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We identify the spaces of homogeneous polynomials in two variables K[Y k , XY k-1 , . . . , X k ] among representations of the Lie ring sl2(K). This amounts to constructing a compatible Klinear structure on some abstract sl2(K)-modules, where sl2(K) is viewed as a Lie ring.

.

The problem addressed in the present ongoing series of articles is to understand to which extent the group-theoretic constraints of the abstract group G = G K of K-points of some algebraic group G actually determine the representation theory of G, that is to which extent representations of G over K are characterizable among abstract G-modules. It is the author's belief that something can in the long run be achieved or at least formulated.

At this point it seems natural to ask about the Lie K-algebra (Lie G) K as well. Parallel to the difference between an algebraic group and the abstract group of K-points runs the difference between the Lie algebra and the abstract Lie ring g of K-points, that is the underlying (+, [•, •])structure with no reference to a vector space structure. As a matter of fact the relationships between g-modules and Kg-modules are far from clear. The question may deserve interest although it appears not to have been asked before.

In the present article we shall deal with a fundamental case and characterize the symmetric powers Sym k Nat sl2(K) among representations of the Lie ring sl2(K).

Remember that the modules Sym k Nat sl2(K) (k ≥ 1 an integer) are the irreducible, finitedimensional representations of the Lie K-algebra sl2(K). It is convenient to realize them as the spaces of homogeneous polynomials of degree k in two variables K[Y k , XY k-1 , . . . , X k ] equipped with the standard action.

 with linearizing abstract modules, that is constructing a K-vector space structure compatible with the given action of an algebraic structure, here the Lie ring sl2(K).

It is not surprising to turn the assumption that V is finite-dimensional (which is a priori meaningless since there is no K-linear structure to start with) into an assumption on the length of the action: x n • V = 0, where h, x, y form the standard K-basis of sl2(K). We thus extend the results of [1] which considered the simpler, quadratic case x 2 • V = 0. Whenever we write A ⊕I B we merely mean that A is isomorphic to a direct sum of copies of B indexed by some (possibly finite) set I. Our main result is the following scalar extension principle.

The Lie ring

Notation. Let K be a field and g be the Lie ring sl2(K).

K, g

Literature on Lie rings looks scarce when compared to other topics. Fortunately we deal with a concrete and familiar Lie ring, so any reference on Lie algebras such as [START_REF] Humphreys | Introduction to Lie algebras and representation theory[END_REF] will do. We simply use the group law +, the bracket [•, +•], and forget about the K-linear structure on g.

Notation.

Let K1 be the prime subfield of K and g1 be the Lie ring sl2(K1); one has g1 ≤ g.

K 1 , g 1 Notation. For λ ∈ K let h λ , x λ , y λ h λ = λ 0 0 -λ , x λ = 0 λ 0 0 , y λ = 0 0 λ 0
One simply writes h = h1, x = x1, y = y1.

h, x, y

Notation. Let b be the Borel subring generated by the h λ 's and the xµ's, and u = {xµ : µ ∈ K} b, u, t be its unipotent radical. Let t be the Cartan subring {h λ : λ ∈ K}.

Relations.

• [h λ , xµ] = 2x λµ ;

• [h λ , yν ] = -2y λν ;

• [xµ, yν ] = hµν .

K will never have characteristic 2; as a consequence g will always be perfect. One should be careful that [g, g] will merely denote the additive subgroup of g generated by all brackets since we forget about the K-linear structure on g. It is however the case that g = [g, g] which is the definition of perfectness.

We shall sometimes go to the enveloping (associative) ring which is defined among rings just like the enveloping (associative) K-algebra is defined among K-algebras. It enjoys a similar universal property in the broader category of g-modules. This simply amounts to viewing sl2(K) as a Lie algebra over the prime ring of K and taking its enveloping algebra as such, but to prevent confusion we shall always refer to this object as the enveloping ring. The usual enveloping K-algebra can be retrieved as a quotient of the enveloping Lie ring by relations expressing K-linearity. It has no reason to play a role since we are a priori not dealing with K-linear representations.

Relations. One has in the enveloping ring the following equalities which the reader may check by induction:

x i y = yx i + i(h + 1 -i)x i-1 ;
(1) y j x = xy j -j(h + j -1)y j-1 ;

(2)

y j x i = min(i,j) k=0 (-1) k k! i k j k k-1 =0 (h -i + j + ) x i-k y j-k ; ( 3 
)
x i hµ = hµx i -2ixµx i-1 ; (4) x λ 1 . . . x λ i yµ = yµx λ 1 . . . x λ i + k h µ•λ k x λ 1 . . . x λ k . . . x λ i - k = x µ•λ k •λ x λ 1 . . . x λ k . . . x λ . . . x λ i ;
(5)

yµx λ 1 . . . x λ i = x λ 1 . . . x λ i yµ - k x λ 1 . . . x λ k . . . x λ i h µ•λ k - k = x λ 1 . . . x λ k . . . x λ . . . x λ i x µ•λ k •λ (6) 
(The terms in the hats do not appear.)

Be however careful that in the enveloping ring x λ y = xy λ . So checking the formulas in the enveloping algebra does not suffice in order to establish them in the enveloping ring.

Notation. Let c1 = 2xy + 2yx + h 2 be the Casimir operator.

The Casimir operator is central in the enveloping algebra but not in the enveloping ring; for instance a quick computation yields [c1, h λ ] = 8(xy λ -x λ y) which is non-zero.

However when K1 = Fp and g1 = sl2(K1), c1 is central indeed in the enveloping ring of g1. This is not quite true over Q, but it is readily checked that for all z in the enveloping ring there is an integer k with k[c1, z] = 0. It follows that provided K1 = Q and V is a torsion-free g1 = sl2(K1)-module, the action of c1 commutes with the action of g1. This will always be the case when we use c1.

The module

Notation. Let V be a g-module.

V

We shall keep writing x λ , y λ , hµ for the images in End(V ) of the corresponding elements of g.

Notation.

The length λu(V ) of the u-module V is the least integer n, if there is one such, λ u (V )

with u n • V = 0. Notation. For i ∈ Z, let Ei = Ei(V ) = {a ∈ V : h • a = iv}. E i
Using the familiar relations one sees that h λ (resp. xµ, resp. yν ) maps Ei to Ei (resp. Ei+2, resp. Ei-2).

We shall in a minute deal with constructing vector space structures on modules. If K1 is a prime field then an abelian group V bears at most one linear structure over K1. If it is the case and V is a g1 = sl2(K1)-module as well then V is a K1g1-module.

Let us also remind the reader why Lie rings do not admit cross-characteristic representations.

Observation.

Let K be a field, K1 its prime subfield, g = sl2(K) and V be a g-module. Then

g • V / Anng•V (g) is a K1-vector space.
Proof of Claim. If K1 = Fp then g annihilates pV so V / AnnV (g) has exponent p. Also note that p annihilates g • V , so g • V has exponent p as well. Hence in prime characteristic both V / AnnV (g) and g • V are actually K1-vector spaces.

If K1 = Q then g • V is divisible and g annihilates the torsion submodule of V , so g • V / Anng•V (g) is torsion-free and divisible: a Q-vector space. ♦ This certainly does not prove that V need be a K-vector space (which is not true in general) but already removes the outmost pathologies.

Symmetric powers

Let us finally state a few facts about the very modules we try to characterize.

Notation. Let Nat g denote the natural representation of g, that is K 2 equipped with the left Nat g action of g = sl2(K).

Notation.

For k ≥ 1 an integer, let Sym k Nat g denote the k th symmetric power of Nat g.

Sym k Nat g

We do not wish to go into tensor algebra, and will more conveniently handle Sym k Nat g as follows.

Fact ([3, §II.7]). Let K be a field of characteristic 0 or ≥ k + 1.

• S k = Sym k Nat g is isomorphic to K[Y k , XY k-1 , . . . , X k ]
as a Kg-module, where x acts as X ∂ ∂Y and y as Y ∂ ∂X . • S k is an irreducible Kg-module; it remains irreducible as a g-module.

• h = [x, y] acts on S k as X ∂ ∂X -Y ∂ ∂Y . • K • X k-i Y i = E k-2i (S k ). • The length of S k is k + 1, meaning that u k+1 • S k = 0 and u k • S k = 0.
• The Casimir operator c1 acts on S k as multiplication by k(k + 2). In particular in characteristic 0 or ≥ k + 3, c1 induces a bijection of S k .

Length

This section contains two minor results on the notion of length as defined in §1. They are fairly straightforward and so are their proofs.

Variation n • 15. Let n ≥ 2 be an integer and K be a field of characteristic 0 or ≥ n + 1. Let g = sl2(K), b ≤ g be a Borel subring and u = b be its radical. Let V be a u-module. Suppose that for all λ ∈ K, x n λ = 0 in End(V ). Then V has u-length at most n, meaning that

u n •V = 0.
Proof. This is a simpler analog of Variation n • 6 [START_REF] Deloro | Quadratic actions[END_REF]: only the end of the argument need be reproduced as the induction on the "weights" of monomials is not necessary. Indeed x λ+µ = x λ + xµ whence immediately:

0 = n-1 j=1 n j x j λ x n-j µ
One then replaces µ by iµ for i = 1 . . . n -1; this yields the same linear (n -1) by (n -1) system as in Variation n • 6 [START_REF] Deloro | Quadratic actions[END_REF]. Hence dx n-1 λ xµ = 0 where d is the determinant of the system; all prime divisors of d divide n!. In particular replacing µ by µ d in K, one finds x n-1 λ xµ = 0 in End(V ). Since u acts on im xµ one may use induction on n.

Next comes an easy generalization of Variation n • 9 [START_REF] Deloro | Quadratic actions[END_REF]. (There seems to be no parallel argument in the case of SL2(K); the quadratic setting painfully dealt with in Variation n • 7 [START_REF] Deloro | Quadratic actions[END_REF] actually required a full SL2(K)-module.)

Variation n • 16. Let n ≥ 2 be an integer and K be a field of characteristic 0 or ≥ n + 1. Let g = sl2(K) and b ≤ g be a Borel subring. Let V be a b-module. Suppose that

x n • V = 0. Then V has u-length at most n, meaning that u n • V = 0.
Proof. We go to End(V ). Let us prove by induction on i = 0 . . . n:

∀(λ1, . . . , λi) ∈ K i , x n-i x λ i . . . x λ 1 = 0
This holds of i = 0. Suppose that the result holds of fixed i < n; let (λ1, . . . , λi, λi+1) ∈ K i+1 .

We show by induction on j = 0 . . . i:

x n-i x λ i . . . x λ j+1 h λ i+1 x λ j . . . x λ 1 = 0

• This holds of j = 0 by assumption on i.

• Suppose that the result holds of fixed j. Then:

x n-i x λ i . . . x λ j+2 h λ i+1 x λ j+1 . . . x λ 1 = x n-i x λ i . . . x λ j+2 ([h λ i+1 , x λ j+1 ] + x λ j+1 h λ i+1 )x λ j . . . x λ 1 = 2x n-i x λ i . . . x λ j+2 x λ i+1 •λ j+1 x λ j . . . x λ 1 + x n-i x λ i . . . x λ j+1 h λ i+1 x λ j . . . x λ 1 = 0
by assumption on j and i (the latter applied with λ j+1 = λi+1 • λj+1). This concludes the induction on j.

With j = i, one gets:

x n-i h λ i+1 x λ i . . . x λ 1 = 0
Let us now prove by induction on k = 0 . . . n -i:

x n-(i+k) h λ i+1 x k x λ i . . . x λ 1 = 2kx n-(i+1) x λ i+1 . . . x λ 1
• This holds of k = 0 by what we have just shown.

• Suppose that the result holds of fixed k. Then:

x n-(i+k+1) h λ i+1 x k+1 x λ i . . . x λ 1 = x n-(i+k+1) ([h λ i+1 , x] + xh λ i+1 )x k x λ i . . . x λ 1 = 2x n-(i+k+1) x λ i+1 x k x λ i . . . x λ 1 + x n-(i+k) h λ i+1 x k x λ i . . . x λ 1 = 2x n-(i+1) x λ i+1 . . . x λ 1 + 2kx n-(i+1) x λ i+1 . . . x λ 1
This concludes the induction on k.

With k = n -i one gets:

h λ i+1 x n-i x λ i . . . x λ 1 = 2(n -i)x n-(i+1) x λ i+1 . . . x λ i
but the left-hand side is zero by assumption. If instead of λi+1 we had started with

λ i+1
2(n-i) , which is legitimate by assumption on the characteristic of K, we would have obtained:

x n-(i+1) x λ i+1 . . . x λ 1 = 0
This concludes the induction on i.

With i = n, one has the desired statement.

Remark. One cannot use induction on n via im x since im x may fail to be t = {h λ : λ ∈ K}invariant; such a configuration will be met in the example illustrating the following.

Remark. The mere existence of a product x λ 1 . . . x λn which is zero in End(V ) does not suffice to force the length to be at most n. Take indeed K = C, g = sl2(C), and let ϕ stand for complex conjugation. Also let V = Nat g C 2 , V = ϕ V (a copy "twisted" by the field automorphism), and W = V ⊗ V . One sees that W has no Cg-submodule other than {0} and W . Let (e1, e2) be the standard basis of C 2 ; one has x • e1 = 0 and x • e2 = e1. Write for simplicity ei,j = ei ⊗ ej. One finds:

     x λ • e1,1 = 0 x λ • e2,1 = λe1,1 x λ • e1,2 = ϕ(λ)e1,1 x λ • e2,2 = λe1,2 + ϕ(λ)e2,1 so that x λ xµ • e2,2 = (λϕ(µ) + µϕ(λ))e1,1. Clearly x 2
1 = 0 and yet x1xi = 0 (where i stands for a root of -1).

One may object that W though simple as a Cg-module, is not as a g-module; we then go down to W0 = Re1,1 ⊕ {λe1,2 + ϕ(λ)e2,1 : λ ∈ C} ⊕ Re2,2, which as a g-module is simple; one has x 2 1 = 0 in End(W0). Remark. By Variation n • 16 the u-length is therefore the nilpotence order of x in End(V ); one may wonder whether it is the nilpotence order of y as well. (One should not expect this in full generality: after Variation n • 12 [START_REF] Deloro | Quadratic actions[END_REF] we saw that it can be achieved in characteristic 3 that x 2 = 0 = y 2 .)

Here is an unsatisfactory argument in characteristic zero.

We go to the enveloping algebra A. Then Ann A (V ) is a two-sided ideal containing x n . But SL2(K) acts on A and normalizes every two-sided ideal by [2, Proposition 2.4.17]; since the Weyl group exchanges x and y one has y n ∈ Ann A (V ) as well, whence y n = 0 in End(V ).

The argument is not quite satisfactory: we have been using the K-algebra A. It is a fact that every Kg-module is an A-module but all we had was a mere g-module; turning it into a Kg-module is precisely the core of the matter.

More prosaically, a crude computation will show that in characteristic ≥ 2n + 1 one does have x n = 0 ⇒ y n = 0: we shall see this while proving Variation n • 17.

Combinatorial skeleton

In this section we focus on sl2(K1)-modules of finite length, with K1 a prime field. If the characteristic is 0 or large enough, Variation n • 17 of §3.1 gives a complete description. But some other objects appear if one tries to lower the characteristic too much ( §3.2). Provided one assumes that y has the same order as x, the monsters vanish (Variation n • 18, §3.3).

The author cannot believe that the results of this section are new, but found no evidence. We shall give purely computational arguments without going to the algebraic closure. Again, this reflects a methodological line more than pure foolishness.

Large Enough Characteristic

Variation n • 17. Let n ≥ 2 be an integer and K1 be a prime field of characteristic 0 or ≥ 2n + 1. Let g1 = sl2(K1) and V be a g1-module. If the characteristic of K is 0 one requires V to be torsion-free. Suppose that x n = 0 in End(V ).

Then V = AnnV (g1) ⊕ g1 • V , and g1 • V is a K1-vector space with g1 • V ⊕ n-1 k=1 ⊕I k Sym k Nat g1 as K1g1-modules.
Proof. Induction on n. When n = 2 this is Variation n • 12 [START_REF] Deloro | Quadratic actions[END_REF].

All along c1 = 2xy + 2yx + h 2 will be the Casimir operator; the action of c1 commutes with the action of g1 on V . In characteristic 0 this holds only since we assumed V to be torsion-free.

Step 1 (see Variation n • 3 [START_REF] Deloro | Quadratic actions[END_REF]). We may assume V = g1 • V and AnnV (g1) = 0.

Proof of Claim. Let W = g1 • V and W = W/ AnnW (g1). Let • stand for projection modulo AnnW (g1). By perfectness of g1 one has W = g1 • W and Ann W (g1) = 0. In particular if K1 = Q then W is torsion-free. Suppose that the result holds of W ; let us prove it for V : suppose that W is a K1-vector space satisfying W ⊕ n-1 k=1 ⊕I k Sym n-1 Nat g1 as K1g1-modules. One then sees that c1 is a bijection of W . We claim the following:

• W = c1 • W + AnnW (g1). For take w ∈ W . Since c1 is surjective onto W there exists w ∈ W with w = c1 • w . • c1 • W = W .
Let us apply g1 to the previous equality, bearing in mind perfectness of g1 and centralness of c1. One finds

W = g1•W = g1c1•W +g1•AnnW (g1) = c1g1•W = c1•W .
• W ∩ ker c1 = 0. For take w ∈ W ∩ ker c1. Then by the previous claim there exists

w ∈ W with w = c1 • w . Modulo AnnW (g1) one has 0 = c1 • w = c 2 1 • w .
By injectivity of the Casimir operator on W it follows w = 0, whence w ∈ AnnV (g1) ≤ ker c1 and w = c1 • w = 0.

• AnnV (g1) = ker c1. One inclusion is obvious and was just used; if conversely k ∈ ker c1 then g1

• c1 • k = 0 = c1 • g1 • k so g1 • k ≤ W ∩ ker c1 = 0. • V = AnnV (g1) ⊕ W . The sum is direct indeed as we just saw. Moreover if v ∈ V then there exists w ∈ W with c1 • v = c1 • w; in particular V ≤ W + ker c1 = W ⊕ ker c1 = W ⊕ AnnV (g1).
V therefore has the desired structure. ♦

We now suppose V = g1 • V and AnnV (g1

) = 0. It follows that V (g1 • V )/(Anng 1 •V (g1)) is a K1-vector space.
Step 2. In End(V ), one has (h

-n + 1)(h -n + 2) . . . (h + n -1) = 0.
Proof of Claim. Remember that in the enveloping ring, for i, j ≥ 1:

y j x i = min(i,j) k=0 (-1) k k! i k j k k-1 =0 (h -i + j + ) x i-k y j-k
In the subring of End(V ) generated by the image of g1 one has x n = 0; the formula becomes with i = n and j ≤ n:

j k=1 (-1) k k! n k j k k-1 =0 (h -n + j + ) x n-k y j-k = 0 (Fj)
Let us prove by induction on j = 0 . . . n:

(h -n + 1)(h -n + 2) . . . (h -n + 2j -1)x n-j = 0
When j = 0 the (ascending) product is empty: our claim holds by assumption on x. Suppose that the result holds of fixed j and let us prove it for j + 1 ≤ n. Consider formula (Fj+1) multiplied on the left by (h -n + 1) . . . (h -n + j). One gets:

j+1 k=1 (-1) k k! n k j + 1 k π k x n-k y j+1-k = 0
where:

π k = (h -n + 1) . . . (h -n + j) • (h -n + j + 1) . . . (h -n + j + k) = (h -n + 1) . . . (h -n + j + k) Since j + k ≥ 2k -1 the term with index k contains (h -n + 1) . . . (h -n + 2k -1)
x n-k , which by induction is zero while k ≤ j. So only remains the term with index k = j + 1 namely:

(-1) j+1 (j + 1)! n j + 1 (h -n + 1) . . . (h -n + 2j + 1)x n-(j+1) = 0
By n!-torsion-freeness of V we may remove the coefficients and complete the induction. When

j = n one finds (h -n + 1)(h -n + 2) . . . (h + n -1) = 0. ♦ Step 3. V = ⊕ n-1 j=1-n Ej.
Proof of Claim. Let us first observe that the sum ⊕ n-1 j=1-n Ej is direct indeed by (2n -2)!torsion-freeness of V . For the same reason the monomials X -j are pairwise coprime in

K1[X] for j = 1 -n, . . . , n -1. Since their product annihilates h in End(V ) one has V = ⊕ n-1 j=1-n ker(h -j) = ⊕ n-1 j=1-n Ej. ♦
Since n -1 + 2 = n + 1 and n -2 + 2 = n are not congruent to any j ∈ {1 -n, . . . , n -1} the operator x annihilates En-1 and En-2. Similarly y annihilates E1-n and E2-n.

Remark. It is now clear that y n • V = 0. Notation 4. Let V ⊥ = im(c1 -n 2 + 1) and V = ker(c1 -n 2 + 1). Step 5. V ⊥ is a g1-submodule isomorphic to ⊕ n-2 k=1 ⊕I k Sym k Nat g1.
Proof of Claim. V ⊥ is clearly g1-invariant. But by Step 3 or the proof of Step 2 one has in End(V ) the identity hx n-1 = (n -1)x n-1 . Hence always in End(V ):

x n-1 (c1 -n 2 + 1) = x n-1 (2xy + 2yx + h 2 -n 2 + 1) = 2(x n-1 y)x + (h + 2 -2n) 2 x n-1 -(n 2 -1)x n-1 = 2(yx n-1 + (n -1)(h + 2 -n)x n-2 )x + (1 -n) 2 x n-1 + (1 -n 2 )x n-1 = 2(n -1)(h + 2 -n)x n-1 + 2(1 -n)x n-1 = 0
It follows that x n-1 annihilates im(c1 -n 2 + 1) = V ⊥ and one may apply induction. Since AnnV ⊥ (g1) ≤ AnnV (g1) = 0 there remains only

V ⊥ = g1 • V ⊥ ⊕ n-2 k=1 ⊕I k Sym k Nat g1. ♦
Step 6. We may assume V = V .

Proof of Claim. We claim that V = V ⊥ ⊕ V . The way the Casimir operator acts on each Sym k Nat g1 is known: like multiplication by

k(k + 2). But for k = 1, . . . , n -2, one has k(k + 2) = n 2 -1 in K1 by assumption on the characteristic. It follows that (c1 -n 2 + 1) induces a bijection of V ⊥ . As a consequence V ⊥ ∩ V = V ⊥ ∩ ker(c1 -n 2 + 1) = 0. Moreover for all v ∈ V there exists v ∈ V ⊥ with (c1 -n 2 + 1) • v = (c1 -n 2 + 1) • v , whence V = V ⊥ + ker(c1 -n 2 + 1) = V ⊥ + V = V ⊥ ⊕ V .
If the result were proved for V it would therefore follow for V . ♦

From now on we suppose V = V ; in particular c1 -n 2 + 1 annihilates V .

Step 7. ker x = En-1.

Proof of Claim. We claim that x is injective on ⊕ n-2 j=1-n Ej. For if a ∈ Ej with j ∈ {1 - n, . . . , n -2} satisfies x • a = 0, then (n 2 -1)a = c1 • a = (2xy + 2yx + h 2 ) • a = (2h + h 2 ) • a = j(j + 2)a
so either a = 0 or n 2 = j(j + 2) + 1 = (j + 1) 2 . But the latter equation solves into j = ±n -1 which is not the case (even in characteristic p ≥ 2n + 1). ♦

Step 8. V is isomorphic to ⊕I n-1 Sym n-1 Nat g1.

Proof of Claim. We claim that for all i = 1 . . . n, one has En-2i = 0. At i = 1 this is because

En-2 ≤ ker x = En-1 by Step 7. If this is known at i, then x • E n-2(i+1) ≤ En-2i whence E n-2(i+1) ≤ ker x = En-1.
On the other hand observe that for all i = 1 . . . n: yx |E n+1-2i = (i -1)(n + 1 -i) and xy |E n+1-2i = i(n -i). This is actually obvious since c1 = 4yx + h 2 + 2h = 4xy + h 2 -2h is constant and equals multiplication by n 2 -1.

It is therefore now clear that for all an-1 ∈ En-1 \ {0}, the span g1 • an-1 is a K1-vector space isomorphic to Sym n-1 Nat g1 as a K1g1-module; if in particular b ∈ g1 • an-1 \ {0} then g1 • an-1 = g1 • b . Let M ≤ V be a maximal direct sum of such spaces. Then M has the desired structure, and our computations show

V = ⊕ n-1 j=1-n Ej ≤ g1 • En-1 ≤ M . ♦
This finishes the proof.

A Digression: Pathologies in Low Characteristic

As in Variation n • 12 [START_REF] Deloro | Quadratic actions[END_REF] the characteristic must be 0 or ≥ 2n + 1 in order to prove Variation n • 17. In this section we suppose the characteristic to lie between n and 2n. We shall construct counterexamples to Variation n • 17 and remove them later in §3.3 under the extra assumption that y has the same order as x in End(V ).

The construction generalizes the one given in characteristic 3 at the end of [START_REF] Deloro | Quadratic actions[END_REF]. Let n ≥ 2 be an integer and p be a prime number with n < p < 2n; let m be such that n + m = p. Observe that if i ∈ {1, . . . , n} and j ∈ {1, . . . , m}, then n + 1 -2i and m + 1 -2j are never congruent modulo p. Hence modulo p, the n + 1 -2i's and m + 1 -2j's are all distinct, and their global number is p; there are n of the former kind and m of the latter.

Construction. Let V1 and V2 be two vector spaces over Fp. Let α : V1 → V2 and β : V2 → V1 be two linear maps. Define a g1-module S α,β as follows.

For each j ∈ {1, . . . , m} let Em+1-2j be a copy of V1 whose elements we shall denote em+1-2j,v 1 for v1 ∈ V1. For each i ∈ {1, . . . , n} let En+1-2i = {en+1-2i,v 2 : v2 ∈ V2} be a copy of V2.

The underlying vector space of S α,β is

m ⊕ j=1 Em+1-2j n ⊕ i=1 En+1-2i
Now define an action of g1 = sl2(Fp) on S α,β by:

h • em+1-2j,v 1 = (m + 1 -2j) • em+1-2j,v 1 if 1 ≤ j ≤ m x • em+1-2j,v 1 = (j -1)e m+1-2(j-1),v 1 if 1 ≤ j ≤ m y • em+1-2j,v 1 = (m -j)e m+1-2(j+1),v 1 if 1 ≤ j < m y • e1-m,v 1 = e n-1,α(v 1 ) h • en+1-2i,v 2 = (n + 1 -2i) • en+1-2i,v 2 if 1 ≤ i ≤ n x • en+1-2i,v 2 = (i -1)e n+1-2(i-1),v 2 if 1 ≤ i ≤ n y • en+1-2i,v 2 = (n -i)e n+1-2(i+1),v 2 if 1 ≤ i < n y • e1-n,v 2 = e m-1,β(v 2 )
Note that by construction, x annihilates En-1 and Em-1. The following diagram explains the construction:

E1-n En-1 Em-1 E1-m x x x x y y y y α β Sym n-1 Nat g1 Sym m-1 Nat g1
Observation. S α,β is a g1-module annihilated by x n . Proof of Claim. It suffices to prove that the defining relations of g1 are satisfied at every vector em+1-2j,v 1 ; the en+1-2i,v 2 's are treated similarly.

At em+1-2j,v 1 with 1 < j < m there is nothing to prove since everything is locally as in Sym n-1 Nat g1; since x annihilates em-1,v 1 , this also holds at em-1,v 1 . Let us now consider a vector e1-m,v 1 . One checks:

x • (y • e1-m,v 1 ) -y • (x • e1-m,v 1 ) = x • e n-1,α(v 1 ) -y • (m -1)e3-m,v 1 = (1 -m)e1-m,v 1 = h • e1-m,v 1 then h • (x • e1-m,v 1 ) -x • (h • e1-m,v 1 ) = 0 = 2x • e1-m,v 1 ,

and finally:

h • (y • e1-m,v 1 ) -y • (h • e1-m,v 1 ) = h • e n-1,α(v 1 ) + (m -1)y • e1-m,v 1 = (n -1)e n-1,α(v 1 ) + (m -1)e n-1,α(v 1 ) = (p -2)e n-1,α(v 1 ) = -2y • e1-m,v 1 By construction, x n • S α,β = 0. ♦
On the face of it our construction of S α,β may seem to depend on the bases we chose for V1 and V2. The following shows that up to isomorphism it is not the case.

Observation. S α,β and S α ,β are isomorphic iff the pairs (α, β) and (α , β ) are equivalent, that is iff there exist linear isomorphisms u1 :

V1 V 1 and u2 : V2 V 2 with α = u2αu -1 1 and β = u1βu -1 2 .
Proof of Claim. If the pairs (α, β) and (α , β ) are equivalent, an isomorphism of g1-modules S α,β S α ,β is easily constructed by setting f (em+1-2j,v 1 ) = e m+1-2j,u 1 (v 1 ) with obvious notations, and similarly on the other row.

For the converse suppose that there is such an isomorphism f : S α,β S α ,β . Let V1 = E1-m(S α,β ) and V2 = E1-n(S α,β ); these are Fp-vector spaces. One then retrieves α(v1) = 1 (n-1)! y n • v1 and β(v2) = 1 (m-1)! y m • v2 (which do induce S α,β ). Proceed similarly on S α ,β . Let u1(v1) = f (v1) and u2(v2) = f (v2). Since f is an isomorphism, these are linear isomorphisms between V1 and V 1 , resp. V2 and V 2 . Now for all v1 ∈ V1, since f is an isomorphism of g1-modules,

u2 • α(v1) = u2 1 (n -1)! y n • v1 = 1 (n -1)! f (y n • v1) = 1 (n -1)! y n • f (v1) = α (f (v1)) = α • u1(v1)
A similar verification can be carried on V2, proving that u1 and u2 define a equivalence of (α, β) and (α , β ). ♦ Observation. S α,β is non-simple iff there are subspaces W1 ≤ V1 and W2 ≤ V2 not both zero nor both full such that α maps W1 to W2 and β maps W2 to W1.

Proof of Claim. We give a correspondence between submodules of S α,β and pairs (W1, W2) as in the statement. One direction is clear: if such a pair (W1, W2) is given, a g1-submodule is readily defined. So let W ≤ V be a g1-submodule.

Set W1 = {v1 ∈ V1 : e1-m,v 1 ∈ W } and W2 = {v2 ∈ V2 : e1-n,v 2 ∈ W }.
We claim that α maps W1 to W2, and that β maps W2 to W1. It suffices to prove it for α. Take indeed w1 ∈ W1. Then by construction e1-m,w 1 ∈ W whence y • e1-m,w 1 = e n-1,α(w 1 ) ∈ W . Applying y n-1 , one finds up to multiplication by (n -1)! which is coprime to p: e 1-n,α(w 1 ) ∈ W , so by definition, α(w1) ∈ W2. ♦

Observation. S α,β is simple iff α and β are isomorphisms and β • α is irreducible (as an automorphism of V1).

Proof of Claim. Suppose that S α,β is simple. Take f ∈ V1 \ {0}. Consider the sequences fr = (βα) r (f ) and gr = α(fr), for r ≥ 0. These sequences span subspaces W1 ≤ V1 and W2 ≤ V2 mapped one to another by α and β. By simplicity W1 = V1 and W2 = V2. Hence α is a bijection. A similar argument holds for β. Now let W1 be invariant under β • α and set W2 = α(W1). Then α maps W1 to W2 and β maps W2 to W1 so by simplicity W1 = V1 or 0. Suppose that α and β are isomorphisms such that β • α is irreducible. If W1 ≤ V1 and W2 ≤ V2 are mapped one to another by α and β then β • α(W1) ≤ W1 so W1 = 0 or V1. In the former case W2 = 0 by injectivity of β, in the latter W2 = V2 by surjectivity of α. ♦ Suppose in particular that S α,β is simple. Then for any f ∈ V1 \ {0}, the sequence (fr) r≥1 as above spans V1 whence a linear relation f0 =

d r=1 krfr. It follows that f d lies in the span W1 of (fr) 0≤r≤d-1 , so V = W1 is finite-dimensional. Moreover the characteristic polynomial of β • α is irreducible over Fp[X].
Observation. Let n ≥ 2 be an integer and K1 be the field Fp with n < p < 2n. Let g1 = sl2(K1) and V be a simple g1-module. Suppose that x n = 0 in End(V ).

Then V is some S α,β .

Proof of Claim. We may suppose n minimal such that x n = 0. (The reader will observe that had we wished to be fully rigorous we should have written S n α,β throughout.) By simplicity AnnV (g1) = 0 and g1 •V = V , so V is a vector space over Fp; in particular it is n!-torsion-free and n!-divisible. Now Step 2 of Variation n • 17 requires only n!-torsion-freeness, so we get hx n-1 = (n -1)x n-1 in End(V ) (this is only the first step of the induction fully carried in Step 2 of Variation n • 17). As x n-1 = 0, we deduce En-1 = 0. Since ⊕ ∈Z/pZ E is clearly g1-invariant, one finds by simplicity V = ⊕ ∈Z/pZ E .

We now make the following observation: if for some ∈ Z/pZ, one has E ∩ ker x = 0, then E ≤ ker x, and likewise with ker y instead of ker x. We prove it only for x as length plays no role here. Consider W = ⊕ p-1 i=0 y i • (E ∩ ker x). We claim that W is x-invariant. This is because for a ∈ E ∩ ker x and i ∈ {0, . . . , p -1} one has x • (y 0 • a) = x • a = 0 ∈ W when i = 0 and otherwise

xy i • a = y i x • a + i(h + i -1)y i-1 • a ∈ W
We claim that W is y-invariant as well. This is because for a ∈ E ∩ ker x,

xy • (y p-1 • a) = xy p • a = y p x • a = 0 whence y • (y p-1 • a) ∈ E ∩ ker x ≤ W .
By assumption W is non-trivial, by simplicity of V one has W = V and therefore E ≤ ker x. Since 0 = im x n-1 ≤ ker x ∩ En-1, one has En-1 ≤ ker x. Now the Casimir operator c1 = 4yx + h 2 + 2h equals n 2 -1 on En-1; by simplicity of V , one has c1 = n 2 -1 everywhere. In particular on Em-

1 one finds 4yx + m 2 -1 = n 2 -1 = m 2 -1 so yx annihilates Em-1. If x • Em-1 = 0 then 0 = x • Em-1 ≤ ker y ∩ Em+1 = ker y ∩ E1-n,
so by the above observation y annihilates E1-n and one readily sees V Sym n-1 Nat g1 (a very special case of our construction). If x • Em-1 = 0 then one retrieves an S α,β . ♦

We thus have described all simple g1-modules of length n in characteristic ≥ n + 1: they correspond to irreducible polynomials in Fp[X]. There remains one pending question: can one analyze all g1-modules of length n in characteristic ≥ n + 1, in terms of S α,β 's? It could be conjectured so but the author wishes to dwell no longer on a subject of disputable interest.

The Symmetric Case

There is something odd in assuming the characteristic of K1 to be ≥ 2n + 1 in length n; we bring no evidence to support the feeling that a better lower bound should be n + 1 as it was in Variation n • 12 [START_REF] Deloro | Quadratic actions[END_REF].

We know from the previous subsection that lowering the characteristic can result in creating pathologies. Observe how in S α,β the actions of x and y are dissymmetrical as soon as α or β in non-zero. In particular S α,β cannot be made into an SL2(K)-module in a "consistent" way since x and y should then have the same order in End(V ) being conjugate under the adjoint action of the Weyl group of SL2(K). In short all our previous counterexamples shared the feature that the action of y was quite different from that of x, which is ill-behaved. The minimal decency requirement on an sl2(K)-module V in order to stem from an associated SL2(K)-module is that x and y should have the same order in End(V ).

Under this extra symmetry assumption it is possible to classify sl2(Fp)-modules of twosided finite length even in low characteristic, as it was in Variation n • 14 [START_REF] Deloro | Quadratic actions[END_REF] for a two-sided quadratic module in characteristic 3.

Variation n • 18. Let n ≥ 2 be an integer and K1 be the field Fp with n < p < 2n. Let g1 = sl2(K1) and V be a g1-module. Suppose that x n = y n = 0 in End(V ).

Then V = AnnV (g1) ⊕ g1 • V , and g1 • V is a K1-vector space with g1 • V ⊕ n-1 k=1 ⊕I k Sym k Nat g1 as K1g1-modules.

Proof. Induction on n. When n = 2 this is a special case of Variation n • 14 [START_REF] Deloro | Quadratic actions[END_REF] with K = F3. We shall adapt the proof of Variation n • 17. Write p = n + m with 0 < m < n.

One might desire to assume AnnV (g1) = 0 and g1 • V = V . Actually if p > n + 1 the proof given in Variation n • 17 remains correct as k(k + 2) = 0 for k ∈ {1, . . . , n -1}. But when p = n + 1 the Casimir operator c1 now annihilates Sym p-2 Nat g1 and there may be some subtleties.

Step 1. We may assume that V is a K1-vector space.

Proof of Claim. Suppose the result is known for K1-vector spaces and bear in mind that assumptions on the length of x and y go down to subquotients.

As g1 annihilates pV the factor V = V / AnnV (g1) is a vector space. By assumption V = g1 • V ⊕ Ann V (g1). Then using perfectness one has Ann V (g1) = 0 so V = g1 • V .

As a consequence V = g1 • V + AnnV (g1). But p annihilates the submodule W = g1 • V which is therefore another vector space. Still by assumption W = g1 • W ⊕ AnnW (g1). Then perfectness again yields g1 • W = W so AnnW (g1) = 0.

In particular W ∩ AnnV (g1) = 0 and V = g1 • V ⊕ AnnV (g1) has the desired structure since

W = g1 • V does. ♦ Step 2. In End(V ), one has (h -n + 1)(h -n + 2) . . . (h + n -1) = 0.
Proof of Claim. Since p > n the proof given in Variation n • 17 remains correct. ♦

We move to the weight space decomposition. Unfortunately the various Ej's with j ∈ {1 -n, . . . , n -1} are no longer pairwise distinct so special attention must be paid. Observe how since V is a K1 = Fp-vector space one should actually talk about the E [j] 's (where [j] is the congruence class of j modulo p) in order to prevent confusion. This is what we do from now on.

Step 3. V = ⊕ j∈{0,...,p-1} E [j] .
Proof of Claim. Bear in mind that (h -n + 1)(h -n + 2) . . . (h + n -1) = 0. If p = 2n -1 the argument of Variation n • 17 remains correct since the polynomials X -j with j ∈ {1-n, . . . , n-1} are still pairwise coprime and coincide with the polynomials X -j with j ∈ {0, . . . , p -1}. But for p ≤ 2n -3 which we now assume it is no longer the case as some appear twice. Let us determine which with care.

As p ≤ 2n -3 we have n -1 ≥ m + 1. We lift every congruence class modulo p to its canonical representative in {0, . . . , p -1}.

class [1 -n] [2 -n] . . . [-1] [0] [1] . . . [n -1] repr. m + 1 m + 2 . . . p -1 0 1 . . . n -1
Let us partition I = {0, . . . , p -1} into the set I1 = {0, . . . , m} ∪ {n, . . . , p -1} of the 2m + 1 elements occurring once and the set I2 = {m+1, . . . , n-1} of the n-1-m elements occurring twice: 0, 1, . . . , m, m + 1, . . . , n -1

I 2
, n, . . . , p -1 Therefore the polynomial

P (X) = ∈I 1 (X -[ ]) • ∈I 2 (X -[ ]) 2 annihilates h in End(V ). For ∈ I let F [ ] = ker(h -[ ]) 2 ≥ E [ ] = ker(h -[ ]). It is readily observed that x, resp. y, maps F [ ] to F [ +2] , resp. F [ -2]
. Since all monomials powers in P (X) are pairwise coprime in Fp[X] one has:

V = ⊕ ∈I 1 E [ ] ⊕ ∈I 2 F [ ]
Observe that for all ∈ I1, one has

F [ ] = E [ ] .
Our task is to prove it for ∈ I2 as well. So let k ∈ I be minimal with

F [k] > E [k] ; k ∈ I2 so k ≥ m + 1.
We wish to take the least i with k + 2i ∈ I1. Unfortunately this may fail to exist, for instance when n = p -1 and k = p -2. But there certainly is i minimal with

[k + 2i] ∈ [I1]. Then i ≤ n-k 2 + 1. Let W = ⊕ ∈I E [ ] which is clearly g1-invariant. We shall compute modulo W which we denote by ≡. Let v ∈ F [k] . Recall that y • v ∈ y • F [k] ≤ F [k-2] = E [k-2] ≤ W , so y • v ≡ 0. Moreover by construction x i • v ∈ F [k+2i] = E [k+2i] ≤ W . Finally by definition (h -[k]) • v ∈ ker(h -[k]) = E [k] ≤ W so h • v ≡ kv. Hence 0 ≡ y i x i • v ≡ i k=0 (-1) k k! i k i k k-1 =0 (h + [ ])x i-k y i-k • v ≡ (-1) i i! i-1 =0 (h + [ ]) • v ≡ (-1) i i! i-1 =0 [k + ]v Now k = 0 since 0 ∈ I1 and k + i -1 ≤ k + n-k 2 ≤ n < p. Thus remains v ≡ 0 meaning F [k] ≤ W and F [k] = E [k] . Therefore V = W . ♦ Notation 4. Let V ⊥ = im(c1 -n 2 +1) and V = ker(c1 -n 2 +1). Let also V ⊥⊥ = im(c1 -n 2 +1) 2 and V = ker(c1 -n 2 + 1) 2 .
Step 5.

V ⊥⊥ is a g1-submodule isomorphic to ⊕ n-2 k=1 ⊕I k Sym k Nat g1 if p = n + 1 and to AnnV ⊥ (g1) ⊕ ⊕ n-2 k=1 k =m-1 ⊕I k Sym k Nat g1 otherwise.
Proof of Claim. As in Variation n • 17, V ⊥ is a g1-submodule annihilated by x n-1 , and by y n-1 similarly. One certainly has n -1 < p. If p ≥ 2(n -1) + 1 then we apply Variation n • 17. Otherwise p < 2(n -1) and we apply induction. In any case As for the AnnV ⊥ (g1) term, there are two possibilities. Either p = n + 1 in which case n 2 -1 = 0 and (c1 -n 2 + 1) annihilates AnnV ⊥ (g1), or p > n + 1 in which case n 2 -1 = 0 and (c1 -n 2 + 1) is a bijection of AnnV ⊥ (g1).

V ⊥ = AnnV ⊥ (g1) ⊕ g1 • V ⊥ and g1 • V ⊥ is isomorphic to ⊕ n-2 k=1 ⊕I k Sym k Nat g1. The operator c1 -n 2 + 1 is no longer a bijection of V ⊥ as k(k + 2) = n 2 -1 solves into k = n -1 or m -1 in Fp.
Hence if p = n + 1 one has

V ⊥⊥ = ⊕ n-2 k=1 ⊕I k Sym k Nat g1 whereas if p > n + 1 one has V ⊥⊥ = AnnV ⊥ (g1) ⊕ ⊕ n-2 k=1 k =m-1 ⊕I k Sym k Nat g1. ♦
We shall simplify notations letting Sym 0 Nat g1 denote the trivial Fp-line so that AnnV ⊥ (g1) handily rewrites into ⊕I 0 Sym 0 Nat g1. We preferred to avoid such notation in general due to possible confusions: for instance when V = Z/2Z as a trivial g1 = sl2(F3)-module one has V = AnnV (g1) but V certainly is no sum of copies of Sym 0 Nat g1 = F3. Here we know from Step 1 that V is a K1 = Fp-vector space and confusion is no longer possible.

As a consequence

V ⊥⊥ is isomorphic to ⊕ n-2 k=0 k =m-1 ⊕I k Sym k Nat g1 in either case.
Step 6. We may assume V = V .

Proof of Claim. We claim that V = V ⊥⊥ ⊕ V . Here again c1 -n 2 + 1 is a bijection of V ⊥⊥ and its square as well whence V ⊥⊥ ∩ V = 0 and V = V ⊥⊥ ⊕ V . ♦

From now on we suppose V = V ; in particular (c1 -n 2 + 1) 2 annihilates V . The assumption that y n = 0 in End(V ) had played no real role up to this point.

Step 7. ker

x = E [n-1] ⊕ E [m-1] and ker y = E [1-n] ⊕ E [1-m] .
Proof of Claim. We claim that x is injective on ⊕ j∈{0,...,p-1} j =m-1,n-1 2 • aj = (j(j + 2) -n 2 + 1) 2 aj implies ((j + 1) 2 -n 2 )aj = 0 so by assumption on j one has aj = 0.

E [j] . Let j = m -1, n -1 and aj ∈ E [j] ∩ ker x. Then 0 = (c1 -n 2 + 1)
It remains to prove that x does annihilate all of

E [n-1] ⊕ E [m-1] . First let am-1 ∈ E [m-1] . Do not forget that hx n-1 = (n -1)x n-1 in End(V ). So x n-1 • am-1 ∈ E [n-3] ∩ E [n-1] = 0. But x is injective on each of E [1-n] , . . . , E [n-5] which implies x • am-1 = 0. Hence x annihilates E [m-1] and by symmetry y • E [1-m] = 0 as well. Now let a1-n ∈ E [1-n] . Then y n-1 x n-2 • a1-n ∈ E [1-n] ∩ E [-n-1] = 0. But also bearing in mind that x annihilates E [m-1] = E [-n-1] : 0 = y n-1 x n-2 • a1-n = y • n-2 k=0 (-1) k k! n -2 k n -2 k k-1 =0 (h + ) x n-2-k y n-2-k • a1-n = (-1) n-2 (n -2)!y • ( n-3 =0 (h + ) • a1-n) = (-1) n-2 (n -2)! n-3 =0 (1 -n + )y • a1-n = ky • an-1
where k is non-zero modulo p. Hence y • a1-n = 0. By symmetry the analogue holds of x. ♦

We may conclude as in Variation n • 17:

V ⊕ I m-1 Sym m-1 Nat g1 ⊕ I n-1 Sym n-1 Nat g1
This finishes the proof.

Scalar Flesh

When the irreducible sl2(K1)-submodules of an sl2(K)-module V are all isomorphic, V bears a compatible K-vector space structure: §4.1 contains Variation n • 19 which is our main result. Otherwise, and always in order to retrieve a linear geometry, one has to make some assumptions on the behaviour of ker x λ and of im x λ . Under either assumption things work more or less in quotients of a certain composition series ( §4.2); should one wish to have a direct sum, one needs both assumptions (Variation n • 22, §4.3).

The Separated Case

Variation n • 19. Let n ≥ 2 be an integer and K be a field of characteristic 0 or ≥ n. Let g = sl2(K) and V be a g-module. Let K1 be the prime subfield of K and g1 = sl2(K1). Suppose that V is a K1-vector space such that V ⊕I Sym n-1 Nat g1 as K1g1-modules. Then V bears a compatible K-vector space structure for which V ⊕J Sym n-1 Nat g as Kg-modules.

Proof. Notation 1. For i = 1 . . . n let:

di = (i -1)! (n -1)! (n -i)! = ((i -1)!) 2 n -1 i -1
This is an integer with prime factors < n. Moreover di+1 = i(n -i)di.

Step 2. V = ⊕ n i=1 En+1-2i. For all i = 1 . . . n, one has (yx

) |E n+1-2i = (i -1)(n + 1 -i), also (xy) |E n+1-2i = i(n -i), and (x i-1 y i-1 ) |E n-1 = di.
Proof of Claim. All by assumption on V as a g1-module. ♦ Notation 3. [see the linear structure in the Theme [START_REF] Deloro | Quadratic actions[END_REF]] Let 1 ≤ i ≤ n. Set for λ ∈ K and an+1-2i ∈ En+1-2i:

λ • an+1-2i = 1 n -1 1 di y i-1 h λ x i-1 • an+1-2i
Observe that multiplication by λ normalizes each En+1-2i. Extend the definition to V = ⊕ n i=1 En+1-2i. Remark. One has for all a ∈ V :

λ • a = 1 n -1 1 ((n -1)!) 2 n i=1 1 di y i-1 h λ x n-1 y n-1 x i-1 • a
We shall not use this.

Step 4. V is a K-vector space.

Proof of Claim. Let us prove that we have defined an action of K. The construction is welldefined. Additivity in λ and a is obvious. So it suffices to prove multiplicativity. Let (λ, µ) ∈ K 2 and a ∈ En-1. By definition λ

• an-1 = 1 n-1 h λ • an-1. So by Step 2 applied to yµ • a with i = 2 one has yxyµ • a = (n -1)yµ • a, whence: (n -1) 2 λ • • a) = h λ hµ • a = (x λ y -yx λ )(xyµ -yµx) • a = (x λ y -yx λ )xyµ • a = x λ yxyµ • a = (n -1)x λ yµ • a = (n -1)h λµ • a = (n -1) 2 (λµ) • a
and we obtain multiplicativity on En-1.

Let now i be any integer in {1, . . . , n} and a ∈ En+1-2i.

Let b = x i-1 • a ∈ En-1.
Then by definition for any λ ∈ K:

λ • a = 1 (n -1) 1 di y i-1 h λ • b so with Step 2 applied to hµ • b = hµx i-1 • a: (n -1) 2 d 2 i λ • (µ • a) = y i-1 h λ x i-1 y i-1 hµx i-1 • a = diy i-1 h λ hµx i-1 • a = (n -1)diy i-1 h λµ x i-1 • a = (n -1) 2 d 2 i (λµ)
• a and we obtain multiplicativity on En+1-2i. ♦

Step 5. g is linear on V . 

Proof of

i-2 h λ x i-1 • a ∈ E n+1-2(i-1) and i -1: (n -1)dix • (λ • a) = x • (y i-1 h λ x i-1 • a) = xy • (y i-2 h λ x i-2 • (x • a)) = (i -1)(n + 1 -i)(n -1)di-1λ • (x • a) = (n -1)diλ • (x • a)
and we obtain linearity of x. Linearity of y is very similar. It is obvious on En-1. Now for a ∈ En+1-2i with 1 ≤ i < n one has by Step 2 xy • a = i(n -i)a, whence:

(n -1)di+1y • (λ • a) = (n -1)i(n -i)diy • (λ • y) = y(y i-1 h λ x i-1 ) • (xy • a) = y i h λ x i • (y • a) = (n -1)di+1λ • (y • a)
The parameters κ(V ) and ι(V ) may play some role in the rest of the present series of articles. A convenient name would be the ascending (resp., descending) coherence degrees of the action. Be careful that they are not the least n such that the kernels (resp. images) of x λ 1 . . . x λn do not depend on (λ1, . . . , λn). They are the least n such that one always has an inclusion.

Observation. Let V be a b-module. Then κ(V ) = min{n ∈ N ∪ {∞} : ker x n is t-invariant}, and ι(V ) = min{n ∈ N ∪ {∞} : im x n is t-invariant}.

Proof of Claim. We claim that ker x n is t-invariant iff ∀(λ1, . . . , λn) ∈ K n , one has ker x n ≤ ker x λ 1 . . . x λn :

• if ker x n is t-invariant then ker x n is a b-submodule with x-length ≤ n, so by Variation n • 15 it has u-length ≤ n, meaning x λ 1 . . . x λn = 0 in End(V );

• the converse is obvious since if a ∈ ker x n and λ ∈ K then x n h λ • a = h λ x n • a - 2nx λ x n-1 a = 0.
Similarly im x n is t-invariant iff ∀(λ1, . . . , λn) ∈ K n , one has im x λ 1 . . . x λn ≤ im x n (apply Variation n • 15 to the quotient module V / im x n ), which proves the second claim. ♦

We have in Variation n • 22 been using an obvious fact.

Observation. Let V be a g-module and W ≤ V be a g-submodule. Then κ(W ) ≤ κ(V ) and ι(V /W ) ≤ ι(V ).

Remember that λ(V ) stands for the length of V as a u-module. One knows from Variation n • 16 that λ(V ) equals the length of V as an x-module, at least provided the characteristic is not too low.

Variation n • 23. Let n ≥ 2 be an integer and K be a field of characteristic 0 or ≥ n + 1. Let V be a sl2(K)-module of u-length at most n. Then for all λ1, . . . , λn-1 ∈ K one has ker x n-1 ≤ ker(x λ 1 . . . x λ n-1 ) and im(x λ 1 . . . x λ n-1 ) ≤ im x n-1 .

In our notations this writes κ(V ) ≤ λ(V ) -1 and ι(V ) ≤ λ(V ) -1.

Proof. Let us first deal with the kernels. We shall need the following identity of the enveloping ring (remember that the terms in the hats do not appear):

x λ 1 . . . x λ i yµ = yµx λ 1 . . . x λ i + j h µ•λ j x λ 1 . . . x λ j . . . x λ i j =k

x µ•λ j •λ k x λ 1 . . . x λ j . . . x λ k . . . x λ i (7)

We prove by induction on i = 0 . . . n -1 that for all (λ1, . . . , λi) ∈ K i , x n-1-i x λ 1 . . . x λ i annihilates ker x n-1 . When i = 0 this is obvious. Let us suppose that the property holds of i and prove it of i + 1 ≤ n -1. Let (λ1, . . . , λi, µ) be an (i + 1)-tuple of K and set π = x n-1-(i+1) x λ 1 . . . x λ i xµ. Recall that 2xµ = 2xyµx -yµx 2 -x 2 yµ. By assumption on the length all products of the form x n-i x λ 1 . . . x λ i are zero, whence in End(V ):

2π = 2x n-1-(i+1) x λ 1 . . . x λ i xµ = x n-2-i x λ 1 . . . x λ i (2xyµx -yµx 2 -x 2 yµ) = 2x n-1-i x λ 1 . . . x λ i yµx -x n-2-i x λ 1 . . . x λ i yµx 2
It remains to move the yµ's to the left using equation (7) applied to the various tuples (x, . . . , x, x λ 1 , . . . , x λ i ). Let us do it mentally. Terms with a yµ on the left will end in x n-i x λ 1 . . . x λ i : by assumption they are zero in End(V ). Terms with a hν on the left end either in x n-1-i x λ 1 . . . x λ i or in x n-i x λ 1 . . . x λ j . . . x λ i for some j: by induction they annihilate ker x n-1 . It thus only remains to consider the pure products of x and the various xν 's. There are three cases:

• the j th and k th (omitted) terms were among the xν 's: the product is of the form xµ•ν 1 •ν 2 x n-i x λ 1 . . . xν 1 . . . xν 2 . . . x λ i ; by induction it annihilates ker x n-1 .

• the j th (omitted) term was among the x's and the k th among the xν 's (or vice-versa): the product is of the form xµ•ν x n-1-i x λ 1 . . . xν . . . x λ i ; it annihilates ker x n-1 .

One might expect κ(V ) and ι(V ) to provide an indication of the number of tensor factors; but one would first need to conjecture that every simple g-module of finite length is a tensor product of copies, twisted by field automorphisms, of a same representation of g as a Lie algebra. The author does not wish to do so even under model-theoretic assumptions. Anyway we have until now been dealing mostly with actions of coherence degree 1, in a sense or the other.

It is not a priori clear that κ(V ) and ι(V ) need in general be equal and the question deserves to be asked, at least for an action of finite length. Note that one could define the same numbers for the action of y; perhaps one should not expect a relation with the coherence degrees for x even in the finite length case.

Finally, an alternative indicator could be the nilpotence height of the Casimir operator, that is the least n such that [g, . . . , [g, c1]] acts trivially on V . Our results would have been more naive under the assumption that c1 commutes with the action of g since instead of Variations n • 20, n • 21, and n • 22 it would have sufficed to adapt the rather standard techniques of Variation n • 17. Besides we found no relation between the nilpotence height of the Casimir operator and the coherence degrees.

One easily imagines how to define λ, κ, ι for an action of SL2(K).

Future variations will explore the symmetric powers of Nat SL2(K).

  Hence c1 -n 2 + 1 annihilates the component isomorphic to ⊕I m-1 Sym m-1 Nat g1 but acts bijectively on the other ⊕I k Sym k Nat g1's.

  Claim. Let λ ∈ K. Let us first prove linearity of x. It is obvious on En-1. So let i ≥ 2 and a ∈ En+1-2i; one has thanks to Step 2 applied to y

which proves linearity of y.

It remains to prove linearity of hµ. For a ∈ En-1 one has:

which proves linearity of hµ on En-1. Now let i ≥ 2, and take a ∈ En+1-2i, and b = x i-1 • a ∈ En-1. With Step 2 applied to b one finds y • b = (n -1)x i-2 • a. Now remember that x i-1 hµ = hµx i-1 -2(i -1)xµx i-2 . Then using linearity of x:

Since x i-1 is injective on En+1-2i by Step 2 one derives hµ • a = (n + 1 -2i)µ • a, and this holds of any a ∈ En+1-2i. In particular by multiplicativity:

so hµ is linear. ♦

V is therefore a Kg-module and its structure as such is clear. This finishes the proof.

Remark (see Variation n • 10 [1]

). It is now obvious that for any λ = 0: ker x = ker x λ and im x = im x λ ; also ker y = ker y λ and im y = im y λ .

Remark. Although our proof only requires the characteristic to be ≥ n it is not possible to apply the method to the modules S α,β obtained in §3.2. All one can get is the following which generalizes Variation n • 13 [START_REF] Deloro | Quadratic actions[END_REF].

Let n ≥ 2 be an integer and K be a field of characteristic 0 or ≥ n. Let g = sl2(K) and V be a g-module. Let K1 be the prime subfield of K and g1 = sl2(K1). Suppose that V is a K1-vector space such that V S α,β as K1g1-modules. Then V bears a K-vector space structure such that the maps h λ and x λ are everywhere linear, but y λ only on E for / ∈ {1 -n, 1 -m}.

Preservation of the linear structure under α and β depends on properties which cannot be prescribed over K1.

Composition series

We now prove two dual partial results.

Variation n • 20. Let n ≥ 2 be an integer and K be a field. Let g = sl2(K) and V be a g-module. If the characteristic of K is 0 one requires V to be torsion-free. Suppose either that x n = 0 in End(V ) and the characteristic of K is 0 or ≥ 2n + 1, or that x n = y n = 0 in End(V ) and the characteristic of

Suppose in addition that for all λ ∈ K, one has ker x ≤ ker x λ . Then there exists a series AnnV (g

Proof. Induction on n. When n = 2 this is Variation n • 12 [START_REF] Deloro | Quadratic actions[END_REF] and one even has V = AnnV (g)⊕ ⊕I 1 Nat g. Let K1 denote the prime subfield and g1 = sl2(K1). By Variation n • 17 or n • 18 depending on the assumptions,

One should be careful with the Casimir operator c1. Since this operator does not commute with g in End(V ), V ⊥ and V as defined in Variation n • 17 have no reason a priori to be g-invariant. Moreover the definition of V ⊥ in terms of c1 fails in characteristic ≤ 2n as seen in Variation n • 18.

Yet in the present case one sees by inspection in the g1-module V :

Let us now prove that V ⊥ is a g-submodule. It suffices to show that it is t = {h λ : λ ∈ K}invariant. All Ej's are h λ -invariant. But by assumption on the kernels in V , so is ker x: for if a ∈ ker x then x λ • a = 0 and

Remark. There is no reason why V should be g-invariant as well.

One sees that x n-1 acts trivially on V ⊥ = 0. Moreover V ⊥ still enjoys the property ker x ≤ ker x λ ; induction provides the desired structure on V ⊥ . But V /V ⊥ V as g1-modules so in the quotient V /V ⊥ , one has ker x ∩ ker y n-1 = 0. One then applies Variation n • 19 to the g-module V /V ⊥ in order to conclude.

Variation n • 21. Let n ≥ 2 be an integer and K be a field. Let g = sl2(K) and V be a g-module. If the characteristic of K is 0 one requires V to be torsion-free. Suppose either that

Suppose in addition that for all λ ∈ K, one has im x λ ≤ im x.

Then there exists a series

Proof. Induction on n. When n = 2 this is Variation n • 12 [START_REF] Deloro | Quadratic actions[END_REF] and one even has V = AnnV (g)⊕ ⊕I 1 Nat g. Let K1 denote the prime subfield and g1 = sl2(K1). By Variation n • 17 or n • 18 depending on the assumptions,

One sees by inspection in the g1-module V that:

Let us then prove that V is a g-submodule. It suffices to show that it is t = {h λ : λ ∈ K}invariant. All Ej's are h λ -invariant. But by assumption on the images in V , so is im x: for if a ∈ im x then writing a = x • b one finds h λ • a = xh λ • b + 2x λ • b ∈ im x by assumption. The subgroup V is therefore g-invariant: it is a g-submodule.

One sees that in the submodule V , ker x ∩ ker y n-1 = 0; Variation n • 19 provides the desired structure on V . But V /V V ⊥ as g1-modules so in the quotient V /V , x n-1 acts trivially. Moreover V /V still enjoys the property im x λ ≤ im x. One then applies induction to the g-module V /V in order to conclude.

Separation

Variation n • 22. Let n ≥ 2 be an integer and K be a field. Let g = sl2(K) and V be a g-module. If the characteristic of K is 0 one requires V to be torsion-free. Suppose either that x n = 0 in End(V ) and the characteristic of K is 0 or ≥ 2n + 1, or that x n = y n = 0 in End(V ) and the characteristic of

Suppose in addition that for all λ ∈ K, one has ker x ≤ ker x λ and im x λ ≤ im x. Then V = AnnV (g) ⊕ g • V , and g • V bears a compatible K-vector space structure for which g

Proof. Induction on n. When n = 2 this is Variation n • 12 [START_REF] Deloro | Quadratic actions[END_REF]. As in Variations n • 20 and n • 21, V ⊥ and V are g-invariant. But the property ker x ≤ ker x λ clearly goes to submodules, and the property im x λ ≤ im x clearly goes to quotients. Hence V ⊥ V /V (here as g-modules) allows to use induction.

Lesson: coherence degrees

Notation. Let V be a g-module.

• Let κ(V ) be the least integer n, if there is one, such that for all (λ1, . . . , λn) ∈ K n , one κ(V ) has ker x n ≤ ker x λ 1 . . . x λn ;

• Let ι(V ) be the least integer n, if there is one, such that for all (λ1, . . . , λn) ∈ K n , one ι(V )

• the j th and k th (omitted) terms were among the x's: the product is then of the form

The latter case is of interest. Paying attention to the signs and coefficients it appears exactly

where z annihilates ker x n-1 , that is (n -i -1)(n -i)π annihilates ker x n-1 . Now i ≤ n -2 so if we had started with µ (n-i-1)(n-i) we would have found that π annihilates ker x n-1 . This completes the induction; with i = n -1 one obtains the desired conclusion.

As far as the images are concerned we proceed similarly using the dual formula:

proving by induction on i = 0 . . . n -1 that for all (λ1, . . . , λi) ∈ K i one has the inclusion im(x n-1-i x λ 1 . . . x λ i ) ≤ im x n-1 . When rewriting π use instead:

and move the yµ's to the right using formula (8).

Let us briefly comment on duality. First notice that if V is a K1[u]-module, then V has length at most n iff the dual module V * has, meaning λ(V ) = λ(V * ).

Observation. Let n be an integer and K be a field of characteristic 0 or ≥ n, with prime subfield K1. Let V be a K1[u]-module of length at most n. Then ι(V ) = κ(V * ) and κ(V ) = ι(V * ).

Proof of Claim. This is routine. For a tuple µ = (λ1, . . . , λ d ) ∈ K d , let χµ (resp., χ * µ ) stand for the operator xµ 1 • • • xµ d in End(V ) (resp., End(V * )). Also let η = (µ d , . . . , µ1) be the tuple µ in reverse order; in End(V ) one has χη = χµ but for the sake of clarity we shall not use this.

We then observe that (ker χµ) ⊥ = im χ * η and (ker χ * µ ) ⊥ = im χη as immediate verifications show.

Finally let 1 be the tuple (1, . . . , 1) 

The argument requires a K1-vector space structure, since the author does not care for duality arguments over more general rings; it however requires only an action of u. But in order to get the first inequality κ(V ) ≤ λ(V ), one does need an action of g.

Remark.

• Equalities may not hold in Variation n • 23: remember that in Nat sl2(C) ⊗ ϕ Nat sl2(C) (ϕ stands for complex conjugation) one has x 3 = 0 and xix1 = 0 but x 2 = 0.

• The value n -1 is optimal. Take distinct field automorphisms ϕ1, . . . , ϕn and set V = ( ϕ 1 Nat sl2) ⊗ • • • ⊗ ( ϕn Nat sl2). This is an irreducible representation. Its length is n + 1; in particular ker x n ≤ ker x λ 1 . . . x λn for all (λ, . . . , λn) ∈ K n , but this fails at stage n -1. Let indeed λ ∈ K be such that ϕ1(λ) = ϕn(λ). The standard basis (e1, e2) of Nat sl2 being fixed, ei 1 ,...,in will denote the pure tensor ei 1 ⊗ • • • ⊗ ei n . Consider a = e2,...,2,1 -e1,2,...,2; one sees that x n-1 • a = 0 but x λ x n-2 • a = (n -2)!(ϕ1(λ) -ϕn(λ))e1,...,1 = 0.