a finite sequence of transitions t1, . . . , tn such that

m0
t1−→ · · · tn−→ m.

Example 1 Figure 1 presents an example of Petri net. Places are depicted as
circles, transitions as filled rectangles and the marking by the tokens in the
places: here m0 = {p1, p2}. There is a read arc betwen place p3 and transition
t4 drawed using a dashed style.

4 Claude Jard et al.

Marking {p3, p6} is reachable, for instance through the following sequence:

{p1, p2}
t1−→ {p2, p3}

t2−→ {p3, p4}
t0−→ {p1, p2}

t2−→ {p4, p1}
t1−→ {p3, p4}

t4−→
{p3, p6}

Remark that transition t4 is not fireable from {p4, p1} because of the read
arc reading p3.

t0

p1

p3

p2

p4

t1 t2

t3

p5

t4

p6

Fig. 1 A Petri net

2.2 Branching Processes

We now present a concurrent semantics for Petri nets in terms of branching
processes. Our definition adapts that of [13] for the accounting of read arcs.

Branching processes of a Petri net N are themselves Petri nets. In these
Petri nets, places are called conditions and transitions are called events. Any
condition is uniquely identified by the name (p, {x}) where p is a place of N
and x is the name of the unique input event. Similarly, any event is uniquely
identified by the name (t,X,X ′) where t is a transition of N , X is the set of
the names of the consumed conditions and X ′ is the set of the names of the
read conditions.

For all conditions b = (p, {x}), we note l(b) = p. Similarly, for any event
e = (t,X,X ′), we note l(e) = t. Finally, for all markings m of a branching
process, we note l(m) the marking of N such that p ∈ m iff l(p) ∈ l(m).

Definition 2 (Branching Processes) The set of branching processes of a
Petri Net N = (P, T, F, Fr,m0) is the smallest set of Petri nets satisfying the
following conditions:

1. the Petri net without any transition and whose set of places and initial
markings are {(p, ∅)|p ∈ m0} is a branching process of N .

Symbolic Unfolding of Parametric Stopwatch Petri Nets 5

2. let B be a branching process of N and m be a reachable marking of B
such that some transition t of N is fireable from marking l(m) of N . Let
M = {p ∈ m|l(p) ∈ •t} and M ′ = {p ∈ m|l(p) ∈ ◦t}. M (resp. M ′) is a
set of conditions corresponding to places consumed (resp. read) by t. Let
M ′′ = {(p, {(t,M,M ′)})|p ∈ t•}. The Petri net obtained by adding to B
the conditions in M ′′ and the event (t,M,M ′) with read arcs from M ′,
input arcs from M and output arcs to M ′′ is also a branching process of
N . Event (t,M,M ′) is called a possible extension of B.

3. If ((Bi, Ei, Fi, Fri,m0i))i is a finite or infinite family of branching processes
of N then so is (

⋃
iBi,

⋃
iEi,

⋃
i Fi,

⋃
i Fri,

⋃
im0i).

Example 2 Figure 2 shows a branching process of the Petri net in Figure 1. We
have omitted the initial marking that is common to all branching processes.
It is only useful for the formal definition.

Shorthands have been defined for the names of conditions (b1, b2, . . .) and
events (e1, e2, . . .) to simplify the picture. The complete unique name of e5,
for instance, is:(

t4,
{

(p4, {(t2, {(p2, ∅)}, ∅)})
}
,
{

(p3, {(t1, {(p1, ∅)}, ∅)})
})

We therefore have l(e5) = t4.

b1 = (p1, ∅) b2 = (p2, ∅)

e1 = (t1, {b1}, ∅) e2 = (t2, {b2}, ∅)

b3 = (p3, {e1}) b4 = (p4, {e2})

e3 = (t3, {b3}, ∅)

b5 = (p5, {e3})

e4 = (t0, {b3, b4}, ∅)

b7 = (p2, {e4})

b6 = (p1, {e4})

e5 = (t4, {b4}, {b3})

b8 = (p6, {e5})

Fig. 2 A branching process of the Petri net in Figure 1

This leads us to the definitions of unfolding and prefix:

Definition 3 (Unfolding of a Petri net) The unfolding Unfolding(N) of a
Petri net N is the branching process obtained as the union of all branching
processes of N .

6 Claude Jard et al.

Definition 4 (Prefix) A branching process B is a prefix of another branching
process B′ if the set of events of B is included in that of B′.

Let B = (B,E, F, Fr,m0) be a branching process of a Petri net N . We can
relate the events in E in several ways, the most fundamental one is causality.

Definition 5 (Causality) Causality is a partial order on B ∪E, denoted by
<, and defined by: x < y iff there exists a path in B from x to y, with at least
one arc in F . We note x ≤ y when x = y or x < y.

We deduce from this the notion of causal history:

Definition 6 (Causal history) The causal history of an event e ∈ E is
dee = {e′ ∈ E|e′ ≤ e}.

The causal history of e contains all the events required for the occurrence
of e. For any subet E′ ⊆ E, we define dE′e =

⋃
e∈E′dee.

Example 3 In the branching process in Figure 2, the causal history of e3 is
de3e = {e1, e3} and that of e5 is de5e = {e1, e2, e5}.

However, in a same branching process, two events may not belong to the
same history. The simplest example of such a situation consists in two events
consuming the same condition. This is called a conflict.

Definition 7 (Conflicting event set) A set E′ of events is conflicting, de-
noted by #E′, if:

– ∃e1, e2 ∈ dE′e s.t. e1 6= e2 and •e1 ∩ •e2 6= ∅;
– or ∃e1, e2, . . . , en ∈ dE′e s.t. e1 = en, ∃i, j s.t. ei 6= ej and ∀k ∈ [1..n −

1], ek < ek+1 or ◦ek ∩ •ek+1 6= ∅.

Definition 7 is based on two notions: direct conflict and weak causality.
Before we formally define those, we need the notion of co-set.

Definition 8 (co-set) A co-set of B is a set B′ ⊆ B of conditions that are
concurrent, that is to say without causal relation nor conflict: ∀b ∈ B′, b• ∩
d•B′e = ∅ and not #d•B′e.

Now, the first type of conflict occurs when to events consume the same
common condition: we call that a direct conflict.

Definition 9 (Direct conflict) Two events e1, e2 ∈ E are in direct conflict,
denoted by e1 conf e2 iff e1 6= e2, •e1∪◦e1∪•e2∪◦e2 is a co-set and •e1∩•e2 6= ∅.

In addition to the < relation, read arcs induce another type of causality
in branching processes: if some event should read a condition that is also con-
sumed by another event, then the read must happen before the consumption.

Definition 10 (Weak Causality) Weak causality is the relation on events
↗ defined by: e1 ↗ e2 iff e1 < e2 or •e1 ∪ ◦e1 ∪ •e2 ∪ ◦e2 is a co-set and
◦e1 ∩ •e2 6= ∅.

Symbolic Unfolding of Parametric Stopwatch Petri Nets 7

e1 ↗ e2 implies that if e1 occurs then it does before e2.

Example 4 In the branching process in Figure 2, even if e5 does not belong to
de3e, we have e5 ↗ e3 because ◦e5 ∩ •e3 6= ∅. If those events both occur in the
same history then e5 does so before e3.

Consequently, a second type of conflict comes from cycles in the weak
causality relation, which corresponds to the second item in Definition 7. For
instance, e reads a condition consumed by e′ and e′ reads a condition consumed
by e: in this case, only one of e and e′ can occur in a given history. For
X ⊆ E, we note RCycles(X) the set of event sets {e1, e2, . . . , en} ⊆ X s.t.
e1 ↗ e2 ↗ · · · ↗ en ↗ e1 and •{e1, . . . , en} is a co-set.

Example 5 In the branching process in Figure 2, e4 conf e5 and therefore those
two events are mutually exclusive.

In the branching process in Figure 3, we have the cycle e1 ↗ e2 ↗ e3 ↗ e1.
So these three events cannot coexist. They can pairwise however: e1 an e2 can
coexist, as well as e1 and e3 or e2 and e3.

b1 b2 b3

e1 e2 e3

Fig. 3 Weak causality cycle

Two events e1 and e2 such that •e1 ∩ •e2 6= ∅ can be not in direct conflict
if some of their preconditions are themselves in conflict. The same holds for
cycles of weak causality. We have the following result however:

Lemma 1 Let E′ be a set of events. #E′ iff

– ∃e1, e2 ∈ dE′e s.t. e1 conf e2;
– or RCycles(dE′e) 6= ∅.

Proof The right-to-left direction is trivial so we focus on the left-to-right di-
rection. Suppose then that #E′. If one of the two conditions of Definition 7 is

8 Claude Jard et al.

satisfied and the preconditions B of the corresponding events are not in con-
flict then we have the expected result. So suppose they are in conflict. Then
we have a set E′′ = •B such that #E′′ and E′′ ⊂ E′. We can apply the same
reasoning to E′′. Since ⊂ on sets of events is well-founded, by definition of
branching processes, we cannot repeat this reasoning an infinite number of
times and thus the result holds. ut

The possible behaviors of the original Petri net are obtained by deciding
conflicts in the branching processes, which gives the notion of configuration,
sometimes also called process.

Definition 11 (Configuration) A configuration of B is a subset C ⊆ E of
events that is closed by causality and conflict-free, that is to say: ∀e′ ∈ C,∀e ∈
E, e < e′ ⇒ e ∈ C and not #C.

We denote by Config(B) the set of configurations of B.

Remark, that for any event e, its causal history is a configuration. For
all configurations C and all possible extensions (t,M,M ′) of B, we note C ∪
{(t,M,M ′)} the set of events obtained by adding (t,M,M ′) to C. We say
that (t,M,M ′) is a possible extension of C if C ∪ {(t,M,M ′)} is again a
configuration.

Definition 12 (Cut) A cut is a maximal co-set (inclusion-wise). With each
configuration C, we can associate a cut denoted by Cut(C) by Cut(C) = (M0∪
C•) \ •C (where M0 is the marking common to all branching processes).

Note that if C is finite then l(Cut(C)) is the marking of the original Petri
net after the sequence of transitions corresponding to the events in C. If C is
infinite it is only a partial marking consisting of the marked places not involved
infinitely often in the firing of transition corresponding to the events in C.

Example 6 In the branching process in Figure 2, the configurations are the
causal histories of all events plus ∅, {e1, e2} and {e1, e2, e3}.

The cuts correspond to the application of Cut to all these configurations,
which includes {b3, b8} = Cut(de5e) and {b1, b2} = Cut(∅).

The co-sets are the non-empty subsets of these cuts, here all reduced to
singletons.

3 Time Petri Nets and Time Branching Processes

We note I(Q≥0) the set of intervals in R whose bounds are in Q≥0 ∪ {+∞}.
Let I ∈ I(Q≥0). We denote by I↑ the upward-closure of I, that is to say the
smallest interval of R that is right-open and right-unbounded and contains
I. Similarly, we denote by I↓ the downward-closure of I, that is to say the
smallest interval of R that is left-open and left-unbounded and contains I.
For any interval I and a real number x, we denote by I + x the interval
{y + x ∈ R|y ∈ I}.

Symbolic Unfolding of Parametric Stopwatch Petri Nets 9

Definition 13 (Time Petri Net) A safe time Petri net with read arcs (TPN
for short) is a tuple N = (P, T, F, Fr,m0, Is) such that:

– (P, T, F, Fr,m0) is a Petri net that we denote by Untimed(N);
– Is : T → I(Q≥0) associates with each transition a time constraint as an

interval called static firing interval.

For any transition t, the interval Is(t) constrains the dates at which t can
be fired: t should be continuously enabled for a duration belonging to Is(t)
and this duration must always belong to Is(t)

↓.

Example 7 Figure 4 gives a “timed” version of the Petri net in Figure 1. Each
transition now has a static firing time interval.

For instance, transition t1 has no constraint on its firing dates while t2
can only fire when at least 3 time units have passed since the arrival of a
token in p2 and it must fire strictly before 4 time units. Transition t0 must fire
immediately when there are tokens in both p3 and p4 (unless it is disabled in
0 time units by the firing of t3 or t4).

As we will see, for a given transition, other constraints, related to conflicts,
must be considered in addition to the static firing time interval to find the
actual occurrence dates of events.

t0[0, 0]

p1

p3

p2

p4

t1[0,+∞) t2[3, 4)

t3[2, 2]

p5

t4[0, 5]

p6

Fig. 4 A Time Petri Net

We could give the semantics of time Petri nets as a “flat” timed transition
system in which states consist of a marking and dynamic intervals for all
transitions [4] or implicit clocks as in [21,16]. But since we are here interested
in concurrency, we rather use the notion of time processes from [2].

10 Claude Jard et al.

Definition 14 (Time process) A time process of a TPN N is a pair (C, θ)
such that:

– C is a configuration (of a branching process) of Untimed(N);
– θ : C → R≥0 is timing function giving for each event in C an occurrence

date.

Of course, all possible values θ are not allowed by the time constraints
in the TPN. The notion of validity of a timing function defines those time
processes that do respect the time constraints. Before coming to the definition
we need some more notations.

For a time process (C, θ) and e ∈ C, we define Earlier((C, θ), e) = {e′ ∈
C|θ(e′) < θ(e)} the set of all events that have happened at an earlier date
than e in (C, θ). When the time process is clear from the contex, we note this
only Earlier(e). Remark that Earlier(e) is always a configuration [2].

Let t be a transition of N and B′ ⊆ C a co-set such that t is enabled by
l(B′). We define the date of enabling of t byB′ as: TOE(B′, t) = max({θ(•b)|b ∈
B′ \M0 and l(b) ∈ •t ∪ ◦t} ∪ {0}). That is to say that TOE is either 0 if all
the read or consumed conditions belong to the initial marking, or the date of
production of the most recent read or consumed condition otherwise.

Definition 15 (Valid time process) A time process (C, θ) of a TPN N is
valid if for all e ∈ C,

θ(e)− TOE(•e ∪ ◦e, l(e)) ∈ Is(l(e))↑ (1)

∀t ∈ Enabled(l(Cut(Earlier(e))), θ(e)− TOE(Cut(Earlier(e)), t) ∈ Is(t)↓ (2)

If (C, θ) is a valid time process, we also say that θ is a valid timing function
for C.

Eq. 1 states that the enabling duration should be passed the lower bound
of the interval to fire, while Eq. 2 states that for all transitions enabled in the
net by earlier non-consumed conditions should not go past the upper bound
of their static firing time interval.

This last condition is a problem for unfoldings as it is not “local” to a given
transition, adding constraints from other enabled transitions anywhere in the
net.

For a time process (C, θ) and C ′ ⊆ C, we note, slightly abusively, (C ′, θ)
the time process obtained with C ′ and the restriction of θ to C ′.

Example 8 Figure 5 shows to valid time processes for the TPN in Figure 4.
We recall the value of l(e) besides each event e, then we give the occurrence
date for e. The labels for events thus have the form e; l(e); θ(e). Similarly for
conditions the labels have the form b; l(b).

In the time process in Figure 5a, we could also have added e3 at date 3.52
instead of e4 (both events being in conflict).

In the time process in Figure 5b however, it is not possible to replace e3 by
e4, whatever the date. e1 occurring at date 0.13, e3 is indeed forced to occur
before e2 which belongs to the causal history of e4.

Symbolic Unfolding of Parametric Stopwatch Petri Nets 11

Similarly, in the time process in Figure 5a, for all occurrence dates of e2
belonging to [3, 3.52[, the occurrence of e3 is not possible. We therefore see
that the occurrence of e3 not only depends form its causal past {e1} but also
from the occurrence of other events like e2 that do not belong to it. This is
due to the conflict between e3 and e4 which “transfers” some constraints from
e4 to e3 (and the other way around).

b1; p1 b2; p2

e1; t1; 1.52 e2; t2; 3.52

b3; p3 b4; p4

e4; t0; 3.52

b7; p2b6; p1

(a)

b1; p1 b2; p2

e1; t1; 0.13 e2; t2; 3.52

b3; p3 b4; p4

e3; t3; 2.13

b5; p5

(b)

Fig. 5 Two valid time processes of the TPN in Figure 4

4 Time Branching Processes

As we have just seen, time processes in a TPN are adding dates to configura-
tions of the underlying Petri net and not to branching processes. The reason
is that conflicting events are mutually exclusive and it is therefore difficult to
give them simultaneously occurrence dates.

Our goal is however to add occurrence dates to branching processes so that
we can define a timed unfolding in the same way as in the untimed case. For
that purpose we extend the range of the timing function to include +∞. This
infinite value will be associated to events in the underlying branching process
that do not occur due to timing constraints and conflicts. Using this extension
of a timing function we define time branching processes:

Definition 16 (Time branching process) A time branching process (TBP
for short) of a TPN N is a pair (B, θ) where:

– B = (B,E, F, Fr,m0) is a branching process of Untimed(N);
– θ : E → R≥0 ∪ {+∞} is a timing function giving for each event in B an

occurrence date.

12 Claude Jard et al.

The definition of prefixes is naturally extended to TBPs:

Definition 17 A TBP (B, θ) is a prefix of a TBP (B′, θ′) if B is a prefix of B′
and the restriction of θ′ to the events of B is equal to θ.

For a set of events E and a timing function θ on E, we note Eθ<+∞ the
subset of events with a finite occurrence date defined by Eθ<+∞ = {e ∈
E′|θ(e) < +∞}. By extension, for a TBP (B, θ) with set of events E, we will
write Bθ<+∞ instead of Eθ<+∞.

Like for time processes, we need a number of constraints on a time branch-
ing process to ensure that the timing function respects the time constraints of
the TPN. The first one is conflict-completeness.

Definition 18 (conflict-completeness) A TBP (B, θ) is conflict-complete
if for all possible extension (t,M,M ′) of B such that ∀b ∈M∪M ′, θ(•b) 6= +∞,
we have (M ∪M ′) ∩ •Bθ<+∞ = ∅.

This definition intuitively means that when some event cannot occur due
to an event in E then it should also be in B (and as we will see, it will have
an infinite occurrence date).

It is easy to make any TBP (B, θ) conflict-complete by adding all the
possible extensions contradicting the definition to B with an occurrence date
+∞. We note ConfCompl((B, θ)) the resulting TBP.

We can now define the notion of valid time branching process.

Definition 19 (Valid time branching process) A time branching process
(B, θ) of a TPN N , with E the set of events of B, is valid if it is conflict-
complete and:

∀E′ ∈ RCycles(E),∃e′ ∈ E′ s.t. θ(e′) = +∞ (3)

and ∀e ∈ E :[[
θ(e) 6= +∞ and θ(e)− TOE(•e ∪ ◦e, l(e)) ∈ Is(l(e)) (4)

and ∀e′ ∈ E s.t. e conf e′, θ(e′) = +∞ (5)

and ∀e′ ∈ E s.t. e↗ e′, θ(e) ≤ θ(e′)
]

(6)

or
[
θ(e) = +∞ and ∃b ∈ •e ∪ ◦e, θ(•b) = +∞

]
(7)

or
[
θ(e) = +∞ and ∃e′ ∈ E s.t. (e conf e′ or e↗ e′) and θ(e′) 6= +∞

and θ(e′)− TOE(•e ∪ ◦e, l(e)) ∈ Is(l(e))↓
]] (8)

Eq. 4 states that each transition should fire when it has been continuously
enabled for a duration belonging to its static firing time interval.

Eq. 3 states that if there is a weak causality cycle, then at least one event
in the cycle does not occur.

Eq. 5 states that if two events are in direct conflict then one of them does
not occur.

Symbolic Unfolding of Parametric Stopwatch Petri Nets 13

Eq. 6 states that if there is a weak causality between two events, if the
reading event occurs, then it is necessarily before the consuming event. The
case when the causality is actually not weak is redundant with Eq. 4.

Eq. 7 states that is some event does not occur then none of its causal
successor does.

Finally, equation 8 states that if some event does not occur, but all its
causal successors do, then there exists another event in direct conflict (or that
consumes a condition that had to be read) which has occurred before the first
event was forced due to the upper bound of the static firing time interval.
Since (B, θ) should also be conflict-complete we are sure that these constraints
are accounted for.

Example 9 The set of constraints on the timing functions for the branching
process in Figure 2, for the TPN in Figure 4, is given by:

– for e1:
0 ≤ θ(e1)

– for e2:
3 ≤ θ(e2) < 4

– for e3:
θ(e3) = +∞ and θ(e4) ≤ θ(e1) + 2

or
θ(e3) = θ(e1) + 2 and θ(e4) = +∞

– for e4:{
θ(e4) = +∞
and (θ(e3) ≤ max{θ(e1), θ(e2)} or θ(e5) ≤ max{θ(e1), θ(e2)})

or{
θ(e4) = max{θ(e1), θ(e2)}
and θ(e3) = +∞ and θ(e5) = +∞

– for e5:{
θ(e5) = +∞
and (θ(e3) ≤ max{θ(e1), θ(e2)}+ 5 or θ(e4) ≤ max{θ(e1), θ(e2)}+ 5)

or{
max{θ(e1), θ(e2)} ≤ θ(e5) ≤ max{θ(e1), θ(e2)}+ 5
and θ(e4) = +∞ and θ(e5) ≤ θ(e3)

After simplification, we get:
1 ≤ θ(e1)
3 ≤ θ(e2) < 4
θ(e3) = +∞
θ(e4) = max{θ(e1), θ(e2)}
θ(e5) = +∞

or



0 ≤ θ(e1) < 2
3 ≤ θ(e2) < 4
θ(e3) = θ(e1) + 2
θ(e3) ≤ θ(e2)
θ(e4) = +∞
θ(e5) = +∞

or



0 ≤ θ(e1) < 2
3 ≤ θ(e2) < 4
θ(e3) = θ(e1) + 2
θ(e3) = θ(e2)
θ(e4) = +∞
θ(e5) = θ(e2)

14 Claude Jard et al.

Among valid time branching processes we further distinguish those that
are temporally complete. They are such that no “component” is too “late”,
that is to say that we cannot extend the branching process with an event that
can only occur strictly before one that is already there.

Definition 20 (Temporally complete TBP) Let (B, θ) be TBP of a TPN
N . (B, θ) is temporally complete if for all extensions (t,M,M ′) such that •M ∪
•M ′ ⊆ Bθ<+∞:

max{θ(e)|e ∈ Bθ<+∞} − TOE(M ∪M ′, t) ∈ Is(t)↓

Example 10 The time process in Figure 5b is also a time branching process.
It is temporally complete. Its prefix obtained by removing e3 (and condition
b5) is not however, because all the possible occurrence dates of e3 (here the
singleton {2.13}) are strictly less than that of e2.

The correctness and completeness of the description of the behaviors of
TPNs using time branching processes are established by Theorems 1 and 2
respectively. Those theorems will be proved as special cases of Theorems 5
and 6 in section 6.

Theorem 1 Let N be a TPN. Let (B, θ) be temporally complete valid TBP of
N.

(Bθ<+∞, θ) is a valid time process of N .

Theorem 2 Let N be a TPN. Let (C, θ) be a valid time process of N . C
defines a branching process B = (C•, C, F, Fr,m0) of Untimed(N).

ConfCompl((B, θ)) is a temporally complete valid TBP of N .

We can now define the notion of symbolic unfolding of a TPN in the same
way we had defined the unfolding of an ordinary Petri net:

Definition 21 (Symbolic unfolding) The symbolic unfolding of a TPN N
is the union of all its valid time branching processes.

5 Finite Complete Prefix

The unfolding of a Petri net is generally infinite. We can however always
compute a finite prefix of this unfolding that is complete, i.e., that allows us
to retrieve the whole unfolding [25]. We now show how the same thing can be
done for TPNs using TBPs.

In this section, for the sake of simplicity, we consider TPNs without read
arcs. Read arcs will be most useful for unfolding Stopwatch Petri Nets for which
no finite complete prefix can exist (because reachability is undecidable). Read
arcs also make the computation of a finite prefix tricky even for ordinary Petri
nets [29].

Symbolic Unfolding of Parametric Stopwatch Petri Nets 15

In TBPs, the occurrence dates of events are always non-decreasing on
causal paths but the behavior of the net actually only depends on the du-
ration for which tokens have been produced:

Definition 22 (Reduced age of a condition) For any co-set A, any timing
function θ and any condition b ∈ A, the reduced age of b in A is:

age(b, θ, A) = min{max
b′∈A
{θ(•b′)} − θ(•b),K∗(b)}

with K∗(b) = max{K(t) s.t. t ∈ T and t ∈ l(b)•}

and K(t) =

{
max Is(t) if max Is(t) 6= +∞
min Is(t) otherwise.

Definition 23 (Future-equivalent TBPs) We say that two TBPs (B, θ)
and (B′, θ′) are future-equivalent if:

– l(Cut(Bθ<+∞)) = l(Cut(B′θ′<+∞)),
– ∀b ∈ l(Cut(Bθ<+∞)),∀b′ ∈ l(Cut(B′θ′<+∞)) s.t. l(b) = l(b′):

age(b, θ,Cut(Bθ<+∞)) = age(b′, θ′,Cut(B′θ′<+∞)).

Proposition 1 Let (B1, θ1) and (B2, θ2) be two future-equivalent TBPs. Let
(t,M1) be an extension of B1. Then there exists an extension (t,M2) of B2.

Let δ1 ∈ R≥0. Let δ2 = δ1 −maxb∈Cut(B1) θ1(•b) + maxb∈Cut(B2) θ2(•b). For
i ∈ {1, 2}, let (B′i, θ′i) be the TBP obtained by adding (t,Mi) to Bi at date δi.

If ConfCompl((B′1, θ′1)) is valid then:

– ConfCompl((B′2, θ′2)) is valid,
– ConfCompl((B′1, θ′1)) and ConfCompl((B′2, θ′2)) are future-equivalent,

Proof We first prove that ConfCompl((B′2, θ′2)) is valid. Since we do not consider
read arcs, Eqs. 6 and 3 are irrelevant. We thus first prove that e2 = (t,M2)
satisfies Eqs. 4 and 5 in (B′2, θ′2).

ConfCompl((B′1, θ′1)) is valid so e1 = (t,M1) satisfies those equations. Then
θ′1(e1) − TOE(•e1, l(e1)) ∈ Is(l(e1)), or equivalently δ1 − maxb∈M1{θ1(•b)} ∈
Is(t). Also, δ1 being finite, it must be the case that M1 ⊆ Cut(B1) and then we
can choose M2 ⊆ Cut(B2θ2<+∞). Since the reduced ages of the conditions are
the same, we have δ1 −maxb∈M1

{θ1(•b)} = δ2 −maxb∈M2
{θ2(•b)}, and finally

θ′2(e2)−TOE(•e2, l(e2)) ∈ Is(l(e2)). Moreover, since M2 ⊆ Cut(B2θ2<+∞), any
event e′2 of B′2 such that e2 conf e′2 must have an infinite occurrence date.

Eq. 7 is trivially satisfied because (B2, θ2) is valid, δ2 is finite, and Conf-
Compl only adds extensions to conditions with a finite production date.

Finally, we need to prove Eq. 8. Let e′2 be an event in B′2 such that θ′2(e′2) =
+∞. If we do not have e2 conf e′2 then Eq. 8 must be satisfied because (B2, θ2)
is valid. Else, if there exists some other event e′′2 in B2 such that e′′2 conf e′2,
then again Eq. 8 must be satisfied because (B2, θ2) is valid. Finally, if there
is no such event, it must be the case that •e′2 ⊆ Cut(B2θ2<+∞) and then l(e′2)
is also possible from Cut(B1θ1<+∞) as an event e′1 in direct conflict with e1.

16 Claude Jard et al.

Since ConfCompl((B′1, θ′1)) is valid and there is no other event in direct conflict,
we have θ′1(e1)− TOE(•e′1, l(e

′
2)) ∈ Is(l(e′2))↓. With the exact same reasoning

as for Eq. 4, we get that Eq. 8 is satisfied for e′2.
Let us now prove that ConfCompl((B′1, θ′1)) and ConfCompl((B′2, θ′2)) are

future-equivalent. Since we fire the same transition in both processes, and since
l(Cut(B1θ1<+∞)) = l(Cut(B2θ2<+∞)), we immediately get l(Cut(B′1θ′1<+∞)) =

l(Cut(B′2θ′2<+∞)). So we now focus on the ages of conditions.

For i ∈ {1, 2}, let e∗i be an event that realizes the maximum of finite occur-
rence dates in Bi and such that e∗i

• ∩ Cut(Biθi<+∞) 6= ∅. Then the conditions
it produces that are in Cut(Biθi<+∞) have age 0 in (Bi, θi).

By definition of δ2, we then have: δ2 = δ1 − θ1(e∗1) + θ2(e∗2).
Let b1 be some condition in Cut(B1θ1<+∞) and b2 the corresponding con-

dition for B2. Since we have future equivalence for (B1, θ1) and (B2, θ2), then
min{θ1(e∗1)−θ1(•b1),K∗(b1)} = min{θ2(e∗2)−θ2(•b2),K∗(b2)}. Note that since
l(b1) = l(b2), we have K∗(b1) = K∗(b2).

Now let b′1 be some condition in Cut(B′1θ′1<+∞) and b′2 the corresponding

condition for B′2.
First suppose that δ1 > θ1(e∗1). Then δ2 > θ2(e∗2). So if b′1 ∈ e•1 then b′2 ∈ e•2

and their ages are both zero. Otherwise, b′i ∈ Cut(Biθi<+∞), for i ∈ {1, 2} and:

– if δ1 − θ1(e∗1) ≤ K∗(b′1), the age of b′1 in (B′1, θ′1) is now δ1 − θ′1(•b′1) which,
with the above relations and since θi(

•b′i) = θ′i(
•b′i) for i ∈ {1, 2}, is then

equal to δ2 − θ′2(•b′2);
– if δ1 − θ1(e∗1) > K∗(b′1) then δ2 − θ2(e∗2) > K∗(b′2). As a consequence, the

reduced ages of both b′1 and b′2 are K∗(b′1) = K∗(b′2).

Now suppose that δ1 ≤ θ1(e∗1). Then δ2 ≤ θ1(e∗2) and the ages of conditions
not produced by e1 and e2 are unchanged so we consider only the case when
b′1 ∈ e•1 and b′2 ∈ e•2:

– if θ1(e∗1)− δ1 ≤ K∗(b′1), the age of b′1 in (B′1, θ1) is then θ1(e∗1)− δ1 which,
as we have seen above, is equal to θ2(e∗2)− δ2, i.e., the age of b′2 in (B′2, θ′2);

– if θ1(e∗1) − δ1 > K∗(b′1), then the ages of both b′1 and b′2 are K∗(b′1) =
K∗(b′2). ut

Proposition 2 Let (B1, θ1) and (B2, θ2) be two valid future-equivalent TBPs.
If (B1, θ1) is temporally complete then (B1, θ1) is temporally complete.

Proof Let (B1, θ1) be a temporally complete valid TBP. And let (B2, θ2) be a
valid TBP future-equivalent to (B1, θ1).

Let (t,M2,M
′
2) be an extension of B2 such that •M2 ∪ •M ′2 ⊆ B2θ2<+∞.

We need to prove that max{θ2(e)|e ∈ B2θ2<+∞} − TOE(M2 ∪M ′2, t) ∈ Is(t)↓.
First remark that since the two TBP are future equivalent, there exist

some co-sets M1 and M ′1 in B1 such that (t,M1,M
′
1) is an extension of B1 and

•M1 ∪ •M ′1 ⊆ B1θ1<+∞.
Let i ∈ {1, 2}.
Since (Bi, θi) is valid, it is also conflict-complete, so (Mi∪M ′i)∩•Biθi<+∞ =

∅ and therefore (Mi ∪M ′i) ⊆ Cut(Biθi<+∞).

Symbolic Unfolding of Parametric Stopwatch Petri Nets 17

Let ei be an event such that θi(ei) = max{θi(e)|e ∈ Biθi<+∞}. We can
suppose without loss of generality that e•i ∩ Cut(Biθi<+∞) 6= ∅.

Then the (non-reduced) age of any condition bi ∈Mi ∪M ′i is θ(ei)− θ(•bi)
and since the TBPs are future-equivalent, there is a condition b3−i ∈ M3−i ∪
M ′3−i such that l(bi) = l(b3−i) and min{θ(ei)−θ(•bi),K∗(bi)} = min{θ(e3−i)−
θ(•b3−i),K

∗(b3−i)}.
TOE(Mi ∪M ′i , t) is actually the production date of one of the conditions

in Mi ∪M ′i and since (B1, θ1) is temporally complete, we have max{θ1(e)|e ∈
B1θ1<+∞} − TOE(M1 ∪M ′1, t) ∈ Is(t)↓, i.e., the age of TOE(M1 ∪M ′1, t) is in
Is(t)

↓.
So, if Is(t)

↓ 6= (−∞,+∞), then the non-reduced age of TOE(M1 ∪M ′1, t)
is less or equal to K∗(TOE(M1 ∪ M ′1, t)) and therefore the reduced age of
TOE(M1 ∪M ′1, t) is the same as its non-reduced age. By future-equivalence
of the two TBPs, we have the same result for TOE(M2 ∪M ′2, t) and it also
follows that max{θ1(e)|e ∈ B1θ1<+∞} − TOE(M1 ∪M ′1, t) = max{θ2(e)|e ∈
B2θ2<+∞} − TOE(M2 ∪M ′2, t).

Finally, if Is(t)
↓ = (−∞,+∞), then the constraint we need to prove is

trivially satisfied. ut

We now define the events from which it is possible to stop the unfolding
without losing information. For that we use the notion of adequate order from
[24,14].

Definition 24 (Adequate order) A binary relation ≺ on the set of finite
configurations is an adequate order if:

– ≺ is irreflexive and transitive;
– ≺ refine the prefix order: C ⊂ C ′ implies C ≺ C ′;
– ≺ is preserved by extension: if Cut(C) = Cut(C ′) then for all possible

extensions (t,M) of C and the corresponding extension (t,M ′) of C ′, C ≺
C ′ implies C ∪ {(t,M)} ≺ C ′ ∪ {(t,M ′)}.

Chatain et Khomenko have proved that any adequate order is well-founded
[10]: any non-empty set of finite configurations admits smallest element for ≺.

Let e be some event. We denote by P(e) the set of finite valid TBPs that
contain e. Let (B, θ) be a TBP in P(e). We note Past((B, θ), e) the smallest
valid prefix of (B, θ) that contains dee. The finite occurence date events in this
prefix are those that must have occurred for e to occur itself. The set of such
events is of course, inclusion-wise, greater or equal to dee and trivially less or
equal to dee ∪ Earlier(e).

Finally, we note Past(e) =
⋃

(B,θ)∈P(e) Past((B, θ), e)

Definition 25 (Cut-off event) Let N be a TPN and ≺ an adequate order
on the configurations of N .

An event e of Unfolding(Untimed(N)) is a cut-off event of the symbolic
unfolding Unfolding(N) if for all (B, θ) ∈ Past(e), there exists another event e′

of Unfolding(Untimed(N)) and (B′, θ′) ∈ Past(e′) such that:

18 Claude Jard et al.

– de′e ≺ dee;
– l(Cut(de′e)) ≺ l(Cut(dee));
– (B, θ) and (B′, θ′) are future-equivalent.

It is interesting to remark that when all transitions have a [0, 0] static
firing interval or all have [0,+∞), Definition 25 degenerates to the first two
conditions, i.e., the definition of [24,14] for ordinary Petri nets. In the [0, 0]
case, for all events e, Earlier(e) is empty and then Past(e) is actually dee with
all occurrence dates null. In the [0,+∞) case, the validity of TBPs imposes no
constraint other than a +∞ occurrence date in case of direct conflicts, so again
Past(e) is actually dee, but this time with unconstrained occurrence dates.

Using cut-off events we now define a prefix of the symbolic unfolding. The-
orem 3 proves that it is complete and Theorem 4 that it is finite.

Definition 26 (Maximal cut-off-free prefix) Let N be a TPN. The max-
imal cut-off-free prefix w.r.t ≺ of Unfolding(N), denoted by CFP≺(N) is,
inclusion-wise, the greatest prefix of Unfolding(N) that contains no cut-off
event.

Theorem 3 Let N be a TPN. For any finite valid time process (C, θ) of
Unfolding(N), there exists a finite valid time process (C ′, θ′) in CFP≺(N) such
that (C, θ) and (C ′, θ′) are future-equivalent.

Proof We adapt the proof scheme of [24,14].
Let (C, θ) be a finite valid time process of Unfolding(N). If (C, θ) belongs

to CFP≺(N) we are done so suppose that (C, θ) does not belong to CFP≺(N).
Then a cut-off event e exists in C. Let (B, θ) = Past(ConfCompl((C, θ)), e).
By definition, (B, θ) is valid. Since e is a cut-off event, there also exists an-
other event e′ and a time process (B′, θ′) ∈ Past(e′) such that de′e ≺ dee,
l(Cut(de′e)) = l(Cut(dee)), and (B, θ) and (B′, θ′) are future-equivalent. Since
(B, θ) is valid and can be extended into ConfCompl((C, θ)) then, by Proposi-
tion 1, (B′, θ′) can also be extended to a valid TBP (B′′, θ′′) that is future-
equivalent to ConfCompl((C, θ)).

We furthermore have l(Cut(de′e)) = l(Cut(dee)), so de′e and dee can re-
spectively be extended to B′′θ′′<+∞ and C by adding events corresponding to
the same transitions. Since ≺ is preserved by extension, and de′e ≺ dee, we
furthermore have B′′θ′′<+∞ ≺ C.

Now (C, θ) is valid so, by Theorem 2, ConfCompl((C, θ)) is temporally
complete and, using Proposition 2, so is (B′′, θ′′). So (B′′θ′′<+∞, θ

′′) is a valid
time process. If (B′′θ′′<+∞, θ

′′) is not in CFP≺(N), then we can iterate this
reasoning. We thus obtain a sequence (C1, θ1), . . . , (Cn, θn) of time processes
that are all future-equivalent and such that (C1, θ1) = (C, θ) and Cn ≺ · · · ≺
C1. Since ≺ is well-founded, this sequence is necessarily finite and therefore
(Cn, θn) belongs to CFP≺(N). ut

Theorem 4 Let N be a TPN. CFP≺(N) has a finite number of events.

Symbolic Unfolding of Parametric Stopwatch Petri Nets 19

Proof Let B be a finite branching process of Untimed(N). For any timing
function θ such that (B, θ) is valid, we note M((B, θ) = l(Cut(Bθ<+∞)) and
we let A((B, θ)) = (a1, . . . , ap) be the vector of the ages of the conditions in
Cut(Bθ<+∞) relatively to the maximal occurrence date of events in the TBP.

M((B, θ)) can be represented by a vector of booleans of length equal to
the number of places in the net, which we denote p in the rest of this proof.
So M can take only finitely many values over the set of all valid TBPs.

The constraints on θ for (B, θ) to be valid only involve differences between
occurrence dates and can therefore be represented by a finite union of Differ-
ence Bound Matrices (DBMs) [6,11] with rational bounds. Furthermore, the
denominators of those bounds are bounded by the LCM of the finite bounds
in static firing time intervals. So there are only a finite number of such DBMs.

We can moreover transform those constraints on occurrence dates into
constraints on the reduced ages of the conditions in Cut(Bθ<+∞) and again
this involves simple differences between dates. The result of this transformation
is again a finite union of DBMs, which have rational bounds with bounded
denominators [9]. So A takes only finitely many values on the set of valid
TBPs.

For any event e in Unfolding(N), we denote by P (e) the union of all pairs
(M((B, θ), A((B, θ))) for all (B, θ) in Past(e). Again, P (e) takes only finitely
many values on the set of events in the symbolic unfolding.

Suppose now that CFP≺(N) is infinite. Then it necessarily contains an
infinite causal sequence of events e1 < e2 < · · · < en < · · · . And among these
events there must be two events e and e′ such that e′ < e, l(Cut(dee)) =
l(Cut(de′e)) and P (e) = P (e′) So, by definition of P , for any valid TBP (B, θ)
in Past(e), there exists a valid TBP (B′, θ′) in Past(e′) such that both TBPs
are future-equivalent. Furthermore, e′ < e so de′e ⊆ dee. ≺ is an adequate
order so it refines the prefix order and therefore de′e ≺ dee.

e is therefore a cut-off event, which contradicts the definition of CFP≺(N).
So CFP≺(N) is finite. ut

6 Parametric Stopwatch Petri Nets

Stopwatches, i.e., clocks whose evolution can be temporarily “frozen”, allows
the modeling of more complex systems. Their most prominent use is maybe the
modeling of real-time preemptive schedulers: stopwatches model the progress
of tasks, and are frozen when tasks are preempted.

We consider here the model introduced in [5] and based on activator arcs.
Those arcs will correspond to additional read arcs in the unfolding.

We further extend our stopwatch with parameters in the static firing in-
tervals [28]: each bound of the interval is defined as a linear expression on
a finite set of parameters V , i.e., an expression generated by the grammar
φ ::= q|x|q ∗ φ|φ+ φ, where q ∈ Q and x ∈ V .

20 Claude Jard et al.

A parametric interval on V is then an interval whose lower (resp. upper)
bound is either open in −∞ (resp. +∞) or a linear expression on V . We denote
by Ip(V) the set of parametric intervals on V .

A valuation v on V is a mapping of V to R. We denote by by RV the
set of valuations on V . For a linear expression L and a valuation v on V , we
denote by v(L) the real number obtained by replacing each parameter x in V
by the value v(x). Similarly, for a parametric interval I, we denote by v(I) the
interval of R obtained by applying v to each of its non-infinite bounds.

Definition 27 (Parametric Stopwatch Petri Net) A safe Parametric
Stopwatch Petri Net (PSwPN fo short) with activator arcs is a tuple N =
(P, T, F, Fr, Fa,m0, Is, V0) with:

– (P, T, F, Fr,m0) a Petri net;
– Fa ⊆ P × T is the activation relation.
– Is : T → Ip(V) maps a parametric constraint to each transition, defined

as a parametric interval called static firing time interval ;
– V0 ⊆ RV is a set of valid valuations such that for all transitions t ∈ T and

all valuations v ∈ V0, v(Is(t)) 6= ∅ and v(Is(t)) ⊆ R≥0.

For any valuation v ∈ V0, we denote by v(N) the net obtained by replacing
each parametric interval I by v(I). Since v ∈ V0, v(N) is a Stopwatch Petri
Net (SwPN) as defined in [5].

As before, for all transitions t ∈ T , we denote by �t = {p ∈ P |(p, t) ∈ Fa}
the set of activating places of t.

For any marking m, a transition t is active if •t ∪ ◦t ∪ �t ⊆ m, i.e., if t is
enabled by m and all its activating places are marked. We denote by Active(m)
the set of transitions that are active in marking m.

Intuitively, an SwPN works like a TPN if we replace the notion of (contin-
uous) enabling duration by that of activity duration, i.e., the duration during
which the transition has been active and continuously enabled. The time inter-
val associated with each transition constrains this duration. When an enabled
transition t is linked to a place p by the activation relation, the activity dura-
tion only increase when p is marked. p is however not involved in the enabling
of t. When t is enabled but p is not marked the activity duration of the tran-
sition is “frozen”: it keeps its value but does not evolve although time globally
progresses. When t is not enabled its activity duration is zero.

Example 11 Figure 6 shows an example of PSwPN. It has a unique activator
arc between p2 and t1 distinguished by a lozenge end and two parameters a
and b. V0 contains all valuations that give non-negative values to a and b.
Consider the valuation v ∈ V0 such that v(a) = 2 and v(b) = 2. It defines a
SwPN with static firing interval [2, 4] for t2.

In that SwPN, the activity duration of t1 progresses only when p2 is marked
and t1 may therefore not fire before at least the sequence t2, t3, t2, t3 has oc-
curred. This sequence indeed allows, at most, the increase of the activity du-
ration of t1 by 8 time units. Up to 4 more time units can then pass before t2
must fire again, which allows to reach the 10 time units required for t1 to fire.

Symbolic Unfolding of Parametric Stopwatch Petri Nets 21

p1

t1[10, 20]

p2

t2[a, a + b]

p3 p4

t3[5, 5]t4(20,+∞)

p5

V0 = {0 ≤ a, 0 ≤ b}

Fig. 6 A parametric stopwatch Petri net

In TPNs, for a time process (C, θ), the enabling duration of a transition t
by the conditions in a co-set B at date τ are given by τ −TOE(B, t). It is this
duration that is constrained by the notion of validity for time processes.

For SwPNs, the enabling duration is replaced by the activity duration
in these constraints. We can compute this activity duration as the sum of
all durations during which the transitions has been active since it was last
enabled.

We now extend the notion of time process to PSwPNs, which allows us to
give them a concurrent semantics.

For a PSwPN N = (P, T, F, Fr, Fa,m0, Is, V0), we denote by Underlying(N)
the Petri net with read arcs (P, T, F, Fr ∪ Fa,m0). Remark that activator
arcs of N are transformed into read arcs in Underlying(N) that express the
dependency between a transition and its activating places.

We can now define time processes for PSwPNs:

Definition 28 (Time process of an PSwPN) A time process of a PSwPN
N is a triple (C, θ, v) such that:

– v is valid for N ;
– C is a configuration of a branching process of Underlying(N);
– θ : C → R≥0 is a timing function giving for each event in C an occurrence

date.

Let (C, θ, v) be a time process of a PSwPN of N .
The duration of a co-set B in (C, θ), at date τ is:

Duration(B, τ) = max
{

0,min
{

min
e∈B•
{θ(e)}, τ

}
−max

b∈B
{θ(•b)}

}
This is the date of the first consumption of one of the conditions in B

minus the date of the last production of one of the conditions in B. Between
those two dates, the co-set exists: all of its conditions have been produced and
none has been consumed yet.

For a transition t and a co-set B such that l(B) = •t ∪ ◦t, we denote
Acosets(B, t) the set of co-sets B ∪B′ such that l(B′) = �t.

22 Claude Jard et al.

The activity duration at date τ of a transition t by the co-set B is then:

DOA(B, t, τ) =
∑

A∈Acosets(B,t)

Duration(A, τ)

For any co-set A, we denote En(A, t) = {b ∈ A|l(b) ∈ •t ∪ ◦t} the set of
conditions in A that enable t and ?e = En(•e∪◦e, l(e)), the conditions consumed
or read by e and that do not correspond to activating places.

If there are no activator arcs, remark that for any event e we have ?e = •e∪◦e
and, as expected, DOA(?e, l(e), θ(e)) = θ(e)− TOE(•e ∪ ◦e, t).

The validity of a time process is then given by:

Definition 29 (Valid time process of a PSwPN) A time process (C, θ, v)
of an PSwPN N is valid if for all e ∈ C,

θ(e) ≥ max
b∈•e∪◦e

θ(•b) (9)

DOA(?e, l(e), θ(e)) ∈ v(Is(l(e)))
↑ (10)

And ∀t ∈ Active(l(Cut(Earlier(e))):

DOA(En(Cut(Earlier(e)), t), t, θ(e)) ∈ v(Is(t))
↓ (11)

We now have to enforce time progress with Eq. 9, since Eq. 10 is not
enough for that. With that new equation, the following lemma trivially extends
the one given in [2] for TPNs and states that the timing function for valid
time processes is compatible with causality: if some event is a consequence of
another one, then it does not occur before that event.

Lemma 2 Let (C, θ, v) be a valid TBP of a PSwPN.

∀e, e′ ∈ C, e < e′ ⇒ θ(e) ≤ θ(e′)

We finally prove the following Lemma for time processes that will be useful
for the subsequent proofs.

Lemma 3 Let (C, θ, v) be a valid time process of a PSwPN. Let t be a transi-
tion that is made active by exactly the set of conditions A produced by events
in C. Then for all e ∈ •A:

– either DOA(En(A, t), t, θ(e)) = 0,
– or ∃e′ ∈ C such that DOA(En(A, t), t, θ(e)) = DOA(En(A, t), t, θ(e′)) and
t ∈ Active(l(Cut(Earlier(e′)))).

Proof First remark that, since there is no conflict in C, if B0, B1, . . . , Bn, . . .
are the co-sets in Acosets(En(A, t), t), then up to some renumbering, we have
B0 < B1 < · · · < Bn < · · · , with Bi < Bj iff d•Bie ⊂ d•Bje. Also, by
definition, we have ∀i,En(Bi, t) = En(A, t). Suppose A = Bn and let en ∈ •Bn.
We then have Duration(Bn, θ(en)) = 0 and:

Symbolic Unfolding of Parametric Stopwatch Petri Nets 23

– if n = 0 then DOA(En(Bn, t), t, θ(en)) = 0;
– otherwise let e′n−1 be the earliest in both the temporal and causal sense

(one of them actually, because several can occur at the same date) event
that consumes one of the activating conditions in Bn−1. Then by definition
of DOA, since Duration(Bn, θ(en)) = 0, we have DOA(En(Bn, t), t, θ(en)) =
DOA(En(Bn−1, t), t, θ(e

′
n−1)). There are now two further possibilities:

– if Bn−1 ⊆ Cut(Earlier(e′n−1)), then we have the expected result because
En(Bn−1, t) = En(A, t).

– otherwise, it must be the case that Duration(Bn−1, θ(e
′
n−1)) = 0 and

there exists an event en−1 ∈ •Bn−1 such that θ(en−1) = θ(e′n−1). So
we can repeat the above reasoning with n− 1 instead of n and at some
point we will either have Bn ⊆ Cut(Earlier(en)) or n = 0. ut

Time branching processes for PSwPNs are similarly obtained from the TPN
case:

Definition 30 (Time branching process of a PSwPN) A time branching
process of a PSwPN N is a pair (B, θ, v) such that:

– v is valid for N ;
– B = (B,E, F, Fr,m0) is a branching process of Underlying(N);
– θ : E → R≥0 ∪ {+∞} is a timing function giving for each event in E an

occurrence date.

Definition 31 (Valid time branching process of an SwPN) A time
branching process (B, θ, v) of an SwPN N , with set of events E, is valid if it
is conflict-complete, v is valid for N , and:

∀E′ ∈ RCycles(E),∃e′ ∈ E′ s.t. θ(e′) = +∞ (12)

and ∀e ∈ E :[[
θ(e) 6= +∞ and θ(e) ≥ max

b∈•e∪◦e
θ(•b) (13)

and DOA(?e, l(e), θ(e)) ∈ v(Is(l(e))) (14)

and ∀e′ ∈ E s.t. e conf e′, θ(e′) = +∞ (15)

and ∀e′ ∈ E s.t. e↗ e′, θ(e) ≤ θ(e′)
]

(16)

or
[
θ(e) = +∞ and ∃b ∈ •e ∪ ◦e, θ(•b) = +∞

]
(17)

or
[
θ(e) = +∞ and ∃e′ ∈ E s.t. (e conf e′ or e↗ e′) and θ(e′) 6= +∞

and DOA(?e, l(e), θ(e′)) ∈ v(Is(l(e)))
↓]]

(18)

Remark that conf and ↗ are interpreted on Underlying(N) and therefore
also take the read arcs induced by the activator arcs into account.

Example 12 Figure 7 shows a valid time branching process of the PSwPN in
Figure 6 with v(a) = 2 and v(b) = 2.

24 Claude Jard et al.

Remark that, in particular, events e1 and e4 correspond to “missed” po-
tential firings of t1 because the token in p2 has been consumed each time by
t2. The activity duration of t1 was anyway less than 10 and therefore t1 was
not firable.

When e2 occurs, making t1 inactive, we have DOA({b1}, t1, θ(e2)) = 3.2,
which is indeed less than 10. Similarly, when e5 occurs, DOA({b1}, t1, θ(e5)) =
11.3− 8.2 + 3.2− 0 = 6.3.

These two events have read arcs in input that correspond to the activator
arc between t1 and p2.

b1; p1 b2; p2

e1; t1; +∞
e2; t2; 3.2

b3; p3
b4; p4

e3; t3; 8.2

b5; p2
e4; t1; +∞

b6; p3

e9; t4; +∞

b10; p5

e5; t2; 11.3

b7; p4

e6; t3; 16.3

b8; p2

e7; t1; 20.1

b9; p3

e8; t2; 20.2

Fig. 7 A valid time branching process of the net in Figure 6

Naturally, the notion of temporal completeness also needs to be updated
to account for the stopwatches.

Definition 32 (Temporally complete TBP of a PSwPN) Let (B, θ, v)
be TBP of a PSwPN N . (B, θ) is temporally complete if for all extensions

Symbolic Unfolding of Parametric Stopwatch Petri Nets 25

(t,M,M ′), such that •M ∪ •M ′ ⊆ Eθ<+∞:

DOA(En(M ∪M ′, t), t,max{θ(e)|e ∈ Bθ<+∞}) ∈ v(Is(t))
↓

The correctness and completeness of the time branching processes for PSw-
PNs is given by Theorems 5 and 6 but before we get to them, we need to estab-
lish a few lemmas: Lemma 4 lifts the compatibility with causality of Lemma 2
to timing functions of valid TBPs. Lemma 5 proves that the set of events that
actually occur in a valid TBP forms a configuration. Finally, Lemma 6 makes
explicit the rather obvious fact that any event consuming a condition produced
and not consumed by the events having occurred strictly before some event e
may itself not have occured strictly before e.

Lemma 4 Let (B, θ, v) be a valid TBP of a PSwPN and E be its set of events.

∀e, e′ ∈ E, e < e′ ⇒ θ(e) ≤ θ(e′)

Proof Since e < e′, there exists a path from e to e′, going through events
e1, e2, . . . , en with e1 = e and en = e′. We moreover have for all i ∈ [1..n− 1],
e•i ∩(•ei+1∪◦ei+1) 6= ∅. Since (B, θ, v) is valid, if θ(ei+1) 6= +∞ then, by Eq. 13,
θ(ei) ≤ θ(ei+1). If θ(ei+1) = +∞ then we obviously also have θ(ei) ≤ θ(ei+1).
So by transitivity, θ(e) ≤ θ(e′). ut

Lemma 5 Let (B, θ, v) be a valid TBP of a PSwPN and E be its set of events.
Eθ<+∞ = {e ∈ E|θ(e) < +∞} is a configuration of B.

Proof First, Eθ<+∞ is causally closed: let e ∈ Eθ<+∞ and let e′ < e. Using
lemma 4, we have θ(e′) ≤ θ(e). Since θ(e) < +∞, by definition of Eθ<+∞, we
have θ(e′) < +∞ and finally e′ ∈ Eθ<+∞.

Second, Eθ<+∞ is conflict-free: Suppose the opposite, i.e., #Eθ<+∞. Then,
by Lemma 1:

– either RCycles(Eθ<+∞) 6= ∅, but since (B, θ, v) is valid, this is forbidden by
Eq. 12 that enforces that at least one of the events of such cycles has an
infinite occurrence date;

– or ∃x, y ∈ Eθ<+∞ s.t. x conf y. By definition of Eθ<+∞, we have θ(x′) 6=
+∞ and θ(y′) 6= +∞ which contradicts Eq. 15. ut

Lemma 6 Let (B, θ, v) be a valid TBP of a PSwPN and E be its set of events.
Let e ∈ E s.t. θ(e) 6= +∞. Then:

∀e′ ∈ E, •e′ ∩ Cut(Earlier(e)) 6= ∅ ⇒ θ(e) ≤ θ(e′)

Proof Suppose a contrario that θ(e′) < θ(e). Then e′ ∈ Earlier(e). By definition
of Cut, each condition being produced exactly once, no condition in •e′ can
belong to Cut(Earlier(e)), which contradicts •e′ ∩ Cut(Earlier(e)) 6= ∅. ut

26 Claude Jard et al.

Now we can state and prove the following key theorems:

Theorem 5 Let N be a PSwPN. Let (B, θ, v) be temporally complete valid
TBP of N .

(Bθ<+∞, θ, v) is a valid time process of N .

Proof Lemma 5 already proves that Bθ<+∞ is a configuration and therefore
that (Bθ<+∞, θ, v) is a time process. We need to prove that this time process
is valid.

Let e ∈ Bθ<+∞. By definition, we have θ(e) 6= +∞.
Eq. 13 and Eq. 9 match. Eq. 14 immediately gives the satisfaction of the

constraint in Eq. 10. Only DOA(En(Cut(Earlier(e)), t), t, θ(e)) ∈ v(Is(t))
↓ for

all t ∈ Active(l(Cut(Earlier(e))) remains to be proved.
Let t ∈ Active(l(Cut(Earlier(e))) and let B′ = {b ∈ Cut(Earlier(e))|l(b) ∈

•t ∪ ◦t ∪ �t} be the subset of Cut(Earlier(e)) that made t active when it fired.
Three cases may arise:

– if t = l(e) then, the net being safe, B′ = •e ∪ ◦e. Furthermore, by Eq. 14,
DOA(?e, l(e), θ(e)) ∈ v(Is(l(e)))

↓, i.e., DOA(En(B′, t), t, θ(e)) ∈ v(Is(t))
↓

and we find the expected constraint since B′ ⊆ Cut(Earlier(e)).
– if t 6= l(e) but there exists e′ ∈ E s.t. l(e′) = t and •e′ ∪ ◦e′ = B′ then:

– If θ(e′) 6= +∞ then, by Eq. 14, DOA(En(B′, t), t, θ(e′)) ∈ v(Is(t))
↓. And

with lemma 6, since •e′ 6= ∅ then •e′ ∩ Cut(Earlier(e)) 6= ∅, and we have
θ(e) ≤ θ(e′). The expected constraint follows.

– If θ(e′) = +∞ then one of Eqs. 17 or 18 is satisfied. But since •e′ ∪
◦e′ = B′ ⊆ Cut(Earlier(e)), each of the conditions in B′ has a finite
production date, which excludes Eq. 17. As a consequence, there ex-
ists e′′ ∈ E s.t. either e′ conf e′′, or e′ ↗ e′′, and θ(e′′) 6= +∞ and
DOA(En(B′, t), t, θ(e′′)) ∈ v(Is(t))

↓. We cannot have e′ < e′′ because
θ(e′) = +∞ and that would contradict lemma 4. So either •e′∩•e′′ 6= ∅,
or ◦e′ ∩ •e′′ 6= ∅. So •e′′ ∩ Cut(Earlier(e)) 6= ∅ and with lemma 6,
θ(e) ≤ θ(e′′), and the expected constraint again follows.

– if no event in E correspond to the firing of t, then there must exist a
possible extension (t,M,M ′) of B s.t. M ∪M ′ ⊆ Cut(Earlier(e)). In that
case, since B is temporally complete, by definition 32, we directly have
DOA(En(Cut(Earlier(e)), t), t, θ(e)) ∈ v(Is(t))

↓. ut

Theorem 6 Let N be an SwPN. Let (C, θ, v) be a valid time process of N . C
defines a branching process B = (C•, C, F, Fr,m0) of Untimed(N).

ConfCompl((B, θ, v)) is a temporally complete valid TBP of N .

Proof Since C is a configuration, we necessarily have RCycles(C) = ∅ and
since ConfCompl only adds events with an infinite occurrence date, Eq. 12 is
satisfied.

Now let e be some event in ConfCompl((B, θ, v)). First suppose that e ∈ C.
(C, θ, v) being a time process, we have θ(e) 6= +∞. So Eqs. 17 and 18 are

satisfied by default.

Symbolic Unfolding of Parametric Stopwatch Petri Nets 27

Eqs. 9 and 13 match. Eq. 14 is trivially satisfied thanks to the constraints
in Eqs. 10 and 11.

Suppose that there exists some e′ ∈ ConfCompl((B, θ, v)) such that e conf e′.
Then e′ 6∈ C because C is a configuration. So e′ was added by ConfCompl and
its occurrence date is +∞ and satisfies Eq. 15.

For Eq. 16, let e′ ∈ ConfCompl((B, θ)) s.t. e ↗ e′. If θ(e′) = +∞ then
for sure θ(e) ≤ θ(e′). Else, for sure e′ ∈ C. If e < e′ then, since (C, θ, v) is
valid, lemma 2 gives us θ(e) ≤ θ(e′). Else, ◦e∩ •e′ 6= ∅ and if θ(e′) < θ(e) then
some condition in •e are consumed strictly before e occurs, which is impossible
because the net is safe. So θ(e) ≤ θ(e′).

Suppose now that e 6∈ C. Then, it has been added by ConfCompl and
we have θ(e) = +∞ but all its preconditions have a finite production date.
So again, Eq. 17 is satisfied by default. We also know that there must exist
e′ ∈ C such that e conf e′ or e ↗ e′. We chose e′ as the earliest of such
conflicting events. This is possible because C is a configuration so there it has
no conflict and therefore only a finite number of events in C can consume the
preconditions of e.

If l(e) ∈ Active(l(Cut(Earlier(e′)))), Eq. 11 directly gives the expected
Eq. 18. Otherwise:

– if there exists some condition b ∈ •e∪◦e such that θ(e′) ≤ θ(•b), then we can
apply Lemma 3 to •b and we get either DOA(En(•e∪◦e, l(e)), l(e), θ(e′)) = 0
or ∃e′′ ∈ C such that DOA(En(•e ∪ ◦e, l(e)), l(e), θ(e′)) ≤ DOA(En(•e ∪
◦e, l(e)), l(e), θ(e′′)) and l(e) ∈ Active(l(Cut(Earlier(e′′)))). Again Eq. 11
implies Eq. 18;

– otherwise •e∪ ◦e ⊆ Earlier(e′)•. Since •e∪ ◦e 6⊆ Cut(Earlier(e′)), there exists
some event e′′ ∈ Earlier(e′) and some condition b ∈ •e∪◦e such that b ∈ •e′′,
which is not possible due to the way e′ was chosen.

We finally prove that (B, θ, v) is temporally complete. Let (t,M,M ′) be a
possible extension of B such that •M ∪•M ′ ∈ C. If there exists e ∈ C such that
M ∪M ′ ⊆ Cut(Earlier(e)) then Eq. 11 directly gives the expected constraint.
Otherwise it means that the event e that realizes the maximum of the finite
occurrence dates in C is actually in •M ∪ •M ′ and by Lemma 3 coupled with
Eq. 11 we get the temporal completeness constraint. ut

As for TPNs the notion of symbolic unfolding of a PSwPN easily follows:

Definition 33 (Symbolic unfolding of an SwPN) The symbolic unfolding
of a PSwPN N is the union of all its valid time branching processes.

Example 13 Let us consider the time branching process in Figure 7. For the
sake of simplicity, we focus on the prefix obtained by removing e6, e7 and e8.
With all the constraints on the timing functions and the parameters this gives
us a prefix of the symbolic unfolding. These constraints are:

– for e1:

θ(e1) ∈ [10, 20] and θ(e4) = +∞ and θ(e9) = +∞ and θ(e1) ≤ θ(e2)
or

θ(e1) = +∞ and (θ(e9) ≤ 20 or θ(e2) ≤ 20)

28 Claude Jard et al.

– for e2:

θ(e2) ∈ [a, a+ b]

– for e3:

θ(e3) = θ(e2) + 5

– for e4: {(
θ(e4) ≥ θ(e3) and θ(e4)− θ(e3) + θ(e2)− 0 ∈ [10, 20]
and θ(e4) ≤ θ(e5)and θ(e1) = +∞ and θ(e9) = +∞

)
or{

θ(e4) = +∞
and (θ(e9)− θ(e3) + θ(e2) ≤ 20 or θ(e5)− θ(e3) + θ(e2) ≤ 20)

– for e5:

θ(e5) ∈ [θ(e3) + a, θ(e3) + a+ b]

– for e9:
θ(e9) > 20 and θ(e1) = +∞ and θ(e4) = +∞

or
θ(e9) = +∞ and (θ(e1) ≤ 20 or θ(e4) ≤ 20)

After a few simplifications, we get:

θ(e1) = +∞
θ(e2) ∈ [a, a+ b]
θ(e2) ≤ 20
θ(e3) ∈ [5 + a, 5 + a+ b]
θ(e4) = +∞
θ(e5) ∈ [5 + 2a, 5 + 2a+ 2b]
θ(e9) ∈ (20, 25]

or



θ(e1) = +∞
θ(e2) ∈ [a, a+ b]
θ(e2) ≤ 20
θ(e3) ∈ [5 + a, 5 + a+ b]
θ(e4) = +∞
θ(e5) ∈ [5 + 2a, 5 + 2a+ 2b]
θ(e5) ≤ 25
θ(e9) > 20

or



θ(e1) ∈ [10, 20]
θ(e1) ≤ θ(e2)
θ(e2) ∈ [a, a+ b]
θ(e3) ∈ [5 + a, 5 + a+ b]
θ(e4) = +∞
θ(e5) ∈ [5 + 2a, 5 + 2a+ 2b]
θ(e9) = +∞

or



θ(e1) = +∞
θ(e2) ∈ [a, a+ b]
θ(e2) ≤ 20
θ(e3) ∈ [5 + a, 5 + a+ b]
θ(e4) ∈ [15, 25]
θ(e4) ≤ θ(e5)
θ(e5) ∈ [5 + 2a, 5 + 2a+ 2b]
θ(e9) = +∞

From these constraints, we can for instance deduce that for e1 to occur, we
should of course have a+ b ≥ 10 and, for e4 to occur, we should have a+ b ≥ 5
and a ≤ 20.

Finally, note that, in general, the DOA operator introduces constraints on
sums of variables and so does the introduction of parameters. In this example,
this simplifies nicely because we have chosen fixed durations for the “freezing”
of transition t1, for the sake of the clarity of the presentation.

Symbolic Unfolding of Parametric Stopwatch Petri Nets 29

Given that marking reachability, for instance, is undecidable for safe Sw-
PNs [5], we know that a finite complete prefix cannot be obtained but we can
still use other analysis techniques like supervision that will constrain the un-
folding according to a finite set of observations and indeed give a finite prefix
compatible with those observations [17].

7 Conclusion

We have proposed a new technique for the unfolding of safe parametric stop-
watch Petri nets that allow a symbolic handling of both time and parameters.
To the best of our knowledge, this is the first time that the parametric or
stopwatch cases are addressed in the context of unfoldings. Moreover, when
restricting to the subclass of safe time Petri nets, our technique compares well
with the previous approach of [9]. It indeed provides a more compact unfold-
ing, by eliminating the duplication of transitions, and also removes the need
for read arcs in the unfolding. As a tradeoff, the constraints associated with
the firing times of events may seem slightly more complex.

In the case of TPNs, we have shown how to obtain a finite complete prefix of
the symbolic unfolding. This is however not possible in presence of stopwatches
or parameters due to known undecidability results on these richer models. It
is however possible to couple the method with a supervision technique, based
on the idea of [15], that makes the unfolding finite based on a finite set of
observations. This approach, that does work with parameters and stopwaches,
is detailled in [17] with a case study.

Further work includes a proper implementation (a very preliminary one,
without any prefix computation, is available in our tool Roméo [23]), investi-
gating non-safe bounded models and the application of the unfolding technique
to revisit the problems of model-checking and control.

References

1. Abdulla, P.A., Iyer, S.P., Nylen, A.: Unfoldings of unbounded Petri nets. In: Proceedings
of CAV, LNCS, vol. 1855, pp. 495–507. Springer (2000)

2. Aura, T., Lilius, J.: A causal semantics for time Petri nets. Theoretical Computer
Science 243(2), 409–447 (2000)

3. Baldan, P., Busi, N., Corradini, A., Pinna, G.M.: Functorial concurrent semantics for
Petri nets with read and inhibitor arcs. In: CONCUR, LNCS, vol. 1877, pp. 442–457.
Springer (2000)

4. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using
time Petri nets. IEEE transactions on software engineering 17(3), 259–273 (1991)

5. Berthomieu, B., Lime, D., Roux, O.H., Vernadat, F.: Reachability problems and abstract
state spaces for time Petri nets with stopwatches. Journal of Discrete Event Dynamic
Systems (jDEDS) 17(2), 133–158 (2007)

6. Berthomieu, B., Menasche, M.: An enumerative approach for analyzing time Petri nets.
In: R.E.A. Mason (ed.) Information Processing: proceedings of the IFIP congress 1983,
IFIP congress series, vol. 9, pp. 41–46. Elsevier Science Publishers, Amsterdam (1983)

30 Claude Jard et al.

7. Bouyer, P., Haddad, S., Reynier, P.A.: Timed unfoldings for networks of timed au-
tomata. In: S. Graf, W. Zhang (eds.) Proceedings of the 4th International Symposium
on Automated Technology for Verification and Analysis (ATVA’06), Lecture Notes in
Computer Science, vol. 4218, pp. 292–306. Springer, Beijing, China (2006)

8. Cassez, F., Chatain, T., Jard, C.: Symbolic Unfoldings for Networks of Timed Au-
tomata. In: S. Graf, W. Zhang (eds.) Proceedings of the 4th International Symposium
on Automated Technology for Verification and Analysis (ATVA’06), Lecture Notes in
Computer Science, vol. 4218, pp. 307–321. Springer, Beijing, China (2006)

9. Chatain, T., Jard, C.: Complete finite prefixes of symbolic unfoldings of safe time Petri
nets. In: Proceedings of ICATPN, LNCS, vol. 4024, pp. 125–145. Springer (2006)

10. Chatain, T., Khomenko, V.: On the well-foundedness of adequate orders used for con-
struction of complete unfolding prefixes. Information Processing Letters 104(4), 129–
136 (2007)

11. Dill, D.: Timing assumptions and verification of finite-state concurrent systems. In:
Proc. of Workshop on Computer Aided Verification Methods for Finite State Systems,
vol. 407, pp. 197–212 (1989)

12. Esparza, J.: Model checking using net unfoldings. Science of Computer Programming
23, 151–195 (1994)

13. Esparza, J., Heljanko, K.: Unfoldings, A Partial-Order Approach to Model Checking.
Monographs in Theoretical Computer Science. Springer (2008)

14. Esparza, J., Rmer, S., Vogler, W.: An improvement of McMillan’s unfolding algorithm.
Formal Methods in System Design 20(3), 285–310 (2002)

15. Fabre, E., Benveniste, A., Haar, S., Jard, C.: Distributed monitoring of concurrent and
asynchronous systems. Discrete Event Dynamic Systems 15(1), 33–84 (2005)

16. Gardey, G., Roux, O.H., Roux, O.F.: State space computation and analysis of time Petri
nets. Theory and Practice of Logic Programming (TPLP). Special Issue on Specification
Analysis and Verification of Reactive Systems 6(3), 301–320 (2006)

17. Grabiec, B., Traonouez, L.M., Jard, C., Lime, D., Roux, O.H.: Diagnosis using un-
foldings of parametric time Petri nets. In: K. Chatterjee, T.A. Henzinger (eds.) 8th
International Conference on Formal Modelling and Analysis of Timed Systems (FOR-
MATS 2010), Lecture Notes in Computer Science, vol. 6246, pp. 137–151. Springer,
Vienna, Austria (2010)

18. Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s decidable about hybrid au-
tomata? Journal of Computer and System Sciences 57, 94–124 (1998)

19. Khomenko, V., Koutny, M.: Branching processes of high-level Petri nets. In: Proceedings
of TACAS, LNCS, vol. 2619, pp. 458–472. Springer (2003)

20. Lime, D., Roux, O.H.: A translation-based method for the timed analysis of scheduling
extended time Petri nets. In: 25th IEEE Real-Time Systems Symposium (RTSS 2004),
pp. 187–196. IEEE Computer Society Press, Lisbon, Portugal (2004)

21. Lime, D., Roux, O.H.: Model checking of time Petri nets using the state class timed
automaton. Journal of Discrete Event Dynamic Systems (jDEDS) 16(2), 179–205 (2006)

22. Lime, D., Roux, O.H.: Formal verification of real-time systems with preemptive schedul-
ing. Journal of Real-Time Systems 41(2), 118–151 (2009)

23. Lime, D., Roux, O.H., Seidner, C., Traonouez, L.M.: Romeo: A parametric model-
checker for Petri nets with stopwatches. In: S. Kowalewski, A. Philippou (eds.) 15th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2009), Lecture Notes in Computer Science, vol. 5505, pp. 54–57.
Springer, York, United Kingdom (2009)

24. Margaria, T., Steffen, B. (eds.): An Improvement of McMillan’s Unfolding Algorithm,
Lecture Notes in Computer Science, vol. 1055. Springer, Passau, Germany (1996)

25. McMillan, K.L.: Using unfolding to avoid the state space explosion problem in the
verification of asynchronous circuits. In: Proceedings of Computer Aided Verification
(CAV’92), LNCS, vol. 663, pp. 164–177. Springer (1992)

26. Merlin, P.M.: A study of the recoverability of computing systems. Ph.D. thesis, Dep.
of Information and Computer Science, University of California, Irvine, CA (1974)

27. Traonouez, L.M., Grabiec, B., Jard, C., Lime, D., Roux, O.H.: Symbolic unfolding of
parametric stopwatch Petri nets. In: A. Bouajjani, W.N. Chin (eds.) 8th International
Symposium on Automated Technology for Verification and Analysis (ATVA 2010), Lec-
ture Notes in Computer Science, vol. 6252, pp. 291–305. Springer, Singapore (2010)

Symbolic Unfolding of Parametric Stopwatch Petri Nets 31

28. Traonouez, L.M., Lime, D., Roux, O.H.: Parametric model-checking of stopwatch Petri
nets. Journal of Universal Computer Science (J.UCS) 15(17), 3273–3304 (2009)

29. Vogler, W., Semenov, A.L., Yakovlev, A.: Unfolding and finite prefix for nets with read
arcs. In: D. Sangiorgi, R. de Simone (eds.) 9th International Conference on Concurrency
Theory (CONCUR’98), Lecture Notes in Computer Science, vol. 1466, pp. 501–516.
Springer, Nice, France (1998)

