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We present the first experimental microwave realization of the one-dimensional Dirac-Moshinsky
oscillator, a paradigm in exactly solvable relativistic systems. The experiment relies on a relation of
the Dirac-Moshinsky oscillator to a corresponding tight-binding system. This tight-binding system
is implemented as a microwave system by a chain of coupled dielectric disks, where the coupling is
evanescent and can be adjusted appropriately. The resonances of the finite microwave system yields
the spectrum of the one-dimensional Dirac-Moshinsky oscillator with and without mass term. The
flexibility of the experimental set-up allows the implementation of other one-dimensional Dirac type
equations.

PACS numbers: 03.65.Pm, 07.57.Pt, 41.20.-q, 73.22.Pr

The relativistic version of the harmonic oscillator has
been touched upon occasionally [1, 2], but became a
widely used model for relativistic equations with the ap-
pearance of the seminal paper [3]. Originally it was
known as the Dirac oscillator and later as the Dirac-
Moshinsky oscillator (DMO) [4, 5]. Indeed since then
the number of papers using this model has increased
rapidly, mainly in mathematical physics [6–19], but also
in nuclear physics [20–22], subnuclear physics [23, 24]
and quantum optics [25–28]. In mathematical physics
it has become the paradigm for the construction of co-
variant quantum models with some well determined non-
relativistic limit, but has also attracted much attention
in the environment of exactly solvable models and sym-
metries; it is amusing to mention that even the Higgs
symmetry has been considered in this context [29].

While this model is a paradigm of mathematical
physics, it does not describe a known physical system,
as is the case for the Dirac equation for the hydrogen
atom. Thus an experimental realization by other means
is highly desirable. There are two proposals to realize
analogue experiments. One in the realm of quantum op-
tics [26–28] and the other one using a classical microwave
setup [30]. In this paper we shall present a microwave re-
alization for the 1-D DMO. Beyond its intrinsic interest,
the experiment is also a starting point for further exper-
imental exploration of Dirac like equations.

We will mainly follow the proposition of Ref. [30] but
use a slightly different mechanism to appropriately take
into account the finiteness of the experimental system.
The experimental idea is based on a mapping of the DMO
to a tight-binding model with dimers. In this model it
is important that only nearest neighbor interactions are
present. It consists of a chain of coupled disks with a
high index of refraction sandwiched between two metal-

lic plates. The coupling constants between the disks have
to be adjusted properly, to obtain a spectrum which is
equivalent to the DMO spectrum. This set-up has been
used to investigate the Dirac points [31], disorder effects
[32] and topological transitions in graphene [33]. We start
with a short introduction to the DMO and its relation to
a tight-binding hamiltonian with nearest neighbor cou-
pling only. Thereafter we introduce the experimental
setup and present the experimental results.

Dirac-Moshinsky oscillator.- The system that we now
call the DMO was proposed more than 20 years ago [3,
34–37], and its properties and possible applications have
been studied extensively. The original formulation was
presented in hamiltonian form. Covariance was easily
achieved and the physicality of such a system could be
attained by means of a Pauli coupling [3]. In the present
paper we will use the 1 + 1 dimensional version of the
Dirac oscillator [4], which can be treated analogously and
yields a two component spinless structure.

The system in question can be conceived in its sim-
plest form by writing the corresponding hamiltonian as
a function of the spectrum generating algebra. Let a, a†

be the ladder operators of a non-relativistic harmonic os-
cillator and σ± = σx ± iσy the creation and annihilation
operators of spin 1/2 in terms of Pauli matrices. The
1 + 1 dimensional DMO hamiltonian is

H = σ+a+ σ−a
† + µσz, (1)

where the spectrum is given by

ε±,n = ±
√
n+ µ2 (2)

where the sign denotes particles and antiparticles. The
dimensionless commutator [a, a†] = 1 ensures, that for
a particle of mass m and an oscillator of frequency ω,
we have µ =

√
mc2/h̄ω. Thus in the appropriate units,
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FIG. 1. A chain of resonators in dimeric configuration, with
atoms of type A and B. The index n stands for the dimer
number, ∆ is the coupling between elements of the same dimer
(intra-dimer coupling, kept constant throughout the array)
and ∆n is the coupling between the right end of dimer n
and the left end of dimer n+ 1 (inter-dimer coupling). Have
in mind that here we present the couplings only, later on
∆ ≤ ∆n, which means that in the experiment the intra-dimer
distance is the largest distance in the chain.

µ gives the mass of the particle directly, and the time
variable scales as t 7→

√
ωmc2/h̄t. In a certain limit,

the DMO can also be reduced to the Weyl equation with
a linear potential, thus one may call this system even a
Weyl oscillator. Taking m→ 0 leaving mω = constant 6=
0 leads to µ→ 0 and the following massless hamiltonian

H = σ+a+ σ−a
†, (3)

with the simplified spectrum

εn = ±
√
n. (4)

Note here that for n = 0 there is a double degeneracy,
where one of the states is given by |−, 0〉. Both hamilto-
nians (2) and (3) can be described within a tight-binding
model with dimers.

Description as a tight-binding model.- The eigenvalue
problem resulting from the hamiltonian (1) can be writ-
ten as two coupled tight-binding equations of the form

√
n+ 1ψ−n+1 +

√
nψ+

n−1 + µψ+
n = εnψ

+
n (5)

√
nψ+

n−1 +
√
n+ 1ψ−n+1 − µψ−n = εnψ

−
n (6)

where Ψ±n is the atomic wavefunction of the n-th dimer
and the superscripts + and − indicate sites of type A
and B (see also fig. 1). In our previous work [30] we
have established that this model can be emulated in a
one-dimensional chain with nearest neighbor interactions
where the spin (± superscripts in the equations above)
can be represented by A and B sites in a linear chain. By
defining the new operators

b = ∆(1 + a), b† = ∆(1 + a†), (7)

the hamiltonian for a tight-binding chain of two species
can be written as

Hchain = σ+b+ σ−b
† + µσz (8)

and µ is now the energy difference between the resonances
sitting upon A and B sites giving rise to a spectral gap.

The constant ∆ is nothing else than the coupling be-
tween two sites, and the spectrum of the system can be
extracted by virtue of the algebraic relation [b, b†] = ∆2.
As before, we have

εn = ±
√

∆2n+ µ2 (9)

The map between the DMO and the coupled linear chain
of two species is therefore quite natural. Finally we can
see that the resulting array comprises dimers AB, e.g.
sites A is always equally coupled to site B by ∆ indepen-
dently on n, whereas the coupling between the dimers
∆n has to follow a specific law derived below. The re-
quirements for a realization of b, b†, on the other hand,
introduce the following restrictions: For the inter-dimer
coupling ∆n = ∆

√
n.

An appropriate cut-off.- Till now we assumed a semi-
infinite array which terminates at one end with the value
∆0 = 0 (no more dimers to the left). Therefore, couplings
of the form

√
n range from 0 to limn→∞∆n =∞. How-

ever, experimentally accessible couplings always have an
upper limit ∆sup determined by the physical situation
and such a restriction introduces a natural cut-off in the
array by means of the relation ∆sup = ∆

√
nsup. Thus we

arrive at a finite chain with a total number 2nsup of sites.
A previously proposed finite realization [30], although

well conceived for the infinite case, did not take into ac-
count cut-off effects appropriately. Any configurations of
type b = ∆a + δ for arbitrary δ fulfills the algebraic re-
lations, but to keep edge effects small δ must be smaller
than any other coupling in the system. Choosing δ = ∆
is sufficient for this purpose. The preferred tight-binding
models are such that the successive couplings are in-
creased till a maximal coupling is reached, which is in
contrast with the previous proposition.

The generation of mass.- Our scheme so far contem-
plates the appearance of a spectral gap corresponding
to a finite mass in the DMO to result from an inher-
ent asymmetry within the dimer, i.e. A and B have
different eigenenergies. This produces the term µσz in
the hamiltonian [eq. (1)]. However, in practice an alter-
nate option to generate a gap occurs due to finite size
effects: We choose the smallest inter-dimer coupling to
be slightly smaller, rather than equal to the intra-dimer
coupling, i.e. ∆′ >∼ ∆min. Numerical inspection of the
tight-binding model shows that, while a gap opens, the
effects on the relative position of the eigenvalues on both
sides of the gap have finite size errors similar to the ones
in the gapless case. Note that the gap depends on the
number of sites and vanishes as this number goes to in-
finity; therefore a large array will not describe a DMO
with mass, in compliance with the chiral symmetry of
the system [38]. Yet for finite sizes we do get the desired
spectrum and we can make appropriate aproximations
or numerical calculations in the tight-binding model to
explain this satisfactorily. Nevertheless we suggest to
adapt the gap size to the experimental one rather than
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FIG. 2. Disks with a high index of refraction are placed be-
tween two metallic plates as a chain with center to center
distances dn or d. The microwaves are induced by a vector
network analyzer (VNA) via a microwave cable and a kink
antenna.

to get it from a tight-binding model as there will always
remain discrepancies between the model and the exper-
iment, which are entirely unrelated to the DMO. If we
wish to take advantage of this finite size effect we should
thus replace eq. (8) by

εn = ±
√

∆2n+ µ2
exp, (10)

where µexp refers to the parameter determined by the
experiment.

Experimental results.- For the experimental realiza-
tion of the DMO we use the techniques that have been
developed to investigate the band structure of graphene
[31–33]. The realization of the DMO is achieved as tight-
binding system with nearest neighbor coupling and small
higher order ones. A set of identical dielectric cylindrical
disks (5 mm height, 4 mm radius and a refractive index
of about 6) is placed between two metallic plates (see
fig. 2). Close to one disk we placed a kink antenna con-
nected to a vectorial network analyzer allowing to ex-
cite both transverse magnetic (TM) and transverse elec-
tric (TE) modes. The individual disks have an isolated
TE resonance at 6.65 GHz. Restricting our investigation
to frequencies around this value, where each disk con-
tributes only one resonance. The electromagnetic field
for this TE mode is mostly confined within the disks and
spreads evanescently outside. A sketch of the experimen-
tal setup is shown in fig. 2 and a detailed description is
presented in ref. [32].

In contrast to refs. [31, 32] we adjusted the height be-
tween the two plates to h=13 mm, to reduce the higher
order neighbor couplings. The coupling parameter ∆
between two adjacent disks depends on the distance
between centers of the disks d and can be given in
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FIG. 3. Reflection spectra of a Dirac Oscillator without mass
for a 15 dimer chain with minimal dimer distance of dmin =
13 mm. The upper spectrum (up-shifted) is measured at the
15th disk whereas the lower is measured at 3rd disk. The
vertical lines indicate the predicted resonance positions from
eq. (12) with ∆ = 0.023 GHz.
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FIG. 4. Dirac-Moshinsky Oscillator without mass for an intra-
dimer distance of 13 mm. The continuous curve correspond
to the analytical prediction (12). The symbols correspond
to different numbers of dimers: 6 dimers (circles), 9 dimers
(squares), 12 dimers (diamonds), and 15 dimers (triangles).

terms of a modified Bessel function |K0|2, as described
in [31, 32]. Thus, by changing the distance between disks,
one changes the inter-disk couplings and obtains the 1D-
DMO.

For the sake of simplicity let us assume an exponential
law which is a good approximation of the coupling in
terms of the distance in the range of interest. Then the
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distances dn between the dimers in the massless case are
given by

dn = − 1

γ
ln

(
∆n

∆K

)
= − 1

γ
ln

(
∆
√
n

∆K

)
. (11)

The intra-dimer distance is d and we chose d1 = d. The
distances between the dimers are decreasing monotoni-
cally, thus the smallest possible distance dinf determined
by the diameter of the disks dD defines the largest pos-
sible coupling ∆sup and the largest allowable number of
dimers nsup giving the largest admissible size of our dimer
chain. The number of energy levels is therefore equal to
2nsup. The eigenfrequencies for the 1D-DMO without
mass is then given by

νn = νc ±∆
√
n, (12)

where νc is the eigenfrequency of a single disk. We used
an intra-dimer distance d of 13, 14 and 15 mm and chains
of 12, 18, 24 and 30 disks. In fig. 3 we show the reflec-
tion spectra for d=13 mm and 30 disks for two different
antenna positions. The height of the resonances depends
on the antenna site, as it is proportional to the inten-
sity of the wavefunction at the disk. By measuring at
different sites it is possible to extract all resonance po-
sitions. The vertical lines correspond to the theoretical
predictions and a good agreement is found. Deviations
increase at the edges of the spectrum, as designed by the
choice of the cutoff.

We now investigate the dependence on the chain
length. The measured eigenfrequencies as a function of
the mode number is shown in fig. 4. The continuous
curve corresponds to the analytical prediction (12). As
the number of dimers increases, we find that the low lev-
els are best reproduced by the theoretical curve (12) and
the point of departure from theory moves further away
from the center of the spectrum as the number of dimers
increases. For dimer distances of 14 and 15 mm we got
similar results. Thus we experimentally measured the
spectrum of the Dirac-Moshinsky oscillator without mass
in a finite approximation.

As we only have disks of the same type, meaning hav-
ing approximately the same resonance frequency, we can-
not directly generate the 1D-DMO with mass as orig-
inally introduced. But, as mentioned above, for a fi-
nite chain one can introduce a mass term by setting the
intra-dimer coupling ∆′ larger than the smallest cou-
pling between the dimers ∆min. Thus we only have to
set the intra-dimer distance d to be smaller than the
maximal inter-dimer distance d1. We used a chain of
15 dimers with an initial inter-dimer distance d1=15 mm
and a smallest inter-dimer distance d14 = dmin ≈10.81.
As intra-dimer distances d we choose 10, 11, and 12 mm.
In fig. 5 we present the reflection spectra and the theo-
retical prediction (eq. (2)) for d=10 mm. We observe the
expected gap at the center and find a good agreement
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FIG. 5. Reflection spectrum of a Dirac-Moshinsky Oscillator
with mass for a 15 dimer chain, where the intra-dimer distance
of 10 mm and the inter-dimer distance of dmin = 10.81 mm.
The vertical lines indicate the predicted resonance positions
from eq. (12) with µ = 1.066 GHz and ∆ = 0.028 GHz.
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FIG. 6. Dirac oscillator with mass for different number of
dimers, where the last dimers are removed. The intra-dimer
distance is d=10 mm. Displayed are 6 (dmin ≈12.32 mm, Cir-
cles), 9 (dmin ≈11.61 mm, squares), 12 (dmin ≈11.15 mm, di-
amonds), and 15 (dmin ≈10.81 mm, triangles). Additionally
the corresponding theoretical curves resulting from (9) are
plotted as solid lines.

for the resonances close to the gap. Again the outer res-
onances show larger deviations. Next we removed step
by step the last dimer, thus increasing the minimal inter-
dimer distance dmin starting with dinf .

In fig. 6 the resonances for different chain lengths are
shown. We observe a good agreement for the upper spec-
trum with eq. (2). The two bands behave slightly differ-
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ently, especially their width is different, due to the sec-
ond nearest neighbor couplings, as was also observed in
square and graphene lattices [39]. Furthermore the gap
is observed to increase monotonically with dmin.

In conclusion, we have experimentally realized the 1-
D DMO based on the correspondence of the DMO to a
tight-binding model. Within this model effects of finite
size are small at the center of the spectrum. Furthermore,
we have produced a gap in the spectrum which can be
interpreted as the mass of the fermion. This was done
by a distortion that applies only to finite arrays, as the
infinite limit of the system makes such a gap vanish. We
hope for the future to realize a 2D-DMO as mentioned in
Ref. [30]. The model assumes a logarithmically deformed
hexagonal lattice with only nearest neighbor couplings.
To respect this coupling condition a realization of the 2-D
DMO is not possible with our distance-coupling relation.
However, microwave graphs seems to be a promising can-
didate [40, 41].
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