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We study QoS-aware management of service orchestrations, specifically for orchestrations having a data-dependent workflow. Our study supports multidimensional QoS. To capture uncertainty in performance and QoS, we provide support for probabilistic QoS. Under the above assumptions, orchestrations may be nonmonotonic with respect to QoS, meaning that strictly improving the QoS of a service may strictly decrease the end-to-end QoS of the orchestration, an embarrassing feature for QoS-aware management. We study monotonicity and provide sufficient conditions for it. We then propose a comprehensive theory and methodology for monotonic orchestrations. Generic QoS composition rules are developed via a QoS Calculus, also capturing best service binding --service discovery, however, is not within the scope of this work. Monotonicity provides the rationale for a contract-based approach to QoS-aware management. Although function and QoS cannot be separated in the design of complex orchestrations, we show that our framework supports separation of concerns by allowing the development of function and QoS separately and then weaving them together to derive the QoS-enhanced orchestration. Our approach is implemented on top of the Orc script language for specifying service orchestrations.
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Introduction

Service Oriented Computing is a paradigm suited to wide area computing, where services can be dynamically selected and combined to offer a new service [START_REF] Buscemi | Qos negotiation in service composition[END_REF]. To enable service selection and binding, services expose both functional and Quality of Service (QoS) properties. Service selection can thus occur on the basis of both types of properties. In particular, service selection among a pool of functionally substitutable services can be performed based on QoS. Therefore, models of composite services should involve policies for QoS-based service selection [START_REF] Buscemi | Qos negotiation in service composition[END_REF]. Quite often, several dimensions for QoS must be handled (e.g., timing performance, availability, cost), leading to the consideration of multi-dimensional QoS. Consequently, QoS domains should be partially, not totally ordered. For simple policies, QoS guarantees exposed by the service or expected by the user are typically stated as fixed bounds. QoS is, however, generally subject to uncertainties, due to the numerous hidden sources of nondeterminism (servers, OS, queues, and network infrastructure). Therefore, a number of authors have agreed that QoS should be characterized in probabilistic terms [START_REF] Hwang | A probabilistic approach to modeling and estimating the QoS of web-services-based workflows[END_REF][START_REF] Rosario | Probabilistic qos and soft contracts for transaction based web services[END_REF][START_REF] Rosario | Probabilistic QoS and soft contracts for transaction based Web services orchestrations[END_REF][START_REF] Zheng | Qos analysis for web service compositions based on probabilistic qos[END_REF].

To illustrate the issues behind the QoS aware management of composite services, consider the following toy example, for which we first present a simple form and then develop some variations. Fig. 1(a) depicts a simple orchestration for a travel agent. The user enters the location of a place to visit. Two Airline services are invoked in parallel with the one offering "best" cost being selected. Next, two Hotel reservation services are invoked and selection occurs on the basis of cost and category, seen both as QoS dimensions. The selection on cost/category may be done through lexicographic or weighted ordering. The results are presented as an invoice. This orchestration exhibits a control flow that is independent from the circulated data. It has a two-dimensional QoS, with the two dimensions being cost and hotel category. Observe that the two QoS dimensions in this example are correlated.

This diagram is reformulated into that of Fig. 1(b), to be interpreted as a Petri net, where rectangles figure transitions and rounded rectangles figure places. Each query to the orchestration is modeled by a token traversing the input transition. Upon entering the first place, the transition to traverse must be chosen. This choice is based on best cost among offers by airline companies. Subsequently, the token enters the second place, where choice among different hotel booking services (shown as transitions) occurs based on both cost and category. This alternative Petri net description is a formalization of the previous description. We shall follow this Petri net modeling style hereinafter.

Fig. 2 shows a variation of Fig. 1(b) with a control flow dependent on both returned data and QoS values. A loop is introduced in the decision process that checks if the total Cost is within the budget and can ask the user to specify preferences again. The presentment of the Invoice is guarded by a timer. The choice at the place labeled with "best(latency)" depends on which subsequent transition fires first. Thus, if the Invoice is ready before Timeout occurs, then it is emitted, otherwise a "timeout" message is returned. This timeout mechanism ensures that the loop terminates within a pre-specified time bound, possibly with a failure. This orchestration has a three-dimensional QoS, with the dimensions being cost, hotel category, and latency (due to timers). We now review some important issues in Service Oriented Computing.

Monotonicity and Consequences for Management: A basic assumption underpinning the management of composite services is that QoS improvements in component services can only be better for the composite service. For example, once service selection in QoS-based design has been performed, a selected service is not expected to get deselected if it improves its QoS performance.
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Present Invoice Timeout Similarly, once services have been selected on the basis of QoS performance, reconfiguration will not occur unless some requested service's performance degrades or some non-selected service's performance improves. Finally, QoS monitoring consists of checking components for possible degradations in QoS. It is commonly understood that the term "Quality of Service" presupposes that "better QoS is indeed better overall". In other words, the better the involved services 1 perform, the better the composite service performs. This general property is important, so we give it a name-monotonicity. If a composite service fails to be monotonic, the common understanding of QoS is no longer valid and negotiations between the service provider and service requester regarding QoS issues become nearly unmanageable. We see monotonicity as a highly desirable feature, so we make it a central topic of this work.

Monotonicity always holds for orchestrations having a data-independent workflow-the orchestration shown in Fig. 1 is an example. A careful inspection shows that the orchestration of Fig. 2, which possesses a data-dependent workflow, is also monotonic. However, monotonicity is not always satisfied. Consider the example in Fig. 3. This orchestration performs late binding of service by deciding online and based on the cost of the airline ticket, which company to select. The two companies then propose different sets of hotels, shown by the two steps HotelBookingA/B. Let c 1 and c 2 be the cost of ticket for Companies 1 and 2, and h(c) be the optimum cost of the hotel booking if company c was selected. Suppose c 1 < c 2 and h(c 1 ) < h(c 2 ) both hold. Then, the left branch is 1 Involved services include all services that can potentially be requested by the composite service. For example, if the composite service involves an if-then-else branch, only one branch will actually be executed, but both are involved in the composite service.
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Present Invoice Timeout preferred and yields a total cost QoS for the orchestration equal to c 1 + h(c 1 ). Now, suppose Company 2 improves its offer beyond Company 1: c 2 < c 1 . Then, the right branch will be selected and total cost c 2 + h(c 2 ) will result. Now, it may very well be that c 2 + h(c 2 ) > c 1 + h(c 1 ) still holds, meaning that the improvement in QoS of Company 2 has resulted in a degradation of total QoS. The orchestration of Fig. 3 is thus non-monotonic, despite it being a quite minor modification of TravelAgent2. Differences in "local" versus "global" optimization due to lack of monotonicity were identified in [START_REF] Alrifai | Combining global optimization with local selection for efficient qos-aware service composition[END_REF][START_REF] Ardagna | Global and Local QoS Guarantee in Web Service Selection[END_REF][START_REF] Zeng | QoS-Aware Middleware for Web Services Composition[END_REF]-"monotonicity" was not mentioned in the referred works but the concept was identified.

Examples such as TravelAgent3 can be easily specified using the standard language BPEL for orchestrations and business processes. To summarize, this issue of monotonicity is essential. However, it seems underestimated in the literature on Web services, with the exception of [START_REF] Alrifai | Combining global optimization with local selection for efficient qos-aware service composition[END_REF][START_REF] Ardagna | Global and Local QoS Guarantee in Web Service Selection[END_REF][START_REF] Zeng | QoS-Aware Middleware for Web Services Composition[END_REF], as our discussion of related work will show.

Assume that monotonicity is addressed, either by enforcing it, or by dealing with the lack of it. Then, new avenues for composite service management can be considered, by taking advantage of monotonicity: (a) A called service that strictly improves its QoS cannot strictly worsen the QoS of the orchestration. Therefore, it is enough for the orchestration to monitor QoS degradations for each called service. Negotiations and penalties occur on the basis of understandable rules. If suitable, relations between the orchestration and its called services can rely on QoS contracts.

It is then the duty of the orchestration (or of some third party) to monitor such contracts for possible violation.

(b) Since we build on a contract-based philosophy, the orchestration itself must be able to offer QoS contracts to its customers. This necessitates relating the contracts the orchestration has with its involved services to the overall contract it can offer to its customers. We refer to this as contract composition. (c) Thanks to monotonicity, it is possible to perform QoS-based late binding of services by selecting, at run time, the best offer among a pool of compliant candidates-by "compliant" we mean candidates satisfying some given functional property.

Handling Probabilistic QoS: To handle uncertainty in QoS, probabilistic frameworks have been favored by a number of authors [START_REF] Calinescu | Dynamic QoS Management and Optimization in Service-Based Systems[END_REF][START_REF] Hwang | A Probabilistic QoS Model and Computation Framework for Web Services-Based Workflows[END_REF][START_REF] Hwang | A probabilistic approach to modeling and estimating the QoS of web-services-based workflows[END_REF][START_REF] Menascé | A heuristic approach to optimal service selection in Service Oriented Architectures[END_REF][START_REF] Rosario | Probabilistic qos and soft contracts for transaction based web services[END_REF][START_REF] Rosario | Probabilistic QoS and soft contracts for transaction based Web services orchestrations[END_REF][START_REF] Sato | Stochastic modeling of composite web services for closed-form analysis of their performance and reliability bottlenecks[END_REF][START_REF] Zeng | Quality driven Web services composition[END_REF][START_REF] Zeng | QoS-Aware Middleware for Web Services Composition[END_REF][START_REF] Zeng | Dynamic composition and optimization of Web services[END_REF][START_REF] Zheng | Qos analysis for web service compositions based on probabilistic qos[END_REF]. When the workflow of the orchestration is statically defined regardless of data, rules for composing QoS probability distributions of the called services have been proposed for various QoS domains [START_REF] Abundo | Optimal admission control for a qos-aware service-oriented system[END_REF][START_REF] Alrifai | Combining global optimization with local selection for efficient qos-aware service composition[END_REF][START_REF] Ardagna | Model Driven QoS Analyses of Composed Web Services[END_REF][START_REF] Ardagna | QoS-Driven Web Services Selection in Autonomic Grid Environments[END_REF][START_REF] Ardagna | Global and Local QoS Guarantee in Web Service Selection[END_REF][START_REF] Cardellini | Adaptive management of composite services under percentile-based service level agreements[END_REF][START_REF] Yu | Service Selection Algorithms for Composing Complex Services with Multiple QoS Constraints[END_REF].

Optimal service selection among different options has been solved by efficient optimization methods, by using, for example, Markov models [START_REF] Abundo | Optimal admission control for a qos-aware service-oriented system[END_REF][START_REF] Calinescu | Dynamic QoS Management and Optimization in Service-Based Systems[END_REF]. For orchestrations exhibiting data-dependent workflow or QoS values, however, such methods do not apply. The QoS-aware model of the orchestration combines probability and non-determinism -non-determinism arises from the data-dependent selection among alternatives. Markov models do not apply, and Markov Decision Process models must be considered instead. The successive data-dependent choices performed are referred to as the scheduler of the MDP. Optimization can then be stated in two different ways. In most approaches [START_REF] Calinescu | Dynamic QoS Management and Optimization in Service-Based Systems[END_REF][START_REF] Hwang | A Probabilistic QoS Model and Computation Framework for Web Services-Based Workflows[END_REF][START_REF] Hwang | A probabilistic approach to modeling and estimating the QoS of web-services-based workflows[END_REF][START_REF] Menascé | A heuristic approach to optimal service selection in Service Oriented Architectures[END_REF][START_REF] Sato | Stochastic modeling of composite web services for closed-form analysis of their performance and reliability bottlenecks[END_REF][START_REF] Zheng | Qos analysis for web service compositions based on probabilistic qos[END_REF], the scheduler itself is also randomized, thus resulting in a larger Markov model (assuming that sources of randomness are all independent). Alternatively, a max-min optimization can be performed, where the min is computed among the different service alternatives for a given fixed scheduler, and then the max over schedulers is computed. These methods have been widely used for off-line orchestration design. Optimal on-line service selection or binding is much more demanding. Mathematically speaking, this activity amounts to solving a stochastic control problem [START_REF] Bensoussan | Stochastic Control of Partially Observable Systems[END_REF], in which, at each decision step, the expected remaining overall QoS is optimized and best decision is taken. Stochastic control is computationally demanding unless the considered orchestration is very small-this approach has not been considered in the literature.

In the previous paragraph, we have advocated the importance of monotonicity and have discussed its (good) consequences for QoS-aware management of composite services. Can we lift these considerations to probabilistic QoS? To compare random variables, stochastic ordering has been proposed in various forms and extensively used in the area of economics and operations research [START_REF] Shaked | Stochastic Orders and their Applications[END_REF][START_REF] Shaked | Stochastic Orders[END_REF][START_REF] Kamae | Stochastic inequalities on partially ordered spaces[END_REF]. Using this concept, monotonicity was lifted to the probabilistic setting for the particular case of latency in [START_REF] Bouillard | Monotonicity in Service Orchestrations[END_REF]. Assuming that monotonicity can be lifted to the probabilistic setting for general QoS, the approach outlined in (a), (b), and (c) above becomes applicable and simple techniques can be developed for QoS aware service management based on con-tracts. This agenda was developed by a subgroup of authors of this paper in [START_REF] Bouillard | Monotonicity in Service Orchestrations[END_REF][START_REF] Rosario | Probabilistic qos and soft contracts for transaction based web services[END_REF][START_REF] Rosario | Probabilistic QoS and soft contracts for transaction based Web services orchestrations[END_REF], for the restricted case of latency.

Our Contribution: In this paper we extend our previous work on latency-aware management of composite services to generic, possibly multi-dimensional, QoS. In particular, QoS domains are no longer totally but only partially ordered, which causes significant increase in difficulty. Also, we take advantage of our formal approach to QoS management in developing a technique of weaving QoS aspects in the functional specification of a composite service. Our approach proceeds through the three steps (a), (b), and (c). Overall, we see our main contribution as being a comprehensive and mathematically sound framework for contract-based QoS-aware management of composite services, relying on monotonicity. This framework consists of the following.

An Abstract Algebraic Framework for QoS composition: As QoS composition is the primary building block of QoS-aware management, it is of interest to develop abstract algebraic composition rules. We propose such an abstract algebraic framework encompassing key properties of QoS domains and capturing how the QoS of the orchestration follows from combining QoS contributions by each requested service. This algebraic framework relies on an abstract dioid2 (D, max, ⊕), where D is the (possibly multi-dimensional) QoS domain. The abstract addition of the dioid identifies with the "max" operation associated with the partial order of the QoS domain; it captures both the preference among services in competition and the cost of synchronizing the return of several services requested in parallel. The increment in QoS caused by the different service calls is captured by the abstract multiplication of the dioid, here denoted by ⊕. A dioid framework for QoS was already proposed in [START_REF] Bistarelli | Unicast and multicast qos routing with soft-constraint logic programming[END_REF][START_REF] Bistarelli | A nonmonotonic soft concurrent constraint language for sla negotiation[END_REF][START_REF] Bistarelli | Soft constraints for quality aspects in service oriented architectures[END_REF][START_REF] Buscemi | Cc-pi: a constraint-based language for specifying service level agreements[END_REF][START_REF] Buscemi | Qos negotiation in service composition[END_REF][START_REF] Yu | Framework for Web service query algebra and optimization[END_REF]. With comparison to the above references, we propose in addition a new competition operator that must be considered when performing late binding; this competition operator captures the additional cost of the on-line comparison of the QoS within a pool of competing services. We show how our abstract algebraic framework can be specialized to encompass known QoS domains.

A Careful Handling of Monotonicity: We then study monotonicity in this generic QoS context, by proposing conditions enforcing it for both non-probabilistic and probabilistic QoS frameworks. Guidelines for how to enforce monotonicity are derived and ways are proposed to circumvent a lack of monotonicity. The mathematical justification of the extension required to deal with probabilistic QoS domains that are only partially, not totally ordered is non-trivial.

Support for Separation of Concerns: QoS-aware management of composite services requires developing a QoS-aware model of a service orchestration, which can be cumbersome. It is thus desirable to offer means to develop function and QoS in most possible orthogonal ways. We have developed an implementation of our mathematical approach in which QoS-aware orchestration models are automatically generated, from a specification of the function only, augmented with the declaration of the QoS domains and their algebra. This model can be executed to analyze the orchestration and perform QoS contract composition. We have implemented this technique on top of the Orc language for orchestrations [START_REF] Kitchin | A Language for Task Orchestration and its Semantic Properties[END_REF][START_REF] Misra | Computation Orchestration: A Basis for Wide-Area Computing[END_REF]. 3Managing QoS by Contracts: By building on top of monotonicity, we advocate the use of contract-based QoS-aware management of composite services, in which the considered orchestration establishes QoS contracts with both its users and its requested services. Contract-based design amounts to performing QoS contract composition [START_REF] Rosario | Probabilistic QoS and soft contracts for transaction based Web services orchestrations[END_REF], which is the activity of estimating the tightest end-to-end QoS contract an orchestration can offer to its customer, from knowing the contract with each requested service. QoS composition is developed in Section 3.2. Late service selection or binding is performed on the basis of run-time QoS observations, by simply selecting, among different candidates, the one offering best QoS. Monotonicity ensures that this greedy policy will not lead to a loss in overall QoS performance of the orchestration. Best service binding is a built-in mechanism in our model, see Procedure 1 in Section 3.2. To ensure satisfaction of the QoS contract with its users, it is enough to monitor the conformance of each requested service with respect to its contract, since a requested service improving its QoS can only improve the overall QoS of the orchestration. This was developed in [START_REF] Rosario | Probabilistic QoS and soft contracts for transaction based Web services orchestrations[END_REF] for the case of latency and the techniques developed in this reference extend to multi-dimensional QoS. To account for uncertainty in QoS, soft probabilistic QoS contracts were proposed in [START_REF] Rosario | Probabilistic qos and soft contracts for transaction based web services[END_REF][START_REF] Rosario | Probabilistic QoS and soft contracts for transaction based Web services orchestrations[END_REF] for the case of latency and are extended in this paper to multidimensional QoS. Such contracts consist of the specification of a probability distribution for the QoS dimensions. Performing this requires formalizing what it means, for a service, to perform better than its contract. We rely for this on the notion of stochastic ordering [START_REF] Shaked | Stochastic Orders and their Applications[END_REF][START_REF] Shaked | Stochastic Orders[END_REF][START_REF] Kamae | Stochastic inequalities on partially ordered spaces[END_REF] for random variables, a concept that is widely used in econometrics. All our results regarding monotonicity extend to the case in which ordering of QoS values is replaced by stochastic ordering. We can thus apply statistical testing [START_REF] Rosario | Probabilistic QoS and soft contracts for transaction based Web services orchestrations[END_REF] to detect at run time the violation of contracts in this context. To illustrate our approach, we use this tool in performing contract composition for the example TravelAgent2.

The paper is organized as follows. Related work is discussed in Section 6. Our QoS calculus is developed in Section 2; it provides the generic basis for QoS composition. Section 3 develops our theory of QoS for services orchestrations. Algebraic rules for QoS composition and best service binding are developed. Monotonicity is studied. Support for probabilistic QoS is presented. In Section 4 we present the implementation of our approach on top of the Orc language. Evaluation of this implementation on the TravelAgent2/3 is discussed in Section 5.

QoS Calculus

In this section we develop our QoS calculus as a basis for QoS composition. A toy example is used to motivate our abstract algebra. Then we illustrate how this algebra can encompass concrete QoS domains. Finally the algebra itself is formalized in a way similar to [START_REF] Bistarelli | Unicast and multicast qos routing with soft-constraint logic programming[END_REF][START_REF] Buscemi | Cc-pi: a constraint-based language for specifying service level agreements[END_REF][START_REF] Buscemi | Qos negotiation in service composition[END_REF][START_REF] De Nicola | Coordination Models and Languages, chap. A Process Calculus for QoS-Aware Applications[END_REF].

An Informal Introduction

In dealing with multi-dimensional QoS, several approaches can be taken. First, one can see QoS as only partially, not totally ordered. In this case QoS outcomes q and q satisfy q≤q if and only if q(i)≤q (i) holds for all dimensions i = 1 . . . n of the QoS. Alternatively, one could prioritize dimensions and then take the lexicographic (total) order q≤q iff there exists some i such that q(j)=q (j) for j < i and q(i)≤q (i). Finally, different dimensions could be weighted by considering i w i q(i) with its total order, where the w i 's are weights to be selected, e.g., by using AHP (Analytical Hierarchy Process) [START_REF] Thomas | How to make a decision: the Analytic Hierarchy Process[END_REF]. Finally, recall that dealing with uncertainty is by regarding QoS outcomes as random variables.

We use colored Petri nets to model the executions of a service orchestration. Queries are represented by tokens that circulate throughout the net and service calls are represented by transitions. To represent QoS measures and how they evolve while the query is being processed by the orchestration, we equip the tokens with a color, consisting of a pair (v, q) = (data, QoS value).

(1) Fig. 4 shows such a net. Each query is represented by a token entering the net at the top place. The marking shown figures the reception of such a query by the net: it results in the launching of three sub-queries in parallel. The first two sub-queries re-synchronize when calling t 2 . The third sub-query branches toward either calling t 1 or calling t 1 and then confluences. The processing of the query ends when the token reaches the exit place. With reference to this figure, the different operators needed to compute the evolution of QoS measures are introduced next. In the following discussion, we only consider choices governed by QoS (data-driven choices play no role in QoS evaluation).

We begin by giving the basic abstract operators for use in QoS management. The objective is to capture, via generic operators, how QoS measures get modified when calling a service (traversing a transition), when synchronizing the responses of services (figured by several tokens consumed by a same transition), or when different services compete against each other (such as t 1 and t 1 in Fig. 4).

t 1 t 1 t 2 δq 1 q 0 δq 2 q 2 q 2 q 1 q 0 ∨ q 1 t 1 q 1 q 0 q 1 t 2 q 0 δq 1 δq 2 δq 1
Fig. 4 A simple example. Only QoS values are mentioned -with no data. Each place comes labeled with a QoS value q which is the q-color of the token if it reaches that place.

Incrementing QoS: When traversing a transition, each token gets its QoS value incremented, which is captured by operator ⊕. For example, the token in the left most place has initial QoS value q 0 , which gets incremented as q 1 = q 0 ⊕δq 1 when traversing transition t 1 .

Synchronizing tokens: A transition t is enabled when all places in its preset have tokens. For the transition to fire, these tokens must synchronize, which results in the "worst" QoS value, denoted by the supremum ∨ associated to a given order ≤, where smaller means better. For example, when the two input tokens of t 2 get synchronized, the resulting pair of tokens has QoS q 0 ∨ q 1 . This is depicted in Fig. 4 by the shaded area.

QoS policy: Focus on the conflict following place q 0 . The QoS alters the usual semantics of the conflict by using a QoS policy that is reminiscent of the classical race policy [START_REF] Marsan | The effect of execution policies on the semantics and analysis of stochastic petri nets[END_REF]. The competition between the two conflicting transitions in the post-set is solved by using order ≤ also used for token synchronization: test whether q o ⊕ δq 1 ≤ q o ⊕ δq 1 holds, or the converse. The smallest of the two wins the competition-nondeterministic choice occurs if equality holds.

However, comparing q o ⊕ δq 1 and q o ⊕ δq 1 generally requires knowing the two alternatives, which in general can affect the QoS of the winner. This is taken into account by introducing a special operator " ": If two transitions t and t are in competition and would yield tokens with respective QoS values q and q in their post-sets, the cost of comparing them to set the competition alters the QoS value of the winner in that-assuming the first wins-q is modified and becomes q q , where denotes a new operator called the competition function. For the case of the figure, we get if (q o ⊕ δq 1 ) ≤ (q o ⊕ δq 1 ) then t 1 fires and q 1 = (q o ⊕ δq 1 ) (q o ⊕ δq 1 ) if (q o ⊕ δq 1 ) ≥ (q o ⊕ δq 1 ) then t 1 fires and q 1 = (q o ⊕ δq 1 ) (q o ⊕ δq 1 )

(2)

Some Examples of QoS Domains

We now instantiate our generic framework by reviewing some examples of QoS domains, with their associated relations and operators ⊕, ≤, and .

Latency: QoS value of a token gives the accumulated latency d, or "age" of the token since it was created when querying the orchestration. Corresponding QoS domain is R + , equipped with ⊕ d = +, and ≤ d = the usual order on R + . Regarding operator d , for the case of latency with race policy [START_REF] Marsan | The effect of execution policies on the semantics and analysis of stochastic petri nets[END_REF], comparing two dates via d 1 ≤ d d 2 does not impact the QoS of the winner: answer to this predicate is known as soon as the first event is seen, i.e., at time min(d 1 , d 2 ). Hence, for this case, we take d 1 d d 2 = d 1 , i.e., d 2 does not affect d 1 . This is the basic example of QoS measure, which was studied in [START_REF] Bouillard | Monotonicity in Service Orchestrations[END_REF].

Security level: QoS value s of a token belongs to ({high, low},≤ s ), with high ≤ s low. Each transition has a security level encoded in the same way, and we take ⊕ s = ∨ s , reflecting that a low security service processing a high security data yields a low security response. Regarding operator s , again, comparing two values via s 1 ≤ s s 2 does not impact the QoS of the winner: QoS values are strictly "owned" by the tokens, and therefore do not interfere when comparing them. Hence, we take again s 1 s s 2 = s 1 , i.e., s 2 does not affect s 1 . More complex partially ordered security domains can be handled similarly.

We do not claim that this solves security in orchestrations. It only serves a more modest but nevertheless useful purpose, namely to propagate and combine security levels of the requested services to derive the security level of the orchestration. How security levels of the requested services is established is a separate issue, e.g., by relying on reputation or through the negotiation of security contracts.

Reliability: Reliability is captured similarly as follows. The QoS attribute of a token takes its value in the ordered set ({in operation, failed},≤ r ), with in operation ≤ r failed. Other operators follow as for the case of Security level. By equipping this QoS domain with probability distributions we capture reliability in our setting.

Cost: QoS value c captures the total cost of building a product by assembling its parts. Referring to Fig. 4, costs are accumulated when tokens get synchronized. When a token traverses a transition, its cost is incremented according to the cost of the action being performed. A natural definition for the corresponding QoS domain would thus be (D c , ≤ c , ⊕ c ) = (R, ≤, +) or (Z, ≤, +). Unfortunately, when taking this definition, synchronizing tokens using ∨ c amounts to taking the worst cost, which is not what we need. We need instead the sum of the costs of incoming tokens, an operation different from ∨ c .

The right idea is to encode the cost by using multi-sets. The overall cost held by a token is obtained by adding the costs of the constituting parts plus the costs of successive assembly actions. Parts and actions are then handled as "quanta of cost" and the token collects them while traversing the orchestration. This leads to defining the QoS domain as a multi-set of cost types: D c = Q → N, where Q is a set of cost types equipped with a cost labeling function λ : Q → R + . Each q ∈ Q corresponds to either a part or an assembly action and has a unique identifier. Domain D c is equipped with the partial order of functions and ∨ c follows as the corresponding least upper bound. Recall that operator ∨ c is used to synchronize tokens, see Fig. 4. In this context, it makes sense to assume that cost types held by the tokens for synchronization are different. For this case, ∨ c coincides with the addition of multi-sets and costs get added as wished. Traversing a transition amounts to adding the corresponding quantum in the set, hence, identifying singletons with the corresponding element, ⊕ c is again the addition of multi-sets. Finally,

(D c , ≤ c , ⊕ c ) = (Q → N, ⊆, +). As before, the competition function is c 1 c c 2 = c 1 when c 1 ≤ c c 2 , i.e., c 2 does not affect c 1 .
Composite QoS, first example: We may also consider a composite QoS measure consisting of the pair (s, r), where s is as above and r is some Quality of Response with domain D r , equipped with ≤ r and r . Since the two components s and r are similar in nature, we simply take ≤=≤ s × ≤ r and = ( s , r ).

Composite QoS, second example: So far the special operator did not play any role. We will need it, however, for the coming case, in which we consider a composite QoS measure (s, d), where s and d are as above. We want to give priority to security s, and thus we now take ≤ to be the lexicographic order obtained from the pair (≤ s , ≤ d ) by giving priority to s.

Focus on operator . Consider the marking resulting after firing t 1 and t 1 in Fig. 4, enabling t 2 and t 2 , which are in conflict. Let the QoS value of the token in postset of t 2 , i.e. q 2 = (low , d 2 ). (Recall that q 2 = (q o ∨ q 1 )⊕δq 2 .) Similarly, let q 2 = (low , d 2 ) where d 2 > d d 2 . From the competition rule, transition t 2 wins the conflict and the outgoing token has QoS value q 2 = (low , d 2 ). However, the decision to select t 2 can only be made when q 2 is known, that is, at time d 2 . The reason for this is that, since at time d 2 a token with security level low is seen at place following t 2 , it might be that a token with security level high later enters place following t 2 . The latter would win the conflict according to our QoS policy -security level prevails. Observing that the right most token indeed has priority level low can only be seen at time d 2 . Thus it makes little sense assigning q 2 = (low , d 2 ) to the outgoing token; it should rather be q 2 = (low , d 2 ). This is why a non-trivial operator is needed, namely, writing ≤ for short instead of ≤ d :

(s, d) (s , d ) = if d ≤ d and s = low then(s, d ) else (s, d) (3) 

The QoS Calculus

In this section we formalize the discussion of Section 2.1. We introduce algebraic QoS domains. Our framework is a mild modification of the one proposed by [START_REF] Bistarelli | Unicast and multicast qos routing with soft-constraint logic programming[END_REF][START_REF] Buscemi | Cc-pi: a constraint-based language for specifying service level agreements[END_REF][START_REF] Buscemi | Qos negotiation in service composition[END_REF][START_REF] De Nicola | Coordination Models and Languages, chap. A Process Calculus for QoS-Aware Applications[END_REF], based on semi-rings. Besides some minor adaptations, the main difference lies in the consideration of the "competition function".

Definition 1 (QoS domain) A QoS domain is a tuple Q = (D, ≤, ⊕, )
where:

-(D, ≤) is a partial order that is a complete upper lattice, meaning that every subset S ⊆ D has a least upper bound denoted by S. For any S ⊆ D, min(S) denotes the set of all q ∈ S such that no q ∈ S exists such that q < q, with a symmetric definition for max(S). -Operator ⊕ : D × D → D is a commutative semi-group with neutral element 0 and such that: monotonicity:

q 1 ≤ q 1 q 2 ≤ q 2 =⇒ (q 1 ⊕ q 2 ) ≤ (q 1 ⊕ q 2 ) (4) ∀q, q ∈ D, ∃q ∈ D =⇒ q ≤ q ⊕ q (5) 
-The competition function : D × 2 D → D satisfies: q = q where denotes the empty set (6) q ≤ q q 1 ≤ q 1 . . .

q n ≤ q n          =⇒ q {q 1 . . . q n } ≤ q {q 1 . . . q n } (7) 
q 0 < q 1 =⇒ q 0 {q 1 , q 2 . . . q n } ≤ q 1 {q 0 , q 2 . . . q n } (8)

∀i = 1 . . . n : q i ≤q =⇒ q {q 1 . . . q n }=q (9) 
Referring to our motivating discussion: D is the set in which QoS takes its values; q≤q is interpreted as " q is better than (or preferred to) q "; partial order ≤ gives raise to the least upper bound ∨, interpreted as the worst QoS; operator ⊕ is used to accumulate QoS quanta from causally related events; its condition (5) will play an important role in the study of monotonicity. The competition function accounts for the additional cost of comparing the QoS of competing events, additional cost induced on the winning event.

The special monotonicity conditions ( 8) and ( 9) for the competition function ensure that taking into account the cost of comparing will not revert the QoSbased ordering of the events under comparison. The actual size of the second component of depends on the considered event, this is why the domain of is D × 2 D . Examples were given in Section 2.1. It is easily checked that axioms are met by these examples.

If some QoS measure q of the orchestration is irrelevant to a service it involves, we take the convention that this service acts on tokens with a 0 increment on the value of q. With this convention we can safely assume that the orchestration, all its requested services, and all its tokens use the same QoS domain. This assumption will be in force in the sequel.

A QoS framework for composite services

This section collects the technical material in support of our theory and developments. We first recall the needed background on Petri nets as a supporting framework for service orchestrations-to simplify our presentation we restrict ourselves to safe free choice nets, see below. On top of this framework, we define priority rules for QoS based selection of competing services and we develop OrchNets as a model of QoS-sensitive composite services. We then study monotonicity. The above material is subsequently lifted to probabilistic QoS. We conclude by some methodological discussion.

Petri Nets, Occurrence Nets, Orchestration Nets

A Petri net [START_REF] Murata | Petri nets: Properties, analysis and applications[END_REF] is a tuple N = (P, T , F, M 0 ), where: P is a set of places, T is a set of transitions such that P ∩ T = ∅, F ⊆ (P × T ) ∪ (T × P) is the flow relation. For x ∈ P ∪ T , we call • x = {y | (y, x) ∈ F } the preset of x and x • = {y | (x, y) ∈ F} the postset of x. A marking is a map M : P → N; in the tuple defining N , M 0 is the initial marking. Firing transition t at marking M requires M (p) > 0 for every p ∈ • t and yields the new marking M such that

M (p) = M (p) -1 for p ∈ • t \ t • , M (p) = M (p) + 1 for p ∈ t • \ • t, and M (p) = M (p) otherwise.
For a net N = (P, T , F, R, M 0 ) the causality relation is the transitive and reflexive closure of F and we set ≺ = ∩ =. For a node x ∈ P ∪ T , the set of causes of x is x = {y ∈ P ∪ T | y x}. Say that two transitions t, t are in conflict, written t#t , if • t ∩ • t = ∅ or t and t possess some causes that are in conflict. Say that net N is free choice if the relation

{(t, t ) | • t ∩ • t = ∅} forms a partition of T . If N is free choice, a cluster [38] is a minimal set c of places and transitions of N such that ∀t ∈ c =⇒ • t ⊆ c ∀p ∈ c =⇒ p • ⊆ c (10) 
Any two distinct transitions of a same cluster are in conflict and clusters form a partition of the set of all nodes of a free choice net.

Occurrence nets: A Petri net is safe if all its reachable markings M satisfy

M (P) ⊆ {0, 1}. A safe net N = (P, T , F, M 0 ) is an occurrence net (O-net) iff 1.
is a partial order and t is finite for any t ∈ T ; 2. for each place p ∈ P, |

• p| ≤ 1; 3. for each t ∈ T , ¬# t holds; 4. M 0 = {p ∈ P| • p = ∅} holds. A configuration of N is a subnet κ of nodes of N such that: 1) κ is causally closed, i.e, if x
x and x ∈ κ then x ∈ κ; and, 2) κ is conflict-free. For convenience, we require that the maximal nodes in a configuration are places. A configuration κ 2 is said to extend configuration κ 1 (written as

κ 1 κ 2 ) if κ 1 ⊆ κ 2 and t ∈ κ 2 \ κ 1 , t ∈ κ 1 such that t t .
Two configurations κ and κ are said to be compatible if 1) κ ∪ κ is a configuration, and 2) κ κ ∪ κ and κ κ ∪ κ . Node x is called compatible with configuration κ if x and κ are compatible. Transition t is enabled by κ if t ∈ κ and κ ∪ {t} ∪ t • is a configuration. For κ a configuration, its future N κ is defined as

N κ = maxPlaces(κ) ∪ {x ∈ P ∪ T | x ∈ κ and x is compatible with κ} ( 11 
)
where maxPlaces(κ) is the set of maximal nodes of κ (which are all places). Two nodes x and y are said to be concurrent if they are neither in conflict nor causally related.

Unfoldings and Orchestration nets:

The executions of a safe Petri net N can be represented by its unfolding U N , which is an occurrence net collecting all executions of N in such a way that common prefixes are represented once. For example, Fig. 4 shows a net, the unfolding of which is obtained by removing the maximal (exit) place and attaching a different copy of this exit place to each exit transition. Formally, unfolding U N is derived from N [START_REF] Esparza | An improvement of McMillan's Unfolding Algorithm[END_REF] in the following way. For N = (P, T , F, R, M 0 ) and N = (P , T , F , R , M 0 ) two safe Petri nets, a morphism ϕ : N → N is a function from P ∪ T to P ∪ T , mapping P to P and T to T , preserving the initial marking: ϕ(M 0 ) = M 0 , and preserving the flow and read relations:

ϕ( • t) = • ϕ(t), ϕ(t • ) = ϕ(t) • , and ϕ( • t) = • ϕ(t).
If N is another occurrence net and ψ : N → N is a morphism, then there exists a third morphism ψ : N → U N such that ψ factorizes as ψ = ϕ•ψ, where • is the composition of functions. This property characterizes the unfolding U N . If net N is free choice, then so is its unfolding U N .

Definition 2 (orchestration net) Call Orchestration net any free choice safe Petri net possessing a finite unfolding.

We insist that Petri nets with loops can still possess a finite unfolding. An example of this is the Petri net modeling the examples TravelAgent of Fig. 2 and Fig. 3, which involve successive retries guarded by a timeout. In the sequel we only consider Petri nets that are orchestration nets. Examples of Orchestration nets are the loop-free and 1-safe WorkFlow nets (WFnets). WF-nets were proposed by van der Aalst [START_REF] Van Der Aalst | Verification of workflow nets[END_REF][START_REF] Van Der Aalst | Workflow Management: Models, Methods, and Systems[END_REF][START_REF] Van Der Aalst | Workflow patterns[END_REF] and are Petri nets with a special initial place (where the initial tokens are provided) and a special final place (from which tokens exit the net).

OrchNets

The OrchNets we propose as a model to capture QoS in composite services are a special form of colored occurrence nets (CO-nets). Executions of Workflow Nets [START_REF] Van Der Aalst | Verification of workflow nets[END_REF][START_REF] Van Der Aalst | The Application of Petri Nets to Workflow Management[END_REF] are also CO-nets. The reader can compare our approach with the graph-based approach of [START_REF] Yu | Framework for Web service query algebra and optimization[END_REF].

Throughout this section we assume a QoS domain (D, ≤, ⊕, ). OrchNets formalize the notion of an orchestration with its QoS. The mathematical semantics of OrchNets formalizes QoS contract composition, i.e., the process of deriving end-to-end QoS of the orchestration from the QoS of its involved services. Value and QoS functions can be nondeterministic.

Definition 3 (OrchNet) An OrchNet is a tuple N = (N, V, Q, Q init ) con- sisting of -A finite free choice occurrence net N with token attributes c = (v, q) = (data, QoS value) -A family V = (ν t ) t∈T of
The nondeterminism of a function can be resolved by introducing an explicit daemon ω making choices explicit. As a result, ν t (ω), ξ t (ω), and ξ p (ω) are all deterministic functions of their respective inputs. We denote by Ω the set of all daemons. 4We now explain how the presence of QoS values attached to tokens affects the semantics of OrchNets. Any place p of occurrence net N has a pair (v p , q p ) = (data, QoS value) assigned to it, which is the color held by a token reaching that place. In the following QoS policy, the role of data in the semantics has been abstracted-taking it into account would only increase the notational burden without introducing changes worth the study.

Procedure 1 (QoS aware semantics) Let ω ∈ Ω be any value for the daemon. The continuation of any finite configuration κ(ω) is constructed by performing the following steps, where we omit the explicit dependency of κ(ω), ν t (ω), and ξ t (ω), with respect to ω:

1. Choose nondeterministically a -minimal cluster c in the future of κ. 2. For every t ∈ c, compute:

q t = p ∈ • t q p ⊕ ξ t (v p | p ∈ • t) (12) 
3. Competition step: select nondeterministically a minimal transition t * of c such that no other minimal transition t of c exists with q t < q t * . The set Ω of daemons is extended to resolve this additional nondeterminism. 4. Augment κ to κ = κ ∪ {t * } ∪ t • * , and assign, to every p ∈ t • * , the pair (v, q), where

v = ν t (v p | p ∈ • t) q = q t * {q t | t ∈ c, t = t * } (13) 
Competition step 3 formalizes on-line service binding based on best QoS.

Step 4 of QoS policy simplifies for all examples of Section 2.1 by not needing the second formula of ( 13), except for the last one, see formula [START_REF] Van Der Aalst | The Application of Petri Nets to Workflow Management[END_REF]. Observe that the augmented configuration κ as well as the pair (v, q) depend on ω. We are now ready to formalize what the set Ω of all daemons should be for Procedure 1.

Defining the set Ω of all daemons: The nondeterminism of a function mapping X to Y can be resolved by introducing an explicit daemon making choices explicit. For X and Y two sets, call (X, Y )-daemon (or simply daemon if no confusion can result) any total function

ω : X×2 Y → Y (14) 
The set of all (X, Y )-daemons is denoted by Ω XY or simply Ω. Determinizing a nondeterministic function χ : X→2 Y consists in selecting a daemon ω ∈ Ω, which fixes the (deterministic) function

χ ω (x) = def ω(x, χ(x)).
This construction is implicitly invoked each time a daemon is mentioned. To explicit what the set Ω of all daemons should be, for Procedure 1, we first identify the different sources of nondeterminism arising in this procedure. First of all, the nondeterminism in the choice of the minimal cluster c in Step 1 does not need to get resolved since it yields a confluent evaluation of the end-toend QoS of configurations, because all minimal clusters are concurrent and ⊕ is commutative and associative. Consequently, sources of nondeterminism for consideration are 1) the ν t and ξ t for every t ∈ T (the set of transitions of N ), and 2) the nondeterministic selection of the optimal transition in Step 3. Denoting by C the set of all clusters of N , we apply construction [START_REF] Bistarelli | Soft constraints for quality aspects in service oriented architectures[END_REF] with

X = T and Y = D × D which yields Ω X = C and Y = T which yields Ω
where D is the domain of data, and set

Ω = def Ω × Ω (15) 
Component ω resolves the nondeterminism of ν t and ξ t , whereas component ω resolves the nondeterminism in selecting the optimal transition in Step 3. Since occurrence net N is finite, the QoS policy terminates in finitely many steps when N κ(ω) = ∅. The total execution thus proceeds by a finite chain of nested configurations: ∅ = κ 0 (ω) ≺ κ 1 (ω) . . . ≺ κ n (ω). Hence, κ n (ω) is a maximal configuration of N that can actually occur according to the QoS policy, for a given ω ∈ Ω. We generically denote this maximal configuration by κ(N , ω).

(16

)
For the example of latency, our QoS policy boils down to the classical race policy [START_REF] Marsan | The effect of execution policies on the semantics and analysis of stochastic petri nets[END_REF]. In general, our QoS policy bears some similarity with the "preselection policies" of [START_REF] Marsan | The effect of execution policies on the semantics and analysis of stochastic petri nets[END_REF], except that the continuation is selected based on QoS values in our case, not on random selection. We will also need to compute the QoS for any configuration of N , even if it is not a winner of the competition policy. We do this by modifying Procedure 1 as follows:

Procedure 2 (QoS of an arbitrary configuration) Let κ max be any maximal configuration of N and κ κ max a prefix of it. With reference to Procedure 1, perform: step 1 with c any -minimal cluster in κ max \ κ, step 2 with no change, and then step 4 for any t as in step 2. Performing this repeatedly yields the pair (v p , q p ) for each place p of κ max .

We are now ready to define what the QoS value of an OrchNet is:

Definition 4 (End-to-end QoS) For κ any configuration of occurrence net N , and ω any value for the daemon, the end-to-end QoS of κ is defined as

E ω (κ, N ) = p∈maxPlaces(κ) q p (ω) (17) 
The end-to-end QoS E ω (N ) and pessimistic end-to-end QoS F ω (N ) of Orch-Net N are respectively given by

E ω (N ) = E ω (κ(N , ω), N ) (18) 
F ω (N ) = max{E ω (κ, N ) | κ ∈ V (N )} ( 19 
)
where function max picks one of the maximal values in a partially ordered set, κ(N , ω) is defined in [START_REF] Buscemi | Cc-pi: a constraint-based language for specifying service level agreements[END_REF], and V (N ) is the set of all maximal configurations of net N .

Observe that E ω (N ) ≤ F ω (N ) holds and E ω (N ) is indeed observed when the orchestration is executed. The reason for considering in addition F ω (N ) will be made clear in the next section on monotonicity. So far formulas ( 18) and ( 19) provide the composition rules for deriving the end-to-end QoS for each individual call to the orchestration. Monte-Carlo simulation techniques can then be used on top of ( 18) and [START_REF] Cardellini | Adaptive management of composite services under percentile-based service level agreements[END_REF] to derive the end-to-end probabilistic QoS contract from the contracts negotiated with the requested services [START_REF] Rosario | Probabilistic qos and soft contracts for transaction based web services[END_REF][START_REF] Rosario | Probabilistic QoS and soft contracts for transaction based Web services orchestrations[END_REF]. See also [START_REF] Kattepur | Importance sampling of probabilistic contracts in web services[END_REF] for fast Monte-Carlo simulation techniques.

Monotonicity

The monotonicity of an orchestration with respect to QoS is studied in this section, for the non-probabilistic setting. Extension to the probabilistic setting is discussed in Section 3.4. We provide sufficient and structurally necessary conditions for monotonicity, when QoS is measured in terms of tight end-to-end QoS-missing proofs are deferred to Appendix A. When these conditions fail to hold, then pessimistic end-to-end QoS can be considered when dealing with contracts, as monotonicity is always guaranteed when using it. Monotonicity is assumed in the rest of the paper. Also, to simplify the presentation, the following assumption will be in force:

Assumption 1 QoS functions ξ t can be increased at will within their respective domain of values, independently for each transition t. This is only a technical assumption. This assumption rules out cases in which one requires, e.g., that QoS functions ξ t and ξ t can be modified at will, but subject to the constraint ξ t = ξ t . The general case yields the same results, at the price of more complex notations. The reader interested in the general case is referred to [START_REF] Rosario | A Theory of QoS for Web Service Orchestrations[END_REF].

For two families Q and Q of QoS functions, write

Q ≥ Q and Q init ≥ Q init to mean: ∀ω ∈ Ω, ∀t ∈ T ⇒ ξ t (ω) ≥ ξ t (ω) respectively ∀t ∈ T ⇒ Q init (t) ≥ Q init (t) (20) 
For

N = (N, V, Q , Q init ) (observe that N and V are unchanged), write (i) : N ≥ N ; (ii) : E(N ) ≥ E(N ); (iii) : F (N ) ≥ F (N )
to mean, respectively:

(i): Q ≥ Q and Q init ≥ Q init both hold; (ii): ∀ω ∈ Ω, E ω (N ) ≥ E ω (N ) holds; (iii): ∀ω ∈ Ω, F ω (N ) ≥ F ω (N ) holds. Definition 5 Call OrchNet N monotonic if ∀N : N ≥ N =⇒ E(N ) ≥ E(N ) Call OrchNet N pessimistically monotonic if ∀N : N ≥ N =⇒ F (N ) ≥ F (N )
The following immediate result justifies considering also the pessimistic endto-end QoS:

Theorem 1 Any OrchNet is pessimistically monotonic.

Consequently, it is always sound to base contract composition and contract monitoring [START_REF] Rosario | Probabilistic QoS and soft contracts for transaction based Web services orchestrations[END_REF] on pessimistic end-to-end QoS. This, however, has a price, since pessimistic end-to-end QoS is pessimistic compared to (actual) end-toend QoS. The next theorem gives conditions enforcing monotonicity:

Theorem 2 OrchNet N = (N, V, Q, Q init ) is monotonic if and only if: ∀ω ∈ Ω, ∀κ ∈ V (N ) =⇒ E ω (κ, N ) ≥ E ω (κ(N , ω), N ) (21) 
where V (N ) is the set of all maximal configurations of net N and κ(N , ω) is defined in [START_REF] Buscemi | Cc-pi: a constraint-based language for specifying service level agreements[END_REF].

Condition [START_REF] Cardoso | Quality of Service for workflows and Web service processes[END_REF] expresses that Procedure 1 implements globally optimal service selection. It is costly to verify and may not even be decidable in general. Thus, we develop a structural condition for monotonicity for Orchestration nets N (Definition 2). Orchestration net N induces an OrchNet N N = (U N , ν N , Q N , Q init ) by attaching, to each transition t of the unfolding U N of N , the value and QoS inherited from N through the unfolding N → U N .

Theorem 3 A sufficient condition for the OrchNet N N = (U N , ν N , Q N , Q init )
to be monotonic is that every cluster c of N satisfies the following condition:

∀t 1 , t 2 ∈ c, t 1 = t 2 =⇒ t • 1 = t • 2 . ( 22 
)
If, in addition, every transition of N is reachable and partial order (D, ≤) is such that for every q ∈ D, there exists q ∈ D such that q > q, then ( 22) is also necessary.

In words, a sufficient condition for monotonicity is that, each time branching has occurred in net N , a join occurs right after. The additional condition ensuring necessity is a reinforcement of condition (5).

Probabilistic Monotonicity

To account for uncertainties in QoS performance, soft probabilistic contracts were proposed in [START_REF] Rosario | Probabilistic qos and soft contracts for transaction based web services[END_REF], with associated composition and monitoring procedures, for the particular case of response time. In [START_REF] Rosario | Probabilistic QoS and soft contracts for transaction based Web services orchestrations[END_REF][START_REF] Rosario | Flexible probabilistic qos management of transaction based web services orchestrations[END_REF] the above approach was extended to more general QoS. In this section, we describe the corresponding model of probabilistic OrchNets, an extension of OrchNets supporting probabilistic behavior of QoS measures. Details are found in [START_REF] Rosario | A Theory of QoS for Web Service Orchestrations[END_REF].

In probabilistic OrchNets, the nondeterministic QoS functions ξ t are now random, and so are the non-deterministic selections of minima in competition step of Procedure 1. Equivalently, the set Ω for the values of the daemon is equipped with some probability P. To define monotonicity, we need to give a meaning to (20) when ξ t is random. This is achieved by considering the stochastic partial order [START_REF] Kamae | Stochastic inequalities on partially ordered spaces[END_REF] induced by partial order ≤ defined on D. We briefly recall this notion next. Consider ideals of D, i.e., subsets I of D that are downward closed: x ∈ I and y ≤ x =⇒ y ∈ I. Examples of ideals are: for R + , the intervals, [0, x] for all x; for R + × R + equipped with the product order, arbitrary unions of rectangles [0, x] × [0, y]. Now, if ξ has values in D, we define its distribution function by F (I) = P(ξ ∈ I), for I ranging over the set of all ideals of D. For ξ and ξ two random variables with values in D, with respective distribution functions F and F , define ξ ≥ s ξ iff for any ideal I of D, F (I) ≤ F (I) holds. [START_REF] De Nicola | Coordination Models and Languages, chap. A Process Calculus for QoS-Aware Applications[END_REF] With this new interpretation of the order, we will now show that Theorems 1-3 remain valid. We first define probabilistic OrchNets, which are OrchNets in which the QoS of the different services are randomized.

Definition 6 (probabilistic OrchNet) A probabilistic OrchNet is a pair (N , P) consisting of an OrchNet N following Definition 3 and a probability distribution P over the set Ω of daemons of N equipped with its Borel σalgebra.

We further assume that the random variables ν t (ω), ξ t (ω), where t ranges over the set T of all transitions of the OrchNet, and the different random selections of an optimum in Step 3 of Procedure 1 are all mutually independent. How can we lift monotonicity to this probabilistic setting? We first make precise what the set Ω of all daemons is. For t a generic transition, let (Ω t , P t ) be the set of possible experiments together with associated probability, for random latency ξ t ; and similarly for (Ω c , P c ), where c ranges over the set C of all clusters of N . Thanks to the assumption stated at the end of Definition 6, setting

Ω = t∈T Ω t × c∈C Ω c and P = t∈T P t × c∈C P c (24) 
yields the probabilistic part of Definition 6. In the nondeterministic framework of Section 3.3, we said that

ξ ≥ ξ if ξ(ω) ≥ ξ (ω) holds ∀ω ∈ Ω (25) 
Clearly, if two random latencies ξ and ξ satisfy condition [START_REF] Baccelli | Synchronization and Linearity[END_REF], then they also satisfy condition [START_REF] De Nicola | Coordination Models and Languages, chap. A Process Calculus for QoS-Aware Applications[END_REF]. That is, ordering (25) is stronger than stochastic ordering [START_REF] De Nicola | Coordination Models and Languages, chap. A Process Calculus for QoS-Aware Applications[END_REF]. Unfortunately, the converse is not true in general. For example, condition (23) may hold while ξ and ξ are two independent random variables, which prevents (25) from being satisfied. Nonetheless, the following result holds [START_REF] Kamae | Stochastic inequalities on partially ordered spaces[END_REF], which will allow us to proceed:

Theorem 4 Assume condition (23) holds for the two distribution functions F and F . Then, there exists a probability space Ω, a probability P over Ω, and two real valued random variables ξ and ξ over Ω, such that: 1. ξ and ξ possess F and F as respective distribution functions, and 2. condition (25) is satisfied by the pair ( ξ, ξ ) with probability 1.

The proof of this result is immediate if (D, ≤) is a total order. It is, however, highly nontrivial if ≤ is only a partial order. This theorem is indeed part of theorem 1 of [START_REF] Kamae | Stochastic inequalities on partially ordered spaces[END_REF]. 5 Theorem 4 allows to reduce the stochastic comparison of random variables to their ordinary comparison as functions defined over the same set of experiments endowed with a same probability. This applies in particular to each random QoS function and each random initial QoS function, when considered in isolation. Thus, when performing construction [START_REF] Esparza | An improvement of McMillan's Unfolding Algorithm[END_REF] for two OrchNets N and N , we can take the same pair (Ω t , P t ) to represent both ξ t and ξ t , and similarly for ξ p and ξ p . Applying [START_REF] Esparza | An improvement of McMillan's Unfolding Algorithm[END_REF] implies that both N and N are represented using the same pair (Ω, P). This leads naturally to Definition 6. In addition, applying Theorem 4 to each transition t and each minimal place p yields that stochastic ordering N ≥ s N reduces to ordinary ordering N ≥ N . Observe that this trick does not apply to the overall QoS E(N ) and E(N ) of the two OrchNets; the reason for this is that the space of experiments for these two random variables is already fixed (it is Ω) and cannot further be played with as theorem 4 requires. Thus we can reformulate probabilistic monotonicity as follows-compare with Definition 5:

Definition 7 Probabilistic OrchNet (N , P) is called probabilistically mono- tonic if, for any probabilistic OrchNet N such that N ≥ N , we have E(N ) ≥ s E(N ).
Note the careful use of ≥ and ≥ s . The following two results establish a relation between probabilistic monotonicity and monotonicity.

Theorem 5 If OrchNet N is monotonic, then, probabilistic OrchNet (N , P) is probabilistically monotonic for any probability P over the set Ω. Vice-versa, if probabilistic OrchNet (N , P) is probabilistically monotonic, then N is monotonic with P-probability 1.

As a consequence, Theorem 3 enforcing monotonicity extends to the probabilistic setting.

Enforcing Monotonicity

Theorem 3 in Section 3.3 provides guidelines regarding how to enforce monotonicity. Consider again the workflow of Fig. 4 and the two alternative branches beginning at the place labeled with QoS q 0 and ending at the place labeled with the QoS q 2 . This pattern is a source of non-monotonicity as we have seen. One way of enforcing monotonicity is by invoking Theorem 3. Aggregate the two successive transitions in each branch and regard the result as a single transition (t 12 for the left branch and t 12 for the right branch). The QoS increments of t 12 and t 12 are equal to δq 12 = δq 1 ⊕ δq 2 and δq 12 = δq 1 ⊕ δq 2 , respectively. The resulting Orchestration net satisfies the condition of Theorem 3 and thus is monotonic. This process of aggregation is illustrated on Fig. 5,mid diagram.

An alternative to the above procedure consists in not modifying the orchestration but rather changing the QoS evaluation procedure. Referring again to Fig. 4, isolate the part of the workflow that is a source of non-monotonicity, namely the subnet shown on Fig. 5, left. For this subnet, use pessimistic formula [START_REF] Cardellini | Adaptive management of composite services under percentile-based service level agreements[END_REF] to get a pessimistic but monotonic bound for the QoS of this subnet. For this example, the pessimistic bound is equal to δq 12 = δq 12 ∨δq 12 . We then plug the result in the evaluation of the QoS of the overall orchestration, by aggregating the isolated subnet into a single transition t 12 , with QoS increment δq 12 . This is illustrated on Fig. 5, right diagram.

t 1 t 2 t 2 q 0 q 2 q 1 t 1 q 1 δq 1 δq 1 δq 2 δq 2 t 12 t 12 q 0 q 2 δq 12 δq 12 q 0 q 2 t 12 δq 12
The above two procedures yield different results. By aggregating service calls performed in sequence, the first procedure delays the selection of the best branch. The second procedure does not suffer from this drawback. In turn, it results in a pessimistic evaluation of the end-to-end QoS. Both approaches restore monotonicity.

Implementing our approach in Orc

We have implemented our approach on top of the Orc orchestration language and we now present two aspects of this implementation: we explain how our approach supports separation of concerns in QoS-aware orchestration modeling; we also illustrate contract composition as a method for QoS-based design of composite services. Before presenting this, we briefly summarize how the technical developments of Section 3 contribute to our approach to contract based QoS aware management of composite services. For this, the reader is referred to the overview, in the introduction, of our approach to QoS management using contracts.

Practical use of the QoS framework

Our framework of Probabilistic OrchNets developed in Section 3.4 supports soft probabilistic QoS contracts expressed as probability distributions over (possibly multi-dimensional) QoS metrics. Probability distributions can be specified either as a parameterized family of distributions, or as a finite set of quantiles. Such contracts are part of SLA (Service Level Agreement) declaration. They can either be agreed as part of negotiation or estimated by remotely observing how a service responds in terms of QoS performance. See [START_REF] Rosario | Probabilistic qos and soft contracts for transaction based web services[END_REF][START_REF] Rosario | Probabilistic QoS and soft contracts for transaction based Web services orchestrations[END_REF] for details. The theory developed in Section 3.3-3.5 provides the needed foundations for handling monotonicity properly. Criteria ensuring monotonicity are provided. Techniques to overcome the lack of monotonicity were developed, thus providing support for managing arbitrary orchestrations. QoS aware design of composite services requires relating the QoS sub-contracts between the orchestration and its called services, and the end-to-end QoS contract between the orchestration and its clients. This task is not within the scope of this paper and the reader is referred to our previous work [START_REF] Rosario | Probabilistic qos and soft contracts for transaction based web services[END_REF][START_REF] Rosario | Probabilistic QoS and soft contracts for transaction based Web services orchestrations[END_REF], where statistical on-line detection of the violation of a probabilistic contract is also developed. On-line dynamic service selection based on QoS is a central task in QoS aware management of composite services. Procedure 1 specifying the semantics of an OrchNet offers dynamic service selection as a built-in feature.

How should we adapt an orchestration language so that it naturally supports the above concepts and techniques? This orchestration language should be enhanced with features allowing: 1) To take the proper decision based on QoS regarding competing events, actions, or service calls while executing an orchestration; key here is to identify which events, actions, or service calls are in competition when making this decision. 2) To compute the end-to-end QoS of a given execution of an orchestration by composing the QoS of the different services.

To perform the above, we only need to support the following four tasks:

Causality Tracking: Since the QoS algebra relies on the knowledge of causality relations between events, actions, or service calls, we need to keep track of causal dependencies while executing the orchestration. Competition Tracking: We must identify which events or service calls are in competition at each stage of a given execution of the orchestration. QoS Tracking: We need to implement the QoS algebra with its relations and operators -⊕ (incrementing QoS), -≤ (comparing QoS), and -(resolving competition based on QoS). End-to-End QoS: Then, we need to be able to compute the end-to-end QoS of an execution of the orchestration, following Section 2.3 and Section 3.2.

Once these four tasks are supported, QoS aware management follows as a byproduct. This provides the foundations for a separation of concerns and opens the way to an orthogonal development of QoS and functional aspects of an orchestration. This important contribution is detailed next.

Weaving QoS in Orchestrations

Separation of concerns has been advocated as a recommended design discipline in the development of complex software systems. The consideration of QoS in composite services is a source of significant increase in complexity. Tight interaction between QoS and the function performed makes QoS a crosscutting concern. Aspect Oriented Programming (AOP) has been advocated as a solution to support separation of crosscutting concerns in software development [START_REF] Kiczales | Aspect-oriented programming[END_REF][START_REF] Kiselev | Aspect-Oriented Programming with AspectJ[END_REF]. In AOP, the different aspects are developed separately by the programmer. Their weaving is performed using joinpoints and pointcuts, and by having advice refining original pointcuts. In this section we develop a compile-time weaving of QoS aspects in composite services. Observe first that our formal model of OrchNets offers by itself support for separation of concerns in QoS management. Once the involved QoS domains have been specified with their algebraic operations, the execution policy of OrchNets (Procedure 1) entirely determines how QoS interferes with the execution of the orchestration, see the discussion of the example of Fig. 4 in Section 2.1.

Van der Aalst's WF-nets (WFnets) [START_REF] Van Der Aalst | Verification of workflow nets[END_REF][START_REF] Van Der Aalst | Workflow Management: Models, Methods, and Systems[END_REF][START_REF] Van Der Aalst | Workflow patterns[END_REF] are a Petri net formalism and are thus closely related to the functional part of our OrchNets. The compiletime weaving of QoS into WF-nets is best illustrated by the example of Fig. 6, where the XML-like specification explains how a functional description of a composite service can be complemented with its QoS specification. The original functional specification is BPEL-compliant and is written in boldface. Addons for QoS are written in italics and consist of the WSLA [START_REF] Keller | The WSLA Framework: Specifying and Monitoring Service Level Agreements for Web Services[END_REF] specification of the Interface, playing the role of a rich SLA specification. Two QoS domains are declared: RTime (for ResponseTime) and Cost. These domains come up with the declaration of their associated operators following Section 2.2, namely Cost.leq, Cost.oplus, Cost.vee, Cost.compet and similarly for RTime-this is not shown on the figure since such QoS domains should be predefined and available from a library. The Interface also contains, for each called service, the declaration of the QoS measures that are relevant to it-service1 knows only RTime whereas service2 knows the two. The functional part of this specification (shown in boldface) collects four service calls or returns, each of which constitutes a pointcut.

The QoS-enhanced orchestration is automatically generated from the specification shown in Fig. 6-to save space, we do not show it but we only discuss the steps performed in generating it. The added code is written in roman. The first step is to initialize the metrics relevant to the orchestration, see Fig. 7. The sequence begins with the initialization of the response time carried by the token using the <assign> declaration. Concurrent invocation of the service(-) and clock = service.clock.store follow, using the <flow></flow> declaration. Once the service(-) returns, the difference between the current clock and service.clock.store is assigned to service.RTime. Resulting weaving is obtained by applying the generic rewriting rule shown on Fig. 8. The same mechanism is used for the response time of service2 and the end-to-end response time of the orchestration follows by adding the above two. Each pointcut shown in boldface in this figure is refined by the corresponding advice (in roman) following it.

The end-to-end evaluation of Cost for the orchestration is computed in a different way, because this kind of QoS is individually carried by the tokens rep- resenting the queries while being processed by the orchestration. Since Cost is relevant to service2 by interface declaration in Fig. 6, the call to service2 is augmented with the return of the cost of calling service2. This weaving is obtained by applying the generic rewriting rule of Fig. 9. Here, the invoke <assign> <$orch.RTime = 0 /> <$orch.Cost = 0 /> </assign> pointcut is not refined, only the receive is refined, by the advice code (in roman) following it.

The automatic generation of the augmented program from the original specification is a direct coding of the Procedure 1. Rules for other constructions such as the firing of a transition with several input places and the competition when a token exits a place with possible choices, are derived similarly, following Procedure 1. For general WFnets, we must keep track of the different tokens and attach QoS values to them. This amounts to keeping track of causalities between service calls that result from the WFnet. To support the weaving, pointcuts need not be explicitly declared by the programmer. They are instead obtained by pattern matching searching for keywords invoke and receive in the functional specification.

Instead of developing a tool implementing the above technique for WFnets, we have performed a prototype implementation on top of the Orc orchestration language. This is explained in the next section and subsequently illustrated using the TravelAgent2 example of Fig. 2.

Enhancing Orc for QoS

Background on Orc: Orc [START_REF] Cook | Workflow Patterns in Orc[END_REF] is a general purpose language aimed to encode concurrent and distributed computations, particularly workflows and Web service orchestrations. An orchestration described in Orc is essentially an Orc expression. An Orc expression is either a site or is built recursively using any of the four Orc combinators. A site models any generic service which the Orc expression orchestrates. A site can be called with a list of parameters, and all these parameters' values have to be defined before the call can occur. A call to a site returns (or publishes) at most one value; it may also halt without returning a value. The identity site, which publishes the value x it receives as a parameter, is denoted by x (the name of its parameter). Orc allows composing service calls or actions by using a predefined small set of combinators that we describe next. In the parallel composition f | g, expressions f and g run in parallel. There is no direct interaction between parts of f and g and the returned values are merged by interleaving them. The sequential composition f >x> g starts by running f . For every value v published by f , a new instance of g is run in parallel, with the value of x bound to v in that instance. As a particular case, f g performs f and then g, in sequence. The pruning com-position f <x< g runs f and g in parallel. When g publishes its first value v, the computation of g is terminated, and occurrences of x in f are replaced by v. Since f is run in parallel with g, site calls in f that have x as a parameter are blocked until g publishes a value. Finally, the otherwise combinator f ; g runs f first. If f publishes a value, g is entirely ignored. However if the computation of f halts without returning any values, then g is run. Orc also has built in sites to track passage of time (Rtime, Rwait), deal with data structures (tuples, lists, records), handle concurrency (semaphores, channels) and define new sites (class). An interested reader is referred to the Orc documentation 6for details.

Enhancing Orc: We now describe how we integrate our QoS framework into the Orc language. In particular, we explain how we perform the four tasks listed at the end of Section 4.1 within Orc.

The Causality Tracking task consists in tracking the causal relations between execution events in the Orc interpreter. This was straightforward for WFnets, since causality is revealed by the graph structure of the net. It is not immediate for Orc programs, however. The event structure semantics of Orc [START_REF] Rosario | Event structure semantics of orc[END_REF] served as a formal specification for this. It turns out that causality can be cast into our generic algebraic framework for QoS developed in Section 2.3. Causalities are represented as pairs x = (e, C), where e is the considered event and C = {x 1 , . . . , x k } is the set of its direct causes, recursively encoded as pairs of the same kind. The QoS domain encoding causalities is defined similarly to the QoS domain "Cost" of Section 2.2. Consequently, the generic technique developed to weave QoS into an Orc program can be instantiated to generate causalities. Details will be reported elsewhere. As a small illustration example, consider the computation of causalities for the following Orc program:

((2 x) <x< (1 3)) print(4)
We apply our generic weaving method by seeing causality as a QoS domain.

We make use of two data structures in Orc : tuples, such as (f, g) and finite lists, such as [f, g]. The causal history is stored as a list of lists with the tuple (publication, causal past) published in the transformed program. The weaving yields the following causality-enhanced Orc program:

( (( ((((2, []) >t> (x >(x0, )> (x0, union([x], [t])))) <x< ((((1, []) >t> (3, [t])) () >t> (("print", [t]) >x0> (print(4), [x0])
) )

The first event has an empty causal past (represented by []). Through pattern matching, this is propagated to the next event with causal history accumulated.

The output of its execution yields the partial order of causes of the publication of print(4):

4(signal, [(print, [(3, [(3, [(1, [])]), (2, [])])])])

Focus now on the Competition Tracking task. In its basic form, Orc does offer a way to select one publication among several candidate ones, namely by using the pruning operator. Indeed, in the Orc expression

f <x< (E 1 | E 2 | • • • | E n ) ( 26 
)
the first publication by E 1 , E 2 , . . . , or E n , preempts any future publication of the parallel composition

g ∆ E 1 | E 2 | • • • | E n .
Since only one publication of g is picked, all possible publications of g are in mutual conflict when in the context of [START_REF] Hwang | A Probabilistic QoS Model and Computation Framework for Web Services-Based Workflows[END_REF]. One can regard [START_REF] Hwang | A Probabilistic QoS Model and Computation Framework for Web Services-Based Workflows[END_REF] as implementing the Competition Tracking task for the particular case when the conflict is resolved on the basis of the time of occurrence of the conflicting publications, seen as a QoS measure-only the earliest one survives. We propose to lift the Orc pruning operator by resolving the conflict on the basis of an arbitrary QoS measure q given as a parameter of the generalized pruning:

f <x<q (E 1 | E 2 | • • • | E n ) ( 27 
)
which is, for its definition, macro-expanded in core Orc as follows:

f <x< sort q (E 1 | E 2 | • • • | E n ) (28) 
In [START_REF] Kattepur | Importance sampling of probabilistic contracts in web services[END_REF], expression

sort q (E 1 | E 2 | • • • | E n ) stores as a stream all publica- tions of (E 1 | E 2 | • • • | E n )
upon termination and then reorders this stream according to the partial order defined by QoS measure q. 7 For the special case where QoS measure q is just the response time d, then ( 27) boils down to [START_REF] Hwang | A Probabilistic QoS Model and Computation Framework for Web Services-Based Workflows[END_REF], the original pruning operator. At this point, we must explain how Procedure 1 is implemented. Focus first on step 1 of that procedure, where a cluster is selected. In free choice nets, clusters localize conflicts. In core Orc, conflicts are localized in the pruning operator [START_REF] Hwang | A Probabilistic QoS Model and Computation Framework for Web Services-Based Workflows[END_REF]. In our extension of Orc, conflicts are localized in the QoS-based pruning operator [START_REF] Hwang | A probabilistic approach to modeling and estimating the QoS of web-services-based workflows[END_REF]. Thus, step 1 of Procedure 1 consists in selecting one among all enabled expressions of the form [START_REF] Hwang | A probabilistic approach to modeling and estimating the QoS of web-services-based workflows[END_REF]. Next, expression [START_REF] Hwang | A probabilistic approach to modeling and estimating the QoS of web-services-based workflows[END_REF] itself is better explained with reference to Fig. 1. Fig. 1-(a) is a direct illustration of [START_REF] Hwang | A probabilistic approach to modeling and estimating the QoS of web-services-based workflows[END_REF], whereas its equivalent form Fig. 1-(b) yields step 3 of Procedure 1 (the competition step). This discussion shows that the new feature [START_REF] Hwang | A probabilistic approach to modeling and estimating the QoS of web-services-based workflows[END_REF] enhances Orc with a feature that is as powerful as the QoS-based conflict of our OrchNets and it explains how Procedure 1 is implemented. Details of implementing this approach are presented in Appendix B.1. We could have considered a more general feature f <x<q g, where g is an arbitrary Orc expression with its several induced threads, not necessarily a parallel composition. Our current implementation does not provide this more general feature, however.

The QoS Tracking task of implementing the QoS algebra is handled as in the SLA declarations of Section 4.2. This is extended with QoS Weaving to enhance the functional declared code with a QoS enhanced output. In Appendix B we provide examples and develop the TravelAgent2/3 Examples in Orc by using the above methodology.

Finally, the End-to-End QoS task is much less obvious than for WFnets. The reason is that Orc does not handle explicitly states, transitions, and causality. Rewriting rules are needed that automatically transform functional Orc code by enhancing it for QoS, structurally. This resembles what we briefly presented regarding causality. Details will be presented elsewhere.

Evaluation of Our Approach

In this section, we make use of our implementation for performing contract composition, that is, estimating the end-to-end QoS of the TravelAgent2 and TravelAgent3 examples. The former is monotonic whereas the latter is not. Our study illustrates the effect of monotonicity and substantiates the need for the rich theory developed in this paper.

The experiments

Each orchestration is specified as a QoS weaved specification such as explained in Appendix B.2. For each trial, QoS values for each called service are drawn according to their specified contracts and then our automatic QoS evaluation procedure applies-we will actually use both the normal QoS evaluation from [START_REF] Calinescu | Dynamic QoS Management and Optimization in Service-Based Systems[END_REF] and the "pessimistic" QoS evaluation from [START_REF] Cardellini | Adaptive management of composite services under percentile-based service level agreements[END_REF] and compare them. Drawing 20, 000 successive trials yields, using Monte-Carlo estimation, an estimate of the end-to-end contract in the form of a probability distribution. QoS dimensions considered here are latency, cost, and category. When choices are performed according to two dimensions or more (e.g., cost and category), we make use of a weighing technique following AHP [START_REF] Thomas | How to make a decision: the Analytic Hierarchy Process[END_REF].

Fig. 10 displays the results of two experiments, corresponding to two different sets of contracts exposed by the called services, shown on diagrams (a) for latency, and (c) for cost. In order to evaluate the end-to-end QoS of the TravelAgent 2/3 orchestrations in a realistic setting, the AirlineCompany and HotelBooking services are modeled as distributed applications hosted on a GlassFish 3.1 server on the Inria local area network-each call to AirlineCompany or HotelBooking results in a parallel call to one of the above mentioned GlassFish applications and the corresponding latency is recorded and used for end-to-end QoS evaluation. Other services are assumed to react much quicker and are drawn from a Student-t distribution, not shown in the figures. Costs, on the other hand, are drawn from some Gaussian distributions (with small variance/mean ratio); note that we could as well have costs deterministic, this would not change our method. Fig. 10 displays the estimated end-to-end QoS in diagrams (b) for latency and (d) for cost. The results are shown for both the normal QoS evaluation from [START_REF] Calinescu | Dynamic QoS Management and Optimization in Service-Based Systems[END_REF] and the "pessimistic" QoS evaluation from [START_REF] Cardellini | Adaptive management of composite services under percentile-based service level agreements[END_REF]. Not surprisingly, pessimistic evaluation yields larger end-to-end QoS estimates. Now, recall that TravelAgent2 is monotonic, whereas TravelAgent3 is not. What are the consequences of this? In Fig. 10-right, the cost for AirlineCom-pany2 has been reduced as compared to Fig. 10-left. For the monotonic orchestration TravelAgent2, this reduction results in a reduction of the overall cost. For the non-monotonic orchestration TravelAgent3, however, this reduction gives raise to an increase in overall cost. On the other hand, pessimistic QoS evaluations are always monotonic, see Theorem 1; the results shown conform to this theorem.

Once these end-to-end measurements are taken, the negotiation of contracts and their monitoring may be done as in [START_REF] Rosario | Probabilistic qos and soft contracts for transaction based web services[END_REF][START_REF] Rosario | Probabilistic QoS and soft contracts for transaction based Web services orchestrations[END_REF]. This follows the Monte-Carlo procedure explained in [START_REF] Rosario | Probabilistic qos and soft contracts for transaction based web services[END_REF][START_REF] Rosario | Probabilistic QoS and soft contracts for transaction based Web services orchestrations[END_REF] and is thus omitted.

Discussion

When dealing with monotonic orchestrations, our contract composition procedure performs at once, both QoS evaluation and optimization. Competing alternatives are captured by the different choices occurring in the orchestration. According to Procedure 1, choice among competing alternatives is by local optimization, which implements global optimization since the orchestration is monotonic. Despite the use of Monte-Carlo simulations, this simple policy is cheaper than global optimization, even if analytic techniques are used for composing probabilistic QoS. Furthermore, when applied at run time, Procedure 1 implements late binding of services with optimal selection in a very cheap way.

Of course, there is no free lunch. If the considered orchestration is not monotonic, the above approach does not work as such, as already pointed out in [START_REF] Alrifai | Combining global optimization with local selection for efficient qos-aware service composition[END_REF][START_REF] Ardagna | Global and Local QoS Guarantee in Web Service Selection[END_REF][START_REF] Zeng | QoS-Aware Middleware for Web Services Composition[END_REF], see Section 6. The bypasses developed in Section 3.5 must be used. The aggregation procedure results in aggregating services that are called in sequence, which increases granularity of the orchestration. When applied in the context of late binding, the decision is delayed until alternatives have all been explored-thus, it is hard to claim that late binding has been achieved by doing so. If pessimistic evaluation is followed, then immediate choices can be applied but, as we said, the end-to-end QoS evaluation that results is pessimistic in that the evaluation accumulates worst QoS among alternatives. So, none of the above techniques is fully satisfactory for non-monotonic orchestrations. In turn, global optimization always applies and implements best service selection-however, we question the meaning of QoS aware management when orchestrations are non-monotonic. 

Related Work

We restrict ourselves to papers dealing with QoS-aware management of composite services and addressing QoS-based design, on-line service selection, monitoring and adaptation/reconfiguration. We focus on specific papers dealing with issues relevant to our work:

-QoS Algebraic Formulation: While QoS composition has been studied in a variety of techniques, we are interested in mathematically sound models for QoS. We pay attention to the handling of probabilistic and multidimensional QoS. -Monotonicity: In case of data dependent workflows, the analysis of monotonicity in design becomes crucial. We restrict our discussion to papers that have either considered this implicitly or make use of other techniques to ensure this. -Contracts: Once QoS models have been specified, contractual agreements between clients and orchestrations (or similarly, between orchestrations and sub-contracted services) will need to be specified. We review some approaches that utilize the probabilistic nature of QoS to ensure mathematically sound contractual agreements.

We review the literature collected in Table 1 and Table 2, where issues of monotonicity are relevant.

We begin with the work of Yu and Bouguettaya [START_REF] Yu | Framework for Web service query algebra and optimization[END_REF]. Built-in monotonicity is still ensured, due to proper restrictions on the control flow of the considered orchestrations. We nevertheless discuss it because specific issues of interest are studied. A Service Query Algebra is proposed in which composite services are seen as graphs. They can be further composed. QoS composition is one aspect of this service composition. QoS is treated in a fully algebraic style, very much like our present approach. Probabilistic aspects are not extensively developed, however. [START_REF] Buscemi | Qos negotiation in service composition[END_REF] [START_REF] Buscemi | Qos negotiation in service composition[END_REF], Buscemi and Montanari (2007) [START_REF] Buscemi | Cc-pi: a constraint-based language for specifying service level agreements[END_REF], De Nicola et al. ( 2005) [START_REF] De Nicola | Coordination Models and Languages, chap. A Process Calculus for QoS-Aware Applications[END_REF] is a series of paper developing algebraic modeling of QoS in a way very similar to ours. By building on the seminal work of Baccelli et al. [START_REF] Baccelli | Synchronization and Linearity[END_REF] on max/+-algebra, these authors develop a commutative semi-ring algebra to model QoS domains; this is almost identical to our modeling, except for our consideration of the "competition" operator used in late service binding. Then, the authors develop the cc-pi calculus to capture dynamic service binding way beyond our present study. Probabilistic frameworks are not considered, however.

The work by Bistarelli and Santini [START_REF] Bistarelli | A nonmonotonic soft concurrent constraint language for sla negotiation[END_REF][START_REF] Bistarelli | Soft constraints for quality aspects in service oriented architectures[END_REF] is discussed here because it explicitly refers to monotonicity in its title. This is, however, misleading in that this term is used in the totally different setting of "belief revision", a kind of logic in which facts can get falsified (thus the world is not monotonic in this sense).

For the next group of papers, the authors seem unaware of the issue of monotonicity for the type of orchestration they consider (we do not repeat this fact for the different papers). Cardoso et al. [START_REF] Cardoso | Workflow Quality of Service[END_REF][START_REF] Cardoso | Quality of Service for workflows and Web service processes[END_REF] propose a predictive QoS model that allows to compute the QoS of workflows from the QoS of their atomic parts. Individual QoS measures are estimated for their minimum, maximum, and averaged values based on measurements. Rules to compute QoS composition incrementally are used (the SWR rules published in the first author's PhD), with a special attention paid to fault-tolerant systems. Probabilistic QoS is possibly supported, with, however, little technical details. The

Paper

QoS framework Algorithms Yu and Bouguettaya (2008) [START_REF] Yu | Framework for Web service query algebra and optimization[END_REF] QoS parameters can be defined as "the probability of something", composition rules are proposed Extensive study of QoS algebra; optimization of service selection by Dynamic Programming applied to the orchestration modeled as a directed graph Bistarelli and Santini (2009, 2009, 2010) [13], [START_REF] Bistarelli | Soft constraints for quality aspects in service oriented architectures[END_REF], [START_REF] Bistarelli | Unicast and multicast qos routing with soft-constraint logic programming[END_REF] Probabilistic QoS supported; analytic techniques for composing component QoS to get overall service QoS Formal language based on semirings used to aggregate QoS; however, composition rules for QoS are not detailed Buscemi and Montanari (2011) [START_REF] Buscemi | Qos negotiation in service composition[END_REF], [START_REF] Buscemi | Cc-pi: a constraint-based language for specifying service level agreements[END_REF] [START_REF] Buscemi | Cc-pi: a constraint-based language for specifying service level agreements[END_REF], De Nicola et al. (2005) [START_REF] De Nicola | Coordination Models and Languages, chap. A Process Calculus for QoS-Aware Applications[END_REF] Generic QoS is supported through a commutative semi-ring algebra; The cc-pi calculus is developed to model dynamic service binding with QoS-based selection and its expressiveness is studied; SLA is declared as a system of named constraints Cardoso et al. (2002,2004) [START_REF] Cardoso | Workflow Quality of Service[END_REF][START_REF] Cardoso | Quality of Service for workflows and Web service processes[END_REF] Probabilistic QoS is supported but with little details; the composition of QoS values is explained but the composition of QoS distributions is not explained Generic formulae presented with rules for composing workflows' QoS and tested on a genome based workflow. [START_REF] Hwang | A Probabilistic QoS Model and Computation Framework for Web Services-Based Workflows[END_REF][START_REF] Hwang | A probabilistic approach to modeling and estimating the QoS of web-services-based workflows[END_REF]) [START_REF] Hwang | A Probabilistic QoS Model and Computation Framework for Web Services-Based Workflows[END_REF][START_REF] Hwang | A probabilistic approach to modeling and estimating the QoS of web-services-based workflows[END_REF] Probabilistic QoS is supported, with analytic techniques for QoS composition Efficient approximations for the analytic evaluation of Probabilistic QoS composition are proposed [START_REF] Menascé | A heuristic approach to optimal service selection in Service Oriented Architectures[END_REF] [START_REF] Menascé | A heuristic approach to optimal service selection in Service Oriented Architectures[END_REF] Probabilistic QoS is supported, with analytic techniques for QoS composition, mathematical details are provided Optimal service selection is precisely formulated and solved with an efficient heuristic Table 1 Literature survey: Papers dealing with orchestrations allowing for a data-dependent workflow (thus exhibiting a risk of non-monotonicity). The issue of monotonicity is ignored, except in the work of the authors of this paper and in Ardagna et al. [START_REF] Ardagna | Global and Local QoS Guarantee in Web Service Selection[END_REF], Alrifai & Risse [START_REF] Alrifai | Combining global optimization with local selection for efficient qos-aware service composition[END_REF] and Zeng et al. [START_REF] Zeng | QoS-Aware Middleware for Web Services Composition[END_REF], cited in Table 2, where it is identified through the discussion on global versus local optimization.

work by Hwang et al. [START_REF] Hwang | A Probabilistic QoS Model and Computation Framework for Web Services-Based Workflows[END_REF][START_REF] Hwang | A probabilistic approach to modeling and estimating the QoS of web-services-based workflows[END_REF] is very interesting in its study of probabilistic QoS composition via analytic techniques. To avoid the computational cost resulting from state explosion in composite services, heuristic approximations are proposed. The work by Menascé et al. [START_REF] Menascé | A heuristic approach to optimal service selection in Service Oriented Architectures[END_REF] gives a mathematically precise development of optimal service selection with cost and latency as QoS dimensions. The BPEL constructs are supported, including the "switch", which is a source of possible lack of monotonicity; alternative branches of the switch are assigned a probability. A very interesting heuristic is provided to perform near-to-optimal selection at a reasonable computational cost. The long and rich paper by Calinescu et al. [START_REF] Calinescu | Dynamic QoS Management and Optimization in Service-Based Systems[END_REF] presents a methodology and extensive toolkit for performing QoS-based design and reconfiguration. Markov types of models are used in this toolkit, ranging from discrete and continuous Markov chains to Markov Decision Processes to deal with non-deterministic choices or data-dependent branching. QoS analyses are supported thanks to a formu- lation using probabilistic temporal logic and associated model checkers. The methodology and toolkit reuses existing tools and did not need the development of any new engine. The paper lacks mathematical details, however, regarding the models and algorithms used.

The issue of monotonicity is identified in only three papers from our list, albeit under a different wording than ours. Ardagna et al. [START_REF] Ardagna | Global and Local QoS Guarantee in Web Service Selection[END_REF] discuss local versus global QoS guarantees and explain why optimizing QoS guarantees of local execution paths may not lead to the satisfaction of global QoS guarantees. Alrifai & Risse [START_REF] Alrifai | Combining global optimization with local selection for efficient qos-aware service composition[END_REF] propose a similar approach using MMKP for computationally efficient selection over global and local constraints. In Zeng et al. [START_REF] Zeng | QoS-Aware Middleware for Web Services Composition[END_REF], a thorough comparison is made between local versus global optimization in service selection. It is argued that performing local optimization may not lead to optimal selection; indeed, the beginning of Section 3.2 in this paper explains exactly our example of Fig. 3. The paper explains that global optimization always provides a relevant selection, which is certainly correct. We have, how-ever, explained in our introduction why we believe that not having monotonicity leads to a strange understanding of QoS management. Now, referring to our taxonomy, in monotonic orchestrations, local optimization is enough to ensure global optimality. Other major features of this paper are summarized in the table.

To conclude on this bibliographical study, we notice that the issue of monotonicity is mostly ignored in the literature on composite Web services, whereas it is known in the area of performance studies for general computer architectures. Our work focuses on monotonicity, its conditions, and its consequences for QoS-aware management of composite Web services.

Conclusion

We have studied the QoS aware management of composite services, with emphasis on QoS-based design and QoS-based on-line service selection. We have advocated the importance of monotonicity-a composite service is monotonic if a called service improving its QoS cannot decrease the end-to-end QoS of the composite service. Monotonicity goes hand-in-hand with QoS, as we think. For monotonic orchestrations, "local" and "global" optimization turn out to be equivalent. This allowed us to propose simple answers to the above tasks. Corresponding techniques are valid for both deterministic and probabilistic frameworks for QoS. We have proposed techniques to deal with the lack of monotonicity. We have observed that the issue of monotonicity has been underestimated in the literature.

To establish our approach on firm bases, we have proposed an abstract QoS calculus, whose algebra encompasses most known QoS domains so far. How QoS based design and on-line service selection are performed in our approach is formalized by the model of OrchNets. Our framework of QoS calculus and OrchNets supports multi-dimensional QoS measures, handled as partial (not total) orders. To account for high uncertainties and variability in the performance of Web services, we support probabilistic QoS.

QoS and function interfere; still, the designer expects support for separation of concerns. We provide such a support by allowing for separate SLA declaration and functional specification, followed by weaving to generate QoSenhanced orchestrations. Our weaving techniques significantly clarifies the specification. Finally, we have proposed a mild extension of the Orc orchestration language to support the above approach-the principles of our extension could apply to BPEL [START_REF]Web Services Business Process Execution Language Version 2[END_REF] as well.

We believe that our approach opens new possibilities in handling orchestrations with rich QoS characteristics. Throughout the proof, we fix an arbitrary value ω for the daemon. We first prove the sufficiency of condition [START_REF] Cardoso | Quality of Service for workflows and Web service processes[END_REF]. Let N be such that N ≥ N . Since operators ⊕ and are both monotonic, see Definition 1, we have, by Procedure 2 and formulas ( 17) and ( 18):

E ω (κ(N , ω), N ) ≥ E ω (κ(N , ω), N )
By [START_REF] Cardoso | Quality of Service for workflows and Web service processes[END_REF] applied with κ = κ(N , ω), we get that

E ω (κ(N , ω), N ) ≥ E ω (κ(N , ω), N )
holds. This proves the sufficiency of condition [START_REF] Cardoso | Quality of Service for workflows and Web service processes[END_REF].

We prove necessity by contradiction. Let (N , ω, κ † ) be a triple violating condition [START_REF] Cardoso | Quality of Service for workflows and Web service processes[END_REF], in that

κ † cannot get selected by Procedure 1, but E ω (κ † , N ) ≥ E ω (κ(N , ω), N ) does not hold. Now consider the OrchNet net N = (N, V, Q , Q init )
where the family Q is such that, ∀t ∈ κ † , ξ t (ω) = ξ t (ω) holds, and ∀t / ∈ κ † , using (5) together with the assumption that (D, ≤) is an upper lattice, we can inductively select ξ t (ω) such that the following two inequalities hold:

t∈κ † q t ≤ p ∈ • t q p ⊕ ξ t (ω) (29) 
ξ t (ω) ≤ ξ t (ω) (30) 
Condition [START_REF] Kiczales | Aspect-oriented programming[END_REF] expresses that N ≥ N . By Procedure 1 defining QoS policy, [START_REF] Keller | The WSLA Framework: Specifying and Monitoring Service Level Agreements for Web Services[END_REF] implies that configuration κ † can win all competitions arising in step 3 of QoS policy, κ(N , ω) = κ † holds, and thus

E ω (κ(N , ω), N ) = E ω (κ † , N ) = E ω (κ † , N )
However, E ω (κ † , N ) ≥ E ω (κ(N , ω), N ) does not hold, which violates monotonicity.

A.2 Proof of Theorem 3, Sufficiency Let ϕ N be the net morphism mapping U N onto N and let N be any OrchNet built on U N . We prove that condition (21) of Theorem 2 holds for N by induction on the number of transitions in the maximal configuration κ(N , ω) that actually occurs. The base case is when it has only one transition. Clearly this transition has minimal QoS increment and any other maximal configuration has a greater end-to-end QoS value.

Induction Hypothesis: Condition (21) of Theorem 2 holds for any maximal occurring configuration with m -1 transitions (m > 1). Formally, for an OrchNet N , ∀ω ∈ Ω, ∀κ ∈ V (N ),

E ω (κ, N ) ≥ E ω (κ(N , ω), N ) (31) must hold if |{t ∈ κ(N , ω)}| ≤ m -1.
Induction Argument: Consider the OrchNet N , where the actually occurring configuration κ(N , ω) has m transitions and let

∅ = κ 0 (ω) ≺ κ 1 (ω)(= κ) ≺ . . . ≺ κ M (ω) (ω) = κ(N , ω)
be the increasing chain of configurations leading to κ(N , ω) under QoS policy, see (3.2) -to shorten the notations, we write simply κ instead of κ 1 (ω) in the sequel of the proof. We assume that M (ω) ≤ m. Let t be the unique transition such that t ∈ κ 1 (ω) and set t = {t} ∪ t • . Let κ be any other maximal configuration of N . Then two cases can occur.

t ∈ κ : In this case, comparing the end-to-end QoS of κ(N , ω) and κ reduces to comparing

E ω (κ(N , ω) \ t, N κ ) and E ω (κ \ t, N κ )
where N κ is the future of κ in N = (N, V, A, Q, Q init ), obtained by replacing N by N κ , restricting V , A, and Q to N κ , and replacing Q init by E ω (κ, N ), the QoS cost of executing configuration κ. Since κ(N , ω) \ t is the actually occurring configuration in the future N κ of transition t, using our induction hypothesis, then

E ω (κ \ t, N κ ) ≥ E ω (κ(N , ω) \ t, N κ ) holds, which implies E ω (κ , N ) ≥ E ω (κ(N , ω), N )
t / ∈ κ : Then there must exist a transition t ∈ κ such that t and t differ and belong to the same cluster c. Hence, ϕ N (t) • = ϕ N (t ) • follows from the structural condition of Theorem 3. The futures N κ and N κ thus are isomorphic: they only differ in the initial colors of their places. If Q init and Q init are the initial QoS values for the futures N κ and N κ , then Q init ≤ Q init holds (since ξ t ≤ ξ t , t • has QoS lesser than t • by monotonicity of ⊕). On the other hand,

E ω (κ(N , ω), N ) = E ω (κ(N , ω) \ t, N κ ) (32) 
and

E ω (κ , N ) = E ω (κ \ t , N κ )
Now, since N κ and N κ possess identical underlying nets and N κ ≥ N κ , then we get

E ω (κ \ t , N κ ) ≥ E ω (κ \ t , N κ ) (33) 
Finally, applying the induction hypothesis to (32) and using ( 33) yields

E ω (κ , N ) ≥ E ω (κ(N , ω), N ).
This proves that condition (21) of Theorem 2 holds and finishes the proof of the theorem.

A.3 Proof of Theorem 3, Necessity

We will show that when the structural condition of Theorem 3 is not satisfied by N , Orchnet N N can violate condition (21) of Theorem 2, the necessary condition for monotonicity. Let c be any cluster in U N that violates the structural condition of Theorem 3. Since N is sound, all transitions in c are reachable from the initial place and so there are transitions t

1 , t 2 ∈ c such that • t 1 ∩ • t 2 = ∅, • ϕ(t 1 ) ∩ • ϕ(t 2 ) = ∅ and ϕ(t 1 ) • = ϕ(t 2 ) • . Define [t] = t \ t and κ = [t 1 ] ∪ [t 2 ]. κ is a configuration. Since t • 1 = t • 2 
, without loss of generality, we assume that there is a place p ∈ t • 1 such that p / ∈ t • 2 . Let t * be a transition in N κ such that t * ∈ p • . Such a transition must exist since p can not be a maximal place: ϕ(p) can not be a maximal place in N which has a unique maximal place. Now, consider the Orchnet N > N obtained as follows: using repeatedly condition (5) for operator ⊕ in Definition 1, ξ t1 (ω) = ξ t1 (ω), ξ t2 (ω) ≥ ξ t1 (ω), and, for all other t ∈ c, ξ t (ω) ≥ ξ t2 (ω). For all remaining transitions of N , with the exception of t * , the QoS increments are the same as that in N and thus are finite for ω. Finally, select ξ t * (ω) such that

ξ t1 (ω) ⊕ ξ t * (ω) > Q * (ω) (34) 
where Q * (ω) ∈ D will be chosen later-here we used the additional condition of Theorem 3 regarding D, together with condition (5) for operator ⊕ in Definition 1. Transition t 1 has a minimal QoS increment among all transitions in cluster c. It can therefore win the competition, thus giving raise to an actually occurring configuration κ(N , ω). Select Q * (ω) equal to the maximal value of the end-to-end QoS of the set K of all maximal configurations κ that do not include t 1 (e.g., when t 2 fires instead of t 1 ). By [START_REF] Menascé | A heuristic approach to optimal service selection in Service Oriented Architectures[END_REF], since t * is in the future of t 1 , we thus have

E ω (κ(N , ω), N ) ≥ ξ t1 (ω) ⊕ ξ t * (ω) > Q * (ω) ≥ E ω (κ, N )
for any configuration κ and, therefore, N violates the condition (21) of Theorem 2.

A.4 Proof of Theorem 5

The proof is by contradiction. Assume that there exists a pair (N , N ) of OrchNets such that N ≥ N and

P { ω ∈ Ω | E ω (N ) < E ω (N )} > 0. ( 35 
)
To prove the theorem it is enough to prove that (35) implies:

there exists N o , N o such that N o ≥ N o , but E(N o ) ≥ s E(N o ) does not hold (36) 
To this end, set N o = N and define N o as follows, where Ω o denotes the set To complete the implementation of

{ ω ∈ Ω | E ω (N ) < E ω (N )}: N o (ω) = if ω ∈ Ω o then N (ω) else N (ω) Note that N o ≥ N o ≥ N
[ ∀ω ∈ Ω ⇒ E ω (N o ) ≤ E ω (N o ) ] and [ P { ω ∈ Ω | E ω (N o ) < E ω (N o )} > 0 ] which implies that E(N o ) ≥ s E(N o ) does not hold.
f <x< sort q (E 1 | E 2 | • • • | E n )
, the head of the sorted list is selected. This results in the competition winner presented as the output of the bestQ operator (( 27)). The bestQ operator performs the function of the competition operator as in

Step 3 of the QoS policy. In trivial cases, this yields q q {q 1 , q 2 , . . . , q n } = q (bestQ output), with q winning the competition according to the specified partial order ≤ q (po).

B.2 QoS Weaving

These are the implementation steps to enhance functional Orc specifications with QoS. Refer to the informal specification of the TravelAgent2 orchestration in Section 1.

1. SLA / QoS Declaration: A library of pre-defined QoS classes that specify the types, domains, operations and units for various metrics. This makes use of the class construct in Orc that provides the capability to implement sites within Orc. This can include a variety of QoS domains (Latency, Cost, Security, Reliability, Throughput) that can be instantiated and reused when required. Note that multiple units may be specified: eg. seconds and milliseconds for latency/throughput, cost in items/currencies. As the classes are declared within Orc, the classes/definitions may be updated when required. For the TravelAgent2/3 example, domains such as Latency and Cost are relevant. An example is shown for the domains of Latency and Cost as follows. In the above declaration, multiple data structures such as records {. .}, lists [f, g] and tuples (f, g) are used. Other general sites available in Orc such as real time (Rtime) rewritable storage locations (Ref and FIFO channels (Channel) are also invoked. Once these classes are declared, the SLA type checker checks for Ambient/Nonambient QoS types before passing the control flow. If the correct typing is not found, the SLA site blocks further evaluation. A non-ambient metric (eg. cost) has competition operator defined trivially. However, for ambient metrics (eg. latency), the competition operator must be specified explicitly when combined with non-ambient metrics. This would specify whether the lexicographic ordering implies a infemum/supremum for the ambient metrics. 2. QoS Registry: This registers services with relevant QoS classes, QoS metric units and specific handles for accessing them. The registry is defined using the records data structure that can match keys to a record pattern. By providing multiple QoS units, it is possible to re-use the same class of QoS metrics multiple times by the same set of sites. Note that handles are also specified -additional information that must be returned by the service in order to satisfy the QoS requirements. Instances of handles include cost increments (items/currency), latency increments (milliseconds/seconds) and security levels that need to be specified. As the orchestration requires these increments to generate the end-to-end QoS increment for each domain, the sites must imperatively provide these handles. A site can also be neutral (zero increment) to certain domains. An example is provided with three sites TAgent, Airline and Hotel specified with various QoS domains, units and handles. An additional QoSMatch site matches the site identifier with these values when invoked. 3. Validating Registry Entries: As the registry contains many services with possibly conflicting QoS domains, accurate mapping of service and domains may be needed. This can be done either permissively (not specified domains produce zero increments) or strictly (restricting QoS domains according to the mapping). For a Orc expression def f() = (g1(),...gN()) (service f invoking gi), an injective partial function is defined as QoS(f ) → QoS(g i ). Note that this definition allows for multiple instances of QoS classes to be defined for each of these services. A QoSValidate site is implemented that checks for strict conformance of QoS domains between the caller/callee sites. 4. QoS Weaving: The QoS Weaver site weaves the values generated by the sites (with appropriate domains and handles) and generates the tuple of Data, QoS. Note that the check for the domains and handles are strict with computation stopped otherwise. For Ambient metrics (eg. Latency) the competition operator must be specified. The weaver also incorporates a QoS site that wraps a specific site with the QoS increment produced by it. 5. Functional Declaration: Once these steps are completed, the Orc expression may be written after including the necessary sites (QoS Declarations, Registries). The site declarations must specify the site identifiers that would be invoked from the registry. Once the sites have been declared, the goal expression may be written with the relevant classes included. The QoS weaving automatically equips relevant sites with their QoS increments. Note that the functional declarations can make use of the QoS outputs as well.

B.3 TravelAgent2 Example

The QoS-weaved output of the TravelAgent2 orchestration is provided with the original functional specification in (bold) and the QoS specification in roman. Increments to domains Cost and ResponseTime are accumulated as the control flow progresses in the orchestration. The code of QoS enhanced output is installed on the Orc site at url http://orc.csres.utexas. edu/papers/qos-aware.shtml, from where it can be run. 

Fig. 1

 1 Fig. 1 TravelAgent1: Simple travel agent; (a) informal diagram, and (b) Petri net form, where rectangles figure transitions and rounded rectangles figure places. This orchestration has a data-independent workflow.

Fig. 2

 2 Fig. 2 TravelAgent2: A variation of TravelAgent1 having a data-dependent workflow.

Fig. 3

 3 Fig. 3 TravelAgent3: A variation of TravelAgent2 lacking monotonicity.

  value functions, mapping the data values of the transition's input tokens to the data value of the transition's output token.-A family Q = (ξ t ) t∈T of QoS functions, mapping the data values of the transition's input tokens to a QoS increment. -A family Q init = (ξ p ) p∈min(P) of initial QoS functions for the minimal places of N .

Fig. 5

 5 Fig. 5 Enforcing monotonicity through service aggregation, mid diagram, with δq 12 = δq 1 ⊕ δq 2 and δq 12 = δq 1 ⊕δq 2 . Pessimistic QoS evaluation, right diagram, with δq 12 = δq 12 ∨δq 12 .

Fig. 6

 6 Fig.6Separation of concerns in QoS-aware specification. The functional specification is depicted last in boldface, whereas the QoS part is shown in italics on top in the form of a rich SLA specification.

Fig. 7

 7 Fig. 7 Initialization step

Fig. 9

 9 Fig.9Rewriting rule for weaving cost.

Fig. 10

 10 Fig. 10 We show results from two experiments (top and bottom). For each experiment we display cumulative densities of: (a) Measured latency of invoked services (b) End-to-end latency for TravelAgent 2/3 orchestrations through two evaluation schemes (c) Measured cost of invoked services (d) Returned cost invoice of TravelAgent 2/3 orchestrations.
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  Appendix: Implementation in Orc B.1 Upgrading Orc with the bestQ operator In order to enhance Orc with the feature presented in (27), we begin with the specification of the sort q (E 1 | E 2 | • • • | E n ) which sorts the list of QoS values from a domain q. The merge sort algorithm is employed here to sort through the list of QoS values according to the specified partial order po. def mergeBy[A](lambda (A,A) :: Boolean, List[A], List[A]) :: List[A] def mergeBy(po, xs, []) = xs def mergeBy(po, [], ys) = ys def mergeBy(po, x:xs, y:ys) = if po(y,x) then y:mergeBy(po,x:xs,ys) else x:mergeBy(po,xs,y:ys) def sortQ[A](lambda (A,A) :: Boolean, List[A]) :: List[A] def sortQ(po, []) = [] def sortQ(po, [x]) = [x] def sortQ(po, xs) = val half = Floor(length(xs)/2) val front = take(half, xs) val back = drop(half, xs) mergeBy(po, sortBy(po, front), sortQ(po, back))

  def head[A](List[A]) :: A def head(x:xs) = x def bestQ[A](lambda (A,A) :: Boolean, List[A]) :: A def bestQ(comparer, publisher) = head(sortBy(comparer, publisher))

  def bestQoS(comparer,publisher) = head(sortBy(comparer,publisher)) def addNum(x, y) = x + y def zipWith(_, [], _) = [] def zipWith(_, _, []) = [] def zipWith(f, x:xs, y:ys) = f(x, y) : zipWith(f, xs, ys) --Latency.inc --Types and Definitions for Response Time def LatencyIncrement(sitex) = {-Using tuple construction as fork-join -} (sitex, Rtime()) >(sitex, st)> (sitex, Rtime()-st) type TimeUnit = Second() | Millisecond()def class ResponseTime(unit) = def QoS(sitex) = LatencyIncrement(sitex) >(_, q)> (Ift(unit = Millisecond()) >> q | Ift(unit = Second()) >> q/1000) def QoSOplus(rt1, rt2) = rt1+rt2 def QoSCompare(rt1, rt2) = rt1 <= rt2 def QoSCompete(rt1, rt2) = bestQoS(QoSCompare, [rt1, rt2]) def QoSVee(rt1, rt2) = max(rt1,rt2) stop --Cost.inc --Types and Definitions for Cost type CostUnit = Items() | CurrencyEuros() | CurrencyDollars() def CostValue() = 1 def class Cost(unit) = def UnitConverter(x, Items()) = x def UnitConverter(x, CurrencyEuros()) = x * 100 def UnitConverter(x, CurrencyDollars()) = x * 80 def QoS(sitex, c) = val s = Ref([]) signal >> (s? >q> (if q=[] then s := c >> s? else QoSOplus(s?, c) >v> s := v >> UnitConverter(s?, unit))) def QoSOplus(c1, c2) = zipWith(addNum, c1, c2) def QoSCompare(c1, c2) = foldl((&&), true, zipWith((<=), c1, c2)) def QoSCompete(c1, c2) = bestQoS(QoSCompare, [c1, c2]) def QoSVee(c1, c2) = zipWith(max, c1, c2) stop

-

  -SLA.inc include "Latency.inc" include "Cost.inc" def class NonAmbient(QoStype) = def QoSCompete(Number,Number) :: Number def QoSCompete(q1,q2) = head(sortBy((<:), [q1,q2])) signal def class Ambient(QoStype,competition) = def QoSCompete(Number,Number) :: Number def QoSCompete(q1,q2) = head(sortBy(competition, [q1,q2])) signal

-

  -QoSRegistry.inc val QoSRegistry = [ {. name = "TAgent", QoSDom = ResponseTime, QoSUnit = Millisecond, Handle = LatencyIncrement .}, {. name = "TAgent", QoSDom = Cost, QoSUnit = CurrencyEuros, Handle = CostValue .}, {. name = "Airline", QoSDom = Cost, QoSUnit = Items, Handle = CostValue .}, {. name = "Hotel", QoSDom = Cost, QoSUnit = Items, Handle = CostValue .} ] def QoSMatch(siteID) = each(QoSRegistry) >M> Ift(M.name = siteID) >> (M.QoSDom,M.QoSUnit,M.Handle)

def

  QoSValidate(callersiteID,caleesiteID) = (collect(defer(QoSMatch,callersiteID)), collect(defer(QoSMatch,caleesiteID))) >(A,B)> ( Ift(A.QoSDom = B.QoSDom) >> signal | Iff(A.QoSDom = B.QoSDom) >> Println("Registry Entries Missing") >> stop)

-

  -QoSWeaver.inc def QoSWeaver(site,(lookup,unit,handle)) = def ResponseTimeCheck(competition) = Ift(lookup = ResponseTime && handle = LatencyIncrement) >> (Ambient(ResponseTime,competition) >> (ResponseTime(unit).QoS(site))) ; stop def CostCheck() = Ift(lookup = Cost && handle = CostValue) >> (NonAmbient(Cost) >> Cost(unit).QoS(site,CostValue())) ; stop signal >> v<v<(ResponseTimeCheck(max)| CostCheck()) def QoS(site,identifier) = val Data = Ref() def QoSCollect(v) = collect(defer2(QoSWeaver,Data?,v)) site >d> Data:=d >> collect(defer(QoSMatch,identifier)) >v> (Data?, map(QoSCollect,v))

-

  -Site Definitions def class AirlineCompany() = def function(GenerateInvoice) = bestQ(compareCost, defer(inquireCost,AirlineList)) >q> GenerateInvoice >> GenerateInvoice.AirQuote := q def QoSID() = "Airline" stop def class HotelBooking() = def function(GenerateInvoice) = bestQ(compareCategory, defer(inquireCategory,HotelList)) >q> GenerateInvoice >> GenerateInvoice.HotelQuote := q def QoSID() = "Hotel" stop def class TravelAgent() = def function(salesOrder,budget) = timeout( (acceptOrder(salesOrder, budget) >(bookingRequest, budget)> quoteAirfare(bookingRequest) >> quoteHotel(bookingRequest) >> checkBudget(bookingRequest, budget)), timeoutVal, salesOrder) >Some(bookingRequest)> bookingRequest def QoSID() = "TAgent" stop def QoSsite(sitex) = QoS(sitex.function(),sitex.QoSID())

-

  -SLA Declaration def bestQoS(comparer,publisher) = head(sortBy(comparer,publisher)) def addNum(x, y) = x + y def zipWith(_, [], _) = [] def zipWith(_, _, []) = [] def zipWith(f, x:xs, y:ys) = f(x, y) : zipWith(f, xs, ys) --Types and Definitions for Response Time def LatencyIncrement(sitex) = -Using tuple construction as fork-join -(sitex, Rtime()) >(sitex, st)> (sitex, Rtime()-st) type TimeUnit = Second() | Millisecond()def class ResponseTime(unit) = def QoS(sitex) = LatencyIncrement(sitex) >(_, q)> (Ift(unit = Millisecond()) >> q | Ift(unit = Second()) >> q/1000) def QoSOplus(rt1, rt2) = rt1+rt2 def QoSCompare(rt1, rt2) = rt1 <= rt2 def QoSCompete(rt1, rt2) = bestQoS(QoSCompare, [rt1, rt2]) def QoSVee(rt1, rt2) = max(rt1,rt2) stop --Types and Definitions for Cost type CostUnit = Items() | CurrencyEuros() | CurrencyDollars() def CostValue() = 1 def class Cost(unit) = def UnitConverter(x, Items()) = x def UnitConverter(x, CurrencyEuros()) = x * 100 def UnitConverter(x, CurrencyDollars()) = x * 80 def QoS(sitex, c) = val s = Ref([]) signal >> (s? >q> (if q=[] then s := c >> s? else QoSOplus(s?, c) >v> s := v >> UnitConverter(s?, unit))) def QoSOplus(c1, c2) = zipWith(addNum, c1, c2) def QoSCompare(c1, c2) = foldl((&&), true, zipWith((<=), c1, c2)) def QoSCompete(c1, c2) = bestQoS(QoSCompare, [c1, c2]) def QoSVee(c1, c2) = zipWith(max, c1, c2) stop def class NonAmbient(QoStype) = def QoSCompete(Number,Number) :: Number def QoSCompete(q1,q2) = head(sortBy((<:), [q1,q2])) signal def class Ambient(QoStype,competition) = def QoSCompete(Number,Number) :: Number

  Rewriting rule for weaving response time.

	<invoke "clock()"/>
	<receive "clock()"
	outputVariable = "clock"/>
	<assign>
	<$service.clock.store = $clock />
	</assign>
	</sequence>
	</flow>
	...
	<flow>
	<receive name = "service(-)" />
	<sequence>
	<invoke "clock()"/>
	<receive "clock()"
	outputVariable = "clock"/>
	<assign>
	<$service.RTime =
	$clock -$service.clock.store />
	<$orch.RTime =
	$orch.RTime + $service.RTime />
	</assign>
	</sequence>
	</flow>
	</sequence>
	Fig. 8
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 2 Literature survey, continued.

	Paper	QoS framework	Algorithms
	Calinescu et al.	Probabilistic QoS is	QoS is formally specified by using
	(2011) [18]	supported, with analytic	probabilistic temporal logic;
		techniques for QoS	extensive toolkit and model
		composition (Markov models,	checkers are used to implement
		DMC, CMC, MDP)	QoS-based design and
			reconfiguration but little detail is
			given about algorithms
	Zeng et al.	Probabilistic QoS is supported	Using an integer programming
	(2004, 2008,	(restricted to Gaussian	formulation, global and local
	2003) [51],	distributions); analytic	optimization are studied in
	[50, 52]	techniques for QoS	dynamic environments and the
		composition are provided	issue of monotonicity is implicitly
			pinpointed
	Ardagna et	Probabilistic QoS is not	QoS-aware service selection is
	al.(2005) [11];	supported	solved via Mixed Integer Linear
	Alrifai &		Programming / Multi-dimension
	Risse(2009) [8]		Multi-choice 0-1 Knapsack
			Problem (MMKP); the issue of
			monotonicity is pinpointed
			through the comparison of local
			vs. global QoS guarantees
	Rosario et al.	Probabilistic QoS is supported	An in-depth study of
	(2007, 2008,	through Soft Probabilistic	monotonicity is performed;
	2009)	contracts; Monte-Carlo	contract composition, optimal
	[15, 39, 40]	simulation is proposed for	service binding, and statistical
		QoS composition; the whole	QoS contract monitoring are
		study is restricted to latency	developed
	Rosario et al.	Probabilistic	Probabilistic monotonicity is
	(2009) [41, 42]	multi-dimensional QoS is	studied; a preliminary version of
		supported, with soft	this paper
		Probabilistic contracts	
		involving Monte-Carlo	
		simulation for QoS	
		composition	

  by construction. On the other hand, we haveE ω (N o ) < E ω (N o ) for ω ∈ Ω o , and E ω (N o ) = E ω (N o ) for ω ∈ Ω o . By[START_REF] Misra | Computation Orchestration: A Basis for Wide-Area Computing[END_REF], we have P(Ω o ) > 0. Consequently, we get:

A dioid is a semi-ring with idempotent addition.

http://orc.csres.utexas.edu/

The schedulers introduced for probabilistic automata by Lynch and Segala[START_REF] Segala | Probabilistic simulations for probabilistic processes[END_REF] are a special case of daemon.

Thanks are due to Bernard Delyon who pointed this reference to us.

http://orc.csres.utexas.edu/documentation.shtml
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