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Abstract: Many algorithms have been proposed for revealing the community 
structure in complex networks. Tests under a wide range of realistic conditions 
must be performed in order to select the most appropriate for a particular 
application. Artificially generated networks are often used for this purpose. The 
most realistic generative method to date has been proposed by Lancichinetti, 
Fortunato and Radicchi (LFR). However, it does not produce networks with 
some typical features of real-world networks. To overcome this drawback, we 
investigate two alternative modifications of this algorithm. Experimental results 
show that in both cases, centralisation and degree correlation values of 
generated networks are closer to those encountered in real-world networks. The 
three benchmarks have been used on a wide set of prominent community 
detection algorithms in order to reveal the limits and the robustness of the 
algorithms. Results show that the detection of meaningful communities gets 
harder with more realistic networks, and particularly when the proportion of 
inter-community links increases. 
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1 Introduction 

Complex systems composed of a set of interacting entities can be described by graphs 

where entities are the nodes and mutual interactions are the links between nodes. The 

analysis of the graph representation of many real-world systems from different fields has 

revealed some common features. Among these characteristics, the community structure 

of these complex networks is an important issue. Indeed, it reveals the internal 

organisation of the network, and allows inferring special relationship between the nodes. 

Because of the spread of complex network applications, the community detection 

problem has been studied in many different areas such as computer science, biology, 

sociology, resulting in numerous algorithms based on a whole range of principles 

(Fortunato, 2010). In order to perform community detection on a specific real-world 

network, one needs to select the most appropriate. This choice is difficult because of the 

profusion of methods, and also of the variability of their performances according to the 

networks characteristics. 

As most of these algorithms represent the community structure under the form of a 

node partition, their performance can be assessed by comparing the estimated partition 

with the real one. This requires the availability of networks whose community structure is 

known. Such real-world networks are very heterogeneous and not so numerous. It is thus 

difficult to select a network collection matching the topological properties of the targeted 

system. 

Artificial networks seem to be an appropriate alternative. They are widely used to 

compare community detection algorithms performances (Danon et al., 2005; Orman  

et al., 2011a). Indeed, generative models allow producing easily and quickly large 

collections of such networks. Moreover, these models provide a control on some 

topological properties of the generated networks, making it possible to mimic the targeted 
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system features. The only point of concern is the level of realism of the generated 

networks, which is a prerequisite to obtain relevant test results. For this purpose, 

generative models are generally defined in order to reproduce known real-world networks 

properties. Of course, current knowledge regarding these properties may not be 

exhaustive, and we can consequently never be completely assured that the generated 

networks are perfectly realistic. For this reason, tests on artificial networks should be 

seen as complementary to tests on real-world networks. 

Up to now, a few methods have been designed to generate networks with a 

community structure. The most popular one is certainly the model by Girvan and 

Newman (2002). Although widely used to test and compare algorithms (Donetti and 

Munoz, 2004; Duch and Arenas, 2005; Girvan and Newman, 2002; Radicchi et al., 2004) 

it is limited in terms of realism (Lancichinetti et al., 2008). The generated networks are 

rather small compared to most real-world networks. Furthermore, all nodes have roughly 

the same degree and all communities have the same size. Yet, typically both the 

community size distribution and the degree distribution of real-world complex networks 

follow a power law (Da Fontura Costa et al., 2008; Guimerà et al., 2003). To tackle this 

problem, several variants of this model have been defined, producing larger networks, 

and communities with heterogeneous sizes (Danon et al., 2006; Fortunato, 2010; Pons 

and Latapy, 2005). 

More recently, a different approach appeared, based on rewiring. First, an initial 

network with desired properties is randomly generated, then virtual communities are 

drawn, and finally some links are rewired so that these communities emerge in the 

network. The method introduced by Bagrow (2008) uses the Barabasi-Albert (BA) model 

(Barabasi and Albert, 1999) to generate the initial network. It produces small networks 

with a power law degree distribution. As all the communities have the same size, this 

algorithm does not capture an essential property of real-world networks. The method by 

Lancichinetti et al. (LFR) (2008) is based on the configuration model (CM) (Molloy and 

Reed, 1995), which generates networks with power law degree distribution too. However, 

unlike Bagrow’s method, the network size is not constrained and the community size 

distribution is a power law. Although LFR exhibits the most realistic properties, it also 

has some noticeable limitations. Previous experiments show that generated networks 

exhibit a low transitivity and close to zero degree correlation (Orman and Labatut, 2009), 

while real-world networks usually have a clearly non-zero degree correlation, and their 

transitivity is relatively high (Newman, 2003). 

Previous study demonstrates that community detection algorithms can be very 

sensitive to topological properties variation of the benchmarks in terms of accuracy. 

Indeed, performance degradation was observed when authors switched from equal-sized 

communities to heterogeneous distributions (Danon et al., 2006; Pons and Latapy, 2005). 

The introduction of a power law degree distribution also made the benchmarks  

more discriminatory, allowing to highlight differences between algorithms whose 

performances were considered similar before (Lancichinetti et al., 2008). 

In this work, we propose and evaluate two modifications of the LFR method to 

improve the realism of the generated networks. The realism level is appreciated by 

comparing popular topological properties of synthetic networks with reference values 

commonly observed in real ones. In order to assess the influence of the realism level 

variation, 11 widespread community detection algorithms are tested with artificial 

networks generated by the original and modified LFR methods. Preliminary results have 

been presented in Orman and Labatut (2010). In this paper, we investigate more deeply 
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the effect of network realism by conducting an exhaustive comparison of a wider range of 

community detection algorithms. 

The rest of this article is organised as follows. Section 2 describes the topological 

properties used to characterise complex networks. Section 3 is dedicated to the LFR 

method presentation and the proposed modifications. Section 4 is a brief description of 

the community detection algorithms under test. We present and justify the choice of 

selected parameters values to generate the benchmarks in Section 5. Topological 

properties of the datasets are compared with reference to the typical values of real-world 

networks in Section 6. The effect of the realism level of the benchmarks on community 

detection accuracy is investigated in Section 7. Finally, in Section 8, we highlight our 

contributions. 

2 Topological properties 

Undirected real-world networks are known to share some common properties. In this 

section, we present the most prominent ones: small-worldness, transitivity, degree-related 

properties and centrality-related properties. 

• Small-worldness. The small word phenomenon is typical of many real-world 

networks where shortcuts connecting different areas of the networks allow reducing 

the distance between any two nodes of the networks. In social networks context, it 

has been popularised by the famous theory of ‘six degree of separation’ between 

people. Specifically, small world networks have a low average distance (i.e., the 

length of the shortest path between pair of nodes). Furthermore, it grows 

logarithmically with the number of nodes (Newman, 2003). This property is 

important, because it is related to the network efficiency to propagate information. 

• Transitivity. The transitivity or clustering reflects the tendency for link formation 

between neighbouring nodes. The local clustering coefficient of a node is defined as 

the number of triangles in which the node participates, normalised by the maximum 

possible number of such triangles (Watts and Strogatz, 1998). In a human interaction 

network, it measures how well the friends of a person know each other. If none of 

them relates together, its value is zero while if they are all friends, its value is one. 

To characterise the global clustering coefficient, two different measures have been 

introduced. The higher the coefficient, the higher the probability to observe a link 

between two nodes sharing the same neighbour. Transitivity is known to be higher in 

real-world networks as compared to a purely random one with the same number of 

nodes and links. It usually takes high values for social networks. 

• Degree distribution. Most real-world networks have a highly inhomogeneous degree 

distribution with few nodes linked to many other nodes and a large number of poorly 

connected nodes. Nodes with high degree are called hubs, because they have a more 

central role in the network. This inegalitarian structure is well described by a power 

law distribution. In other words, the probability for a node to have a degree k is  

pk~k–Ȗ. Such networks are called scale-free, because their degree distribution does not 

depend on their size. Experimental studies showed that the Ȗ coefficient usually 

ranges from 2 to 3 (Barabasi and Albert, 2002; Boccaletti et al., 2006; Newman, 

2003). 
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• Average and maximum degree. In a real-world network, the average and maximal 

degrees generally depend on the number of nodes it contains. For a scale-free 

network, it is estimated to be 2
max~ Ȗkk
− +  (Barabasi and Albert, 2002; Boccaletti  

et al., 2006) and kmax~n1/(Ȗ–1) (Newman, 2003), respectively. 

• Degree correlation. It indicates how a node is related to its neighbours according  

to its degree. Indeed, hubs might associate preferentially either with other hubs or 

with low-degree. In assortative networks, the nodes tend to associate with their 

connectivity peers and the degree correlation is positive. In disassortative networks, 

hubs tend to associate with low-degree nodes and the degree correlation is negative. 

Real-world networks usually exhibit a non-zero degree correlation value. Social 

networks tend to be assortative, while other kinds of networks are generally 

disassortative (Newman, 2003). 

• Centrality. Centrality determines how influential a node is within a network. Among 

the various ways to define such a characteristic, degree, closeness and betweenness 

centrality are the most widely used (Freeman, 1979). Degree centrality measures the 

involvement of a node in the network by the number of nodes connected to it. This 

local definition does not take into account the position of the node in the network and 

therefore cannot measure its ability to reach others quickly. Closeness centrality 

based on the inverse sum of shortest distances to all the other nodes of the network 

capture this feature. Betweenness centrality asserts the ability of a node to play a 

‘broker’ role in the network by measuring how well it lies on the shortest paths 

connecting other nodes. 

While centrality is a measure of the leadership of a node, centralisation is a global 

feature of the network. It measures the degree to which the network is focused 

around a few central nodes. A very centralised network is dominated by one or a few 

very central nodes. It is therefore very sensitive to these central node failures or 

attacks while a less centralised is more resilient. Centralisation measures are based 

on the differences between the centrality scores of the most central point and those of 

all other points. Its definition is general, so it can be based on any centrality measure. 

For the three centrality concepts presented, its value ranges from 0 to 1. A value of 0 

is obtained on all three measures for a ‘complete’ graph while a value of 1 is 

achieved for a ‘star’ or ‘wheel’ graph. 

3 Network generation 

The LFR method produces networks with non-overlapping communities using a two 

steps process. First, a scale-free network is created by using a random model. Second, a 

community structure is randomly drawn, and the network is rewired to control the 

proportion of inter-community links. In this study, we propose to use another random 

model compared to the original one used in the first step of this algorithm. Two 

alternative models are considered. 
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3.1 Original LFR method 

In the first step, the CM (Molloy and Reed, 1995) is used in order to generate a network 

containing n nodes, with average degree 〈k〉, maximum degree kmax and a power law 

distributed degree with exponent Ȗ. Then, the second step is applied in two phases. First, 

the communities are randomly drawn, so that their distribution size follows a power law 

with exponent β. These are just virtual communities, i.e., groups of nodes, and the 

topology of the network does not reflect them for now. Second, an iterative process takes 

place to rewire certain links without changing the node degrees. The rewiring aims to 

control the proportion of inter-community links of each node according to a user defined 

parameter called the mixing coefficient ȝ. It is generally not possible to meet this 

constraint exactly, and the mixing coefficient is therefore only approximated in practice. 

Its value determines how clearly the communities are defined. For small ȝ values, the 

communities are distinctly separated because they share only a few links, whereas when ȝ 
increases, the proportion of inter-community links becomes higher, making community 

identification a difficult task. The network has no community structure for a limit value 

of the mixing coefficient given by: maxmin ( ) / ,cȝ n n n> −  where n and max
cn  are the 

number of nodes in the network and in the biggest community, respectively 

(Lancichinetti and Fortunato, 2009b). The LFR method guaranties to obtain several 

realistic properties: size of the network, power law distributed degrees and community 

sizes. Moreover, some parameters give the user a direct control on these properties: 

network size (n), degree distribution (Ȗ, kmax, 〈k〉), community size distribution structure 

(β) and community visibility (ȝ). 

3.2 Modified LFR method 

The CM is very flexible as it is able to produce networks with any size and degree 

distribution. Nevertheless, it is known to generate networks with zero correlation 

(Serrano and Boguñá, 2005) and low transitivity when degrees are power law distributed 

(Newman, 2003). To overcome these drawbacks, we propose to use more realistic 

models. We considered the BA preferential attachment model (Barabasi and Albert, 

2002) and one of its variants called evolutionary preferential attachment (Poncela et al., 

2008). Both models generate scale-free networks with desirable size and average degree. 

Furthermore, as we still use the second step of the original LFR algorithm, community 

size is also power law distributed with exponent β. The BA preferential attachment model 

(BA) (Barabasi and Albert, 1999) was designed as an attempt to explain the power law 

degree distribution observed in real-world networks by the building process of these 

networks. Starting from an initial network containing m0 connected nodes, a realistic 

iterative process is applied to simulate growth. At each iteration, one node is added to the 

network, and is randomly connected to m existing nodes (m ≤ m0). These m nodes are 

selected with a probability which is a function of their current degree In other words, 

nodes accumulate new edges in proportion to the number they have already, leading to a 

multiplicative process which is known to give power-law distributions. The ‘rich get 

richer’ mechanism of preferential attachment goes by many other names such as the 

‘Matthew effect’ in sociology, the ‘cumulative advantage’ in scientometrics. The 

exponent Ȗ of the power law cannot be controlled though, and tends towards 3 (Barabasi 

and Albert, 1999). The average degree depends directly on the parameter m(〈k〉 = 2m) 
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(Newman, 2003). The average distance is always less than in same-sized ErdĘs-Rényi 

networks, so it has the small world property (Barabasi and Albert, 2002). Transitivity is 

greater than in ErdĘs-Rényi networks, but nevertheless decreases with network size 

following a power law ~n–0.75 (Barabasi and Albert, 2002). 

The evolutionary preferential attachment (EV) (Poncela et al., 2008) model is a 

variant of the BA model. It also uses the preferential attachment and growth mechanisms. 

The attachment probabilities are not based on the current degree value, but on some nodal 

dynamic property, updated using the prisoner’s dilemma game. In every iteration, each 

node plays either cooperation or defection against all its neighbours. It gets a total score 

depending on the individual results: 0 for unilateral cooperation or bilateral defection, 1 

for bilateral cooperation, and b for unilateral defection, with b > 1. The first move is 

randomly chosen, whereas the next one depends on the respective results of the 

considered node and a randomly picked neighbour. If the neighbour’s score is better, the 

node might switch its strategy, with a probability depending on the difference between 

their scores. Nodes with higher scores are more attractive to a node added to the network, 

because by being connected to them, it may use a strategy which proved to be successful. 

According to its authors, this process is more realistic and leads to networks with high 

transitivity and degree correlation values. Besides the parameters already needed by BA 

(n, m0, and m), EV uses two more parameters: the points scored for unilateral cooperation 

(b) and the selection pressure (İ). The latter allows modulating the influence of the 

preferential attachment mechanism. All nodes are equiprobable when İ = 0, whereas the 

nodes scores are fully considered for İ = 1. 

As the generating processes differ only in the first step of the LFR algorithm for 

simplicity matters, we will thereafter refer to the network generators by using the name of 

the model employed during the first step. Consequently, LFR-CM will correspond to the 

original LFR method, whereas LFR-BA and LFR-EV are modified versions based on the 

corresponding models. 

4 Community detection algorithms 

Over the years, many methods have been devised to provide efficient community 

discovery algorithms. As the spectrum is wide, building a taxonomy of solutions is not 

easy. In this section, we present the most influential categories summarising the various 

solutions existing in the literature and the representative set of algorithms that we 

selected for evaluation. 

4.1 Link-centrality-based algorithms 

The algorithms based on link-centrality measures rely on a hierarchical divisive 

approach. Initially, the whole network is seen as a single community, i.e., all nodes are in 

the same community. The most central links are then repeatedly removed. The underlying 

assumption is that these particular links are located between the communities. After a few 

steps, the network is split into several components which can be considered as 

communities in the initial network. Iterating the process, one can split each discovered 

community again, resulting in a finer community structure. Algorithms of this category 

differ in the way they select the links to be removed. The first and most known algorithm 

using this approach was proposed by Newman (Girvan and Newman, 2002), and relies on 
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the edge-betweenness measure. It estimates the centrality of a link by considering the 

proportion of shortest paths going through it in the whole network. As the complexity of 

this algorithm is high, it is not well suited for very large networks. Radicchi et al. (2004) 

proposed a variation called Radetal, based on a local measure instead of the global edge-

betweenness. This measure called link transitivity is defined as the number of triangles to 

which a given link belongs, divided by the number of triangles that might potentially 

include it. Its lower complexity makes it more appropriate for large networks. It is used 

as the representative of the link centrality-based approach. 

4.2 Modularity optimisation algorithms 

Modularity is a prominent measure of the quality of a community structure introduced by 

Newman and Girvan (2004). It measures internal connectivity of identified communities 

with reference to a randomised null model with the same degree distribution. Modularity 

optimisation algorithms try to find the best community structure in terms of modularity. 

They diverge on the optimisation process they are based on. As this approach is very 

influential in the community detection literature, we consider three algorithms for 

investigation. 

FastGreedy developed by Newman (2004) relies on a greedy optimisation method 

applied to a hierarchical agglomerative approach. The agglomerative approach is 

symmetrical to the divisive one described in the previous subsection. In the initial state, 

each node constitutes its own community. The algorithm merges those communities step 

by step until only one remains, containing all nodes. The greedy principle is applied at 

each step, by considering the largest increase (or smallest decrease) in modularity as the 

merging criterion. Because of its hierarchical nature, FastGreedy produces a hierarchy of 

community structures like the divisive approaches. The best one is selected by comparing 

their modularity values. 

Louvain is another optimisation algorithm proposed by Blondel et al. (2008). It is an 

improvement of FastGreedy, introducing a two-phase hierarchical agglomerative 

approach. During the first phase, the algorithm applies a greedy optimisation to identify 

the communities. During the second phase, it builds a new network whose nodes are the 

communities found during the first phase. The intra-community links are represented by 

self-loops, whereas the inter-community links are aggregated and represented as links 

between the new nodes. The process is repeated on this new network, and stops when 

only one community remains. 

Spinglass by Reichardt and Bornholdt (2006) relies on an analogy between a very 

popular statistical mechanic model called Potts spin glass, and the community structure. 

It applies the simulated annealing optimisation technique on this model to optimise the 

modularity. 

4.3 Spectral algorithms 

Spectral algorithms take advantage of various matrix representations of networks. Classic 

spectral graph partitioning techniques focus on the eigenvectors of the Laplacian matrix. 

They were designed to find the partition minimising the links lying in-between node 

groups. The methods that we selected are variants adapted to complex networks analysis. 

Leading eigenvector is proposed by Newman (2006). It applies the classic graph 

partitioning approach, but to the modularity matrix instead of the Laplacian. Doing so, it 
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performs an optimisation of the modularity instead of the objective measures used in 

classic graph partitioning, such as the minimal cut. 

Commfind is developed by Donetti and Munoz (2005). It combines the analysis of the 

Laplacian matrix eigenvectors used in classic graph partitioning with a cluster analysis 

step. Instead of using the best eigenvector to iteratively perform bisections of the 

network, it takes advantage of the m best ones. Communities are obtained by a cluster 

analysis of the projected nodes in this m-dimensional space. 

4.4 Random-walk-based algorithms 

Several algorithms use random walks in various ways to partition the network into 

communities. They rely on the intuition that random walks tend to get trapped into 

densely connected parts corresponding to communities. We retain two of them in our 

comparisons. 

Walktrap by Pons and Latapy (2005) uses a hierarchical agglomerative method like 

FastGreedy but with a different merging criterion. Unlike FastGreedy, which relies on 

the modularity measure, it uses a node-to-node distance measure to identify the closest 

communities. This distance is based on the concept of random-walk. If two nodes are in 

the same community, the probability to get to a third one located in the same community 

through a random walk, should not be very different for both of them. The distance is 

constructed by summing these differences over all nodes, with a correction for the 

degree. 

MarkovCluster simulates a diffusion process in the network to detect communities 

(van Dongen, 2008). This method relies on the network transfer matrix, which describes 

the transition probabilities for a random walker evolving in this network. Two 

transformations (expansion and inflation) are iteratively applied on this matrix until 

convergence. The final matrix can be interpreted as the adjacency matrix of a network 

with disconnected components representing the communities. 

4.5 Information-based algorithms 

The main idea of those approaches is to take advantage of the community structure in 

order to represent the network using less information than that encoded in the full 

adjacency matrix. We selected two algorithms from this category. 

Infomod was proposed by Rosvall and Bergstorm (2007). It is based on a simplified 

representation of the network focusing on the community structure trough a community 

matrix and a membership vector. The former is an adjacency matrix defined at the level 

of the communities (instead of the nodes), and the latter associates each node to a 

community. The authors use the mutual information measure to quantify the amount of 

information from the original network contained in the simplified representation. They 

obtain the best partition by considering the representation associated to the maximal 

mutual information. 

Infomap is another algorithm developed by Rosvall and Bergstorm (2008). The 

community structure is represented through a two-level nomenclature based on Huffman 

coding. One is used to distinguish communities in the network and the other to 

distinguish nodes in a community. The problem of finding the best partition is expressed 

as minimising the quantity of information needed to represent some random walk in the 

network using this nomenclature. With a partition containing few inter-community links, 
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the walker will probably stay longer inside communities, therefore only the second level 

will be needed to describe its path, leading to a compact representation. The authors 

optimise their criterion using simulated annealing. 

4.6 Other algorithms 

A number of algorithms do not fit in the previously described approaches. We selected 

the label propagation algorithm by Raghavan et al. (2007), which uses the concept of 

node neighbourhood and simulates the diffusion of some information in the network to 

identify communities. Initially, each node is labelled with a unique value. Then an 

iterative process takes place, where each node takes the label which is the most spread in 

its neighbourhood (ties are broken randomly). This process goes on until convergence, 

i.e., each node has the majority label of its neighbours. Communities are then obtained by 

considering groups of nodes with the same label. By construction, one node has more 

neighbours in its community than in the others. 

5 Benchmark generation 

In order to investigate the effect of the generative parameters on the uncontrolled 

topological properties of the networks, it is necessary to consider an appropriate range of 

values for each parameter. Since we want realistic networks, these values must be, as 

much as possible, consistent with what is observed in real-world networks. For this 

matter, we used descriptions of real-world networks measurement from the literature 

(Barabasi and Albert, 2002; Boccaletti et al. 2006; Da Fontura Costa et al., 2008; 

Newman, 2003). As we could not find all the information needed to setup the models, we 

also based our choices on previous experiments in artificial networks generation 

(Lancichinetti et al., 2008; Orman and Labatut, 2009). 

Since the LFR-CM is the only network generator that makes it possible to control the 

degree distribution exponent value Ȗ, it is necessary to analyse the influence of this 

parameter on uncontrolled topological properties. For this purpose, we performed an 

extensive experimentation for a wide range of the controlled parameter values and Ȗ 
values ranging from 2 to 3. Figure 1 illustrates the typical behaviour resulting from these 

experiments. It clearly demonstrates that the power law degree distribution exponent has 

a negligible effect on uncontrolled properties. The fact that this parameter value is fixed 

for LFR-BA and LFR-EV is therefore not a problem for this study. 

Furthermore, one need to know if and how changes in the other controlled parameters 

affect the uncontrolled topological properties. In a previous analysis of LFR-CM, it has 

been shown that variations of the exponent value β in a realistic range have a negligible 

effect on uncontrolled properties (Orman and Labatut, 2009). Moreover, results indicate 

that the mixing coefficient is the most influential parameter. 

Since the uncontrolled network topological properties are not significantly sensitive 

to the variation of β and Ȗ in their realistic range, we use a single value for each 

parameter (β = 2 and Ȗ = 3). The later has been chosen in order to have a fair comparison 

of LFR-CM with competing alternatives. Recall that preferential attachment does not 

give any control on Ȗ, which tends towards 3 by construction. 

The average degree is directly related to the network size and in the case of scale-free 

networks, to the degree distribution exponent. However, this dependence is quite loose. 
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We consequently selected two consensual values for the average degree (〈k〉 = 15; 30). In 

LFR-CM, this constraint is enforced directly, whereas in LFR-BA and LFR-EV, we used 

m = 7; 15 to reach the same result. All three models allow controlling the average degree, 

but only LFR-CM lets the user specify the maximal degree. In order to get comparable 

networks, we tuned this parameter to make its values similar to what was observed in 

networks generated by LFR-BA and LFR-EV. We finally used the following sets of 

values for LFR-CM {〈k〉 = 15, kmax = 45} and {〈k〉 = 30, kmax = 90}. 

Figure 1 Influence of the degree distribution exponent on the measured properties, (a) degree 
correlation, (b) average distance (c) transitivity (d) betweenness centralisation  
(e) clonesness centralisation (f) degree centralisation (see online version for colours) 

  

(a)     (b) 

  

(c)     (d) 

Note: Networks were generated with parameters n = 5,000, ȝ = 0.5, 〈k〉 ≈ 30 using the 
original LFR method with CM. 
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Figure 1 Influence of the degree distribution exponent on the measured properties, (a) degree 
correlation, (b) average distance (c) transitivity (d) betweenness centralisation  
(e) clonesness centralisation (f) degree centralisation (continued) (see online version  
for colours) 

  

(e)     (f) 

Note: Networks were generated with parameters n = 5,000, ȝ = 0.5, 〈k〉 ≈ 30 using the 
original LFR method with CM. 

Additionally, LFR-EV allows controlling transitivity, and we found out that score and 

selection pressure İ = 0.99 give the highest transitivity. 

The network size n has a direct effect on the processing time, not only regarding the 

generation of networks, but even more importantly concerning the community detection 

task. For this reason, we selected a size of n = 5,000 nodes, which is at the same time 

reasonably large and computationally tractable. 

As the mixing coefficient ȝ is the most influential parameter on uncontrolled 

topological properties, networks are generated for different values ranging from 0.05 to 

0.95 with a 0.05 step. In order to overcome the statistical discrepancies, 25 networks have 

been generated for each combination of parameters. 

6 Generated networks properties 

In this section, we present the uncontrolled topological properties of the generated 

networks and discuss their realism. Figure 2 shows the results for average distance, 

degree correlation and transitivity. Results were very similar for 〈k〉 = 15 and 30, so we 

only present the latter here, but comments apply to both. The largest communities in the 

generated networks have around 700 nodes, so communities are supposed to be 

structurally well-defined for ȝ = 0.86. Beyond this limit, represented on the plots under 

the form of a vertical line, properties values have little interest because the generated 

networks have no community structure. 

The average distance plots are rather similar for all three models. Nevertheless, the 

average distance is always slightly lower for LFR-BA and LFR-EV than for LFR-CM. It 

decreases monotonically as ȝ increases until an asymptotic value is reached around  
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ȝ = 0.3. Indeed, for small values of the mixing coefficient, communities are well 

separated and there are few links between communities. This results in longer paths 

between nodes belonging to different communities. When the number of inter-

community links increases, the number of shortest paths between nodes also increases, so 

that the influence of community structure becomes negligible. Except for well separated 

communities, ‘small-worldness’ property is very robust to mixing proportion variations. 

This is an interesting behaviour when comparing algorithms performances. 

Figure 2 Influence of the mixing coefficient ȝ on the measured properties, (a) average distance,  
(b) degree correlation and (c) transitivity (see online version for colours) 

  

(a)     (b) 

 

(c) 

Notes: Networks were generated with parameters n = 5,000, Ȗ ≈ 3, β = 2, 〈k〉 ≈ 30 and  
using the LFR method on three different generative models: CM, BA model and 
evolutionary preferential attachment model (EV). Each point corresponds to an 
average over 25 generated networks. The vertical lines at ȝ = 0.86 represents the 
average limit above which communities stop being clearly defined. 
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LFR-CM has the highest transitivity, with values around 0.6 for well separated 

communities, but it decreases rapidly reaching almost zero transitivity for ȝlim. We 

observe the same behaviour for the other methods, but the variation range is much 

smaller, mainly because their values for ȝ ≈ 0 are significantly smaller (around 0.25 for 

LFR-BA and 0.45 for LFR-EV). So surprisingly enough, LFR-EV benchmark do not 

exhibit a higher transitivity than LFR-CM benchmark, at least for small values of the 

mixing coefficient. However, due to its lesser sensitivity to the mixing coefficient 

variations, its transitivity is higher for ȝ > 0.3. Note that in the literature, real-world 

networks with a transitivity greater than 0.3 are considered highly transitive  

(Da Fontura Costa et al., 2008), so we can state that all three models exhibit realistic 

transitivity for low ȝ values. The issue is more about their sensitivity to the mixing 

coefficient, leading to non-realistic values for high ȝ values. This behaviour could be 

linked to the rewiring process as it is common to the three models. 

Considering the degree correlation, there is a clear difference between LFR-CM and 

the other models. LFR-CM generates networks with realistic degree correlation values for 

well separated communities but it decreases rapidly and oscillates around zero for  

ȝ > 0.4. The LFR-EV benchmark exhibits the highest degree correlation, with values 

greater than 0.5 for ȝ ≈ 0. It decreases linearly when ȝ increases, resulting in values close 

to 0.25 for ȝ ≈ 1. Finally, unlike other models, the degree correlation of the LFR-BA 

benchmark increases linearly with ȝ, ranging approximately from 0.25 (ȝ ≈ 0) to 0.35  

(ȝ ≈ 1). It is also noteworthy that the statistical variations for this algorithm are much 

lower than for the two others. 

Figure 3 displays the evolution of the different centralisations. Whatever the 

definition used, the centralisation is always higher for LFR-BA and LFR-EV as 

compared to LFR-CM. We can conclude that the latter does not produce networks that 

include influential nodes because, except for the closeness centralisation, the measured 

values are very close to zero. The higher centralisation values observed for both LFR-BA 

and LFR-EV may be linked to the preferential attachment process used in these models. 

It tends to generate nodes highly connected to their neighbours. Naturally, the presence of 

these hubs increases the degree and closeness centralisation values. Note that 

centralisation values are very stable relatively to the mixing coefficient. From their 

evolution, we can suppose that the rewiring process affect slightly the central nodes. This 

makes sense, at least for degree centrality, since this property is directly based on the 

degree, and the rewiring process is supposed to preserve the degree distribution. Overall, 

in regards to centralisation, we can conclude that LFR-BA is the most suited model to 

mimic real-world networks. Indeed, it generates networks with degree and betweenness 

centralisation values with the same order of magnitude that typical social networks. 

To summarise, we can state that LFR-EV and LFR-BA produce more realistic 

networks than LFR-CM. Indeed, their topological properties are closer to those 

encountered in real networks. Small world property is slightly more pronounced and both 

algorithms exhibit realistic values for the degree correlation as compared to LFR-CM. 

From the perspective of centralisation, the generated networks are significantly different, 

yet with a clear advantage for LFR-BA followed by LFR-EV. Networks generated with 

LFR-CM are nevertheless more transitive, at least when the communities are well 

separated. This advantage is reduced as the proportion of inter-community links 

increases. Indeed, the transitivity decreases monotonically when the mixing coefficient 

value increases for the three algorithms but more drastically for LFR-CM. This drawback 

seems to be linked to the rewiring process as they all exhibit the same behaviour. 
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Figure 3 Influence of the mixing coefficient ȝ on the measured properties: (a) betweenness 
centralisation, (b) degree centralisation, (c) closeness centralisation (see online version 
for colours) 

  

(a)     (b) 

 

(c) 

Notes: Networks were generated with parameters n = 5,000, Ȗ ≈ 3, β = 2, 〈k〉 ≈ 30 and 
using the LFR method on three different generative models: CM, BA model and 
evolutionary preferential attachment model (EV). Each point corresponds to an 
average over 25 generated networks. The vertical lines at ȝ = 0.86 represents the 
average limit above which communities stop being clearly defined. 

If we compare these algorithms in terms of the robustness of uncontrolled topological 

properties with respect to variations of controlled properties, LFR-EV is the most 

effective algorithm. LFR-CM is clearly the most sensitive, showing the largest range of 

values for both transitivity and degree correlation, whereas LFR-BA is the most stable. 
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7 Community detection performances 

The community detection algorithms presented in Section 4 have been tested on all the 

generated networks. To measure the performances, we use the normalised mutual 

information (NMI) as it is commonly used to assess community detection performance 

(Danon et al., 2005; Lancichinetti et al., 2008; Lancichinetti and Fortunato, 2009a, 

2009b). Although we tested the algorithms on networks with average degree 〈k〉 = 15 and 

30, there was no relevant difference. Indeed, the performances were uniformly slightly 

better for 〈k〉 = 30 than for 〈k〉 = 15. For the sake of clarity, we only present the results for  〈k〉 = 30 in the remaining. Figure 4 presents the performances of the 11 algorithms under 

test on the three benchmarks. Each curve shows the evolution of the NMI with the mixing 

coefficient ȝ. Generally, as expected, the accuracy decreases with increasing community 

interactions. Overall, we can distinguish three types of similar behaviour when we 

observe the plots. In the first type of plots, for low values of the mixing coefficient, the 

algorithms manage to successfully identify the real communities. We do not observe any 

difference between the three benchmarks. In other words, in this area, the realism level of 

the generated networks has no influence on the performance of community detection 

algorithms. When the mixing coefficient increases, however, the performance 

deteriorates in a sharp way and the differences between the various benchmarks appear. 

This behaviour is characteristic of Louvain, Spinglass, Walktrap, Markov Cluster and 

label propagation. Nevertheless, the range of the mixing coefficient for which this 

phenomenon is observed is not the same for all the algorithms. Consequently, we can 

order the algorithms in terms of robustness against the variations induced by the three 

generative models. To do so, we compare the values of the mixing coefficient for which 

the accuracy differences appear. The less sensitive is Infomap followed by Spinglass and 

Walktrap. Indeed, for these algorithms, performance differences can be observed for a 

mixing coefficient above 0.6 approximately. Louvain starts to be sensitive to the model 

deviation when the mixing coefficient reaches 0.5. For Markov cluster and label 

propagation, the differences appear when the mixing coefficient is around 0.2. Note that 

label propagation is the most sensitive to the benchmarks differences. Furthermore, it is 

very sensitive to statistical fluctuations and its performances drop drastically compared to 

Markov cluster. Except for label propagation, performances are always worse with the 

benchmark generated with LFR-BA. Overall, there is not a clear difference between 

LFR-CM and LFR-EV. Indeed, very slight performance differences for Spinglass, 

Walktrap and Louvain are observed. Infomap and label propagation perform better on 

LFR-CM benchmark while Markov cluster is more efficient on LFR-EV benchmark. 

In the remaining plots, whatever the mixing coefficient value, one can always observe 

differences on performances for the three different benchmarks. Nevertheless, they can 

also be distinguished in two categories by the general shape of the curves. 

The second category includes Commfind and Fast Greedy. For both algorithms, the 

performances decrease monotonically when the mixing coefficient increases. The NMI 

varies almost linearly with the mixing coefficient for Fast Greedy while it evolves 

exponentially for Commfind. As the differences observed are not statistically significant, 

we can conclude that Fast Greedy is not very sensitive to the generative models 

differences. While very similar using benchmarks generated with LFR-CM and LFR-EV, 

Commfind performances deteriorate with data from LFR-BA. Note that performances are 

not very impressive for both algorithms for mixing coefficient values above 0.2. In other 
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words, these algorithms are more suited for situations where communities are well 

separated. 

Figure 4 Performances of the community detection algorithms on the three benchmarks,  
(a) Commfind (b) Fastgreedy (c) Louvain (d) Spinglass (e) Walktrap (e) Walktrap  
(g) Radicchi (h) eigenvector (i) Infomod (j) Infomap (k) label propagation (see online 
version for colours) 

  

(a)     (b) 

  

(c)     (d) 

Notes: Networks were generated with parameters n = 5,000, Ȗ ≈ 3, β = 2, 〈k〉 ≈ 30 using 
three different generative models: CM, BA model and evolutionary preferential 
attachment model (EV). Each point corresponds to an average over 25 generated 
networks. The vertical lines at ȝ = 0.86 represents the average limit above which 
communities stop being clearly defined. 
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Figure 4 Performances of the community detection algorithms on the three benchmarks,  
(a) Commfind (b) Fastgreedy (c) Louvain (d) Spinglass (e) Walktrap (f) Markov cluster  
(g) Radicchi (h) eigenvector (i) Infomod (j) Infomap (k) label propagation (continued) 
(see online version for colours) 

  

(e)     (f) 

  

(g)     (h) 

Notes: Networks were generated with parameters n = 5,000, Ȗ ≈ 3, β = 2, 〈k〉 ≈ 30 using 
three different generative models: CM, BA model and evolutionary preferential 
attachment model (EV). Each point corresponds to an average over 25 generated 
networks. The vertical lines at ȝ = 0.86 represents the average limit above which 
communities stop being clearly defined. 
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Figure 4 Performances of the community detection algorithms on the three benchmarks,  
(a) Commfind (b) Fastgreedy (c) Louvain (d) Spinglass (e) Walktrap (f) Markov cluster 
(g) Radicchi (h) eigenvector (i) Infomod (j) Infomap (k) label propagation (continued) 
(see online version for colours) 

  

(i)     (j) 

 

(k) 

Notes: Networks were generated with parameters n = 5,000, Ȗ ≈ 3, β = 2, 〈k〉 ≈ 30 using 
three different generative models: CM, BA model and evolutionary preferential 
attachment model (EV). Each point corresponds to an average over 25 generated 
networks. The vertical lines at ȝ = 0.86 represents the average limit above which 
communities stop being clearly defined. 

In a decreasing order of efficiency, Infomod, Radetal and leading eigenvector are the 

three members of the last category. They all are sensitive to the realism level of the 

networks whatever the mixing coefficient value. For Infomod and leading eigenvector, it 

is more difficult to identify the real communities when the data are from LFR-EV instead 

of LFR-CM and this is even harder if the data come from LFR-BA. Radetal’s behaviour 

is original as its performances increase for LFR-BA benchmark as compared to LFR-CM 

and LFR-EV, when the mixing coefficient value is less than 0.5. Above this value, it 
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exhibits a more typical behaviour. Indeed, performances are always worse for LFR-BA 

generated data than for the two other alternatives. 

From these results, we can conclude that the classification based on the underlying 

principles used by the community detection algorithms is not relevant to explain the 

sensitiveness to the level of realism. Indeed, algorithm from different categories can 

exhibit the same behaviour while others in the same category can behave quite 

differently. For example, Infomap and Infomod are both information theory-based 

algorithms but Infomap performances are insensitive to the benchmarks variation while 

this is not the case for Infomod. As the proportion of inter-community links is not too 

high, the most efficient algorithms are hardly influenced by the realism level of the 

networks. However, when the boundaries between communities become looser, this 

effect becomes significant. Globally, networks generated with the LFR-BA model are the 

most difficult to process, whereas those generated by LFR-CM are associated to the 

highest performances. The LFR-EV model lies somewhere in between. Even if it is not 

easy to explain the observed differences, we can say that LFR-BA is the most reliable 

generator because of the stability of uncontrolled topological properties. 

8 Conclusions 

In this paper, we investigate the effect of the realism level of artificially generated 

complex networks on the performance of community detection algorithms. In order to 

improve the realism level of the LFR method, we propose to use the BA or the 

evolutionary preferential attachment (EV) model instead of the original CM. An 

extensive evaluation of the topological properties of the three different benchmarks 

demonstrate that LFR-BA and LFR-EV produce networks with lower average distance, 

more realistic degree correlation, lower transitivity, and higher centralisation, when 

compared to the original LFR-CM method. For these properties, globally, LFR-EV 

exhibits better absolute values but LFR-BA is less sensitive to the mixing coefficient 

variation. 

In order to analyse the effect of these modifications on the community detection 

process, a wide range of algorithms has been tested. Overall, we observe that 

performances deteriorate more or less when the degree of realism of the networks 

increases. The highest performances are in general obtained when applied to the LFR-

CM benchmark, whereas the lowest correspond to LFR-BA data. More precisely, the 

algorithms can be categorised in three classes according to their sensitiveness to 

benchmark variation. In the first class, differences appear only when the proportion of 

intercommunity links is high, making the community detection problem a difficult task. 

Among these algorithms, Infomap is the most robust and efficient algorithm followed by 

Spinglass and Walktrap. It should be preferred by practitioners to detect communities on 

real networks. The algorithms from the second and the third class are always sensitive to 

the benchmarks variations whatever the proportion of the inter-community links. The 

shape of the performance curves is the main characteristic allowing to distinguish them. 

While in the second class performances decrease monotonically when the proportion of 

inter-community links increases, in the third class, performances are very stable up to a 

certain value of the proportion of inter-community links after which it drops sharply. 

Among the three generation models, LFR-BA is the most appropriate in order to 

evaluate community detection algorithms. Indeed, its topological properties are closer to 



   

 

   

   

 

   

   

 

   

    Towards realistic artificial benchmark for community detection algorithms 21    
 

    

 

 

   

   

 

   

   

 

   

       
 

those encountered in real networks compared to LFR-CM. Furthermore, the relative 

stability of its topological properties for the all range of mixing proportion allows to 

consistently compare the algorithms. 

Apart from the comparison of algorithms, the proposed modifications of the LFR 

algorithm can have a big impact for all studies requiring the simulation of real networks, 

and this, especially in the field of social networks. Indeed, a realistic model to cover 

social network properties should generate small world networks, with positive degree 

correlation and high transitivity and centralisation values. LFR-BA and LFR-EV exhibits 

these characteristics, especially when the communities are well-separated. LFR-CM is 

one step behind with its low centralisation and degree correlation values. Of course, both 

LFR-BA and LFR-EV should be further improved to be more realistic. A more effective 

rewiring process that respects not only the degree of the nodes, but also a predefined local 

transitivity could enhance even more their realism level. 
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