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Abstract

In this work we are interested in numerical simulations for bedload
erosion processes. We present a relaxation solver that we apply to moving
dunes test cases in one and two dimensions. In particular we retrieve the
so-called anti-dune process that is well described in the experiments. In
order to be able to run 2D test cases with reasonable CPU time, we also
describe and apply a parallelization procedure by using domain decompo-
sition based on the classical MPI library.

Nous nous intéressons dans ce travail à la simulation numérique des
processus d’érosion par charriage en rivière. Nous présentons un schéma
numérique basé sur un modèle de relaxation et nous l’appliquons à des
problèmes de déplacement de dunes en une et deux dimensions d’espace.
Nous étudions en particulier les phénomènes d’antidune présentés dans
la littérature hydrosédimentaire. Nous présentons enfin une procédure
de parallélisation basée sur l’utilisation de la librairie MPI et qui nous
permet de simuler des processus bidimensionnels avec des temps CPU
raisonnables.

1 Introduction

Soil erosion is a complex phenomenon affected by many factors such as climate,
topography, soil characteristics, vegetation and anthropogenic activities such as
cultivation practices. Erosion process can be described in three stages: detach-
ment, transport and deposition. The detachment occurs when the flow shear
stress or the kinetic energy of raindrop exceeds the cohesive strength of the
soil particles. Once detached, the sediments can be transported downstream as
non-cohesive sediment before its deposition.
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†Lab. J.A. Dieudonné & EPU Nice Sophia, University of Nice, France, e-mail : de-

lestre@math.unice.fr
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The movement of sediments occurs in two main modes called bedload and
suspended load. The bedload particles are located in a few grain diameters
thick layer situated on the soil. The velocities of these particles are less than
the flow velocity. At the opposite, the suspended particles are transported in
the flow without contact with the bed. Sediments finer than 0.2 mm which
are transported in suspension are rarely included/considered in bedload. The
distinction between these two modes of sediment transport is blurred because
they occur together.

As soil erosion by water continues to be a serious problem throughout the
world, the development of improved soil erosion prediction technology is re-
quired. With the increase of computing powers in the last years, there has been
a rapid increase in the erosion and sediment transport simulations through the
use of computer models. The models describing erosion process are available
at different level of complexity. In general, erosion process is described by the
equations of evolution based on the principle of conservation. These equations
are derived at small scale under physical assumptions.

2 Bedload modelling

In this paper, we focus on the modelling of the morphodynamic process where
the solid transport is only characterized by bedload and thus the suspended
load has been ignored. The governing equations are often given by coupling
the shallow water equations, describing the flow routing [34], with the Exner
equation [32] expressing the mass conservation of sediment layer. The one-
dimensional system may be written in the form ∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + gh2/2) = −gh∂xzb,
∂tzb + ∂xqb = 0,

(1)

where h is the water depth, u the flow velocity, zb the thickness of sediment layer,
qb the volumetric bedload sediment transport rate per unit time and width and
g the acceleration due to gravity.

The expression of bedload flux qb is necessary to close the model (1). Many
researches have developed different empirical formulæ to predict and to estimate
qb. One of the simplest expression was proposed by Grass [35] where qb is a
function of the flow velocity and a dimensional Ag constant, called interaction
constant, that encompasses the effects of grain size and kinematic viscosity and
is usually determined from experimental data:

qb = Agu|u|mg−1, 1 ≤ mg ≤ 4. (2)

The usual value of the exponent mg is set to mg = 3. If Ag = 0 then we have
a solid bed (no sediment transport) and we recover the standard shallow water
equations. When Ag is near zero, there is a small interaction between the fluid
and the bed, while if Ag is near one the interaction is larger. Note that one
of the main characteristics of this model is that threshold value to initiate the
motion of sediment is set to zero, so the sediment transport begins at the same
instant that beginning fluid motion.
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In practice, qb is usually represented under the non-dimensional form q∗b as
a function of the dimensionless shear stress τ∗b and a threshold value τ∗cr, i.e.

qb = q∗b
√

(s− 1)gd3s, q∗b = q∗b (τ∗b , τ
∗
cr), τ∗b =

τb
(ρs − ρ)gds

,

where τb = ρghSf is the bottom shear stress, i.e. the force of water acting on
the bed during its routing, s = ρs/ρ the density relative of sediment in water
and ds the average value of sediment diameters. The friction term Sf can be
quantified by different empirical laws such as the Darcy-Weisbach or Manning
formulæ, i.e.

• Darcy-Weisbach: Sf = fu|u|
8gh ,

• Manning: Sf = n2u|u|
h4/3 ,

where f and n are the Darcy-Weisbach and the Manning coefficients respectively.
The threshold value τ∗cr depends on the physical properties of sediment and is
usually computed experimentally. One of the first works on this topic was done
by Shields [60].

The followings expressions, illustrated by Fig. 1, have been often applied
[55, 54, 57, 13]:

Meyer-Peter & Müller (1948): q∗b = 8(τ∗b − τ∗cr)
3/2
+ (3)

Fernández Luque & Van Beek (1976): q∗b = 5.7(τ∗b − τ∗cr)
3/2
+ (4)

Nielsen (1992): q∗b = 12
√
τ∗b (τ∗b − τ∗cr)+ (5)

Ribberink (1998): q∗b = 11(τ∗b − τ∗cr)1.65+ (6)

Camenen and Larson (2005): q∗b = 12(τ∗b )1.5 exp (−4.5τ∗cr/τ
∗
b ) (7)
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Figure 1: Plot of several bedload functions found in the literature [33], τ∗cr =
0.05.

Upon initiation of flow routing, the topography zb becomes unstable resulting
the fluid-sediment interaction. Various bedforms can be occurred, in particular
the formation of ripples, dunes and anti-dunes (see e.g. [47, 46]). Ripples are
distinguished from dunes by their much smaller scale. Indeed, ripples and dunes
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often co-exist, with ripples forming on the larger dunes. At very low flow rates,
ripples form on the bed, and as the flow rate increases, these are replaced by
the longer wavelength and larger amplitude dunes which migrate slowly down-
stream. Ripples and dunes are observed in fluvial regime (the Froude number
Fr < 1). When the flow becomes supercritical (Fr > 1), dunes migrate up-
stream and called anti-dunes.

Let us show quickly how dunes and anti-dunes can be reproduced by the
non-linear coupled system (1) (see [23] for more details). Rewriting the system
in quasi-linear form as

∂tW +A(W )∂xW = 0

where W = (h, hu, zb) and A(W ) the matrix of transport coefficients being

A(W ) =

 0 1 0
gh− u2 2u gh

α β 0


with α =

∂qb
∂h

and β =
∂qb
∂hu

. In [23], we can find two type of relations between

α and β for different formulas of qb (equations (2)-(7)) which depend on the
friction laws:

• with Darcy-Weisbach’s law: α = −uβ,

• with Manning’s law: α = −7

6
uβ.

Moreover, it is natural to assume that β > 0 since sediment rate increases with
that of flow.

The characteristic polynomial of A(W ) can be written as

pA(λ) = −λ[(u− λ)2 − gh)] + gh(βλ+ α)
= −(λ− λ1)(λ− λ2)(λ− λ3),

where λ1, λ2, λ3 represent the waves speeds propagation of the current and
sediment transport. The product of these eigenvalues, in the case u > 0 (so
α > 0), satisfies

λ1λ2λ3 = pA(0) = ghα < 0.

This means that there exists at least a negative eigenvalue. In a sub-critical
flow (Fr < 1), one wave speed of the current is negative and the other one
is positive. So the wave speed relating to sediment transport is positive and
consequently the dune migrates downstream. Contrary, when the flow becomes
supercritical (Fr > 1), two waves speed of the current are positive and the wave
corresponding to sediment transport propagates upstream so we have anti-dune.

System (1) with closed laws (2-7) of qb has recently been proved to be hy-
perbolic within the range of flow data typical of practical situations [23, 50].
Moreover, numerical approximations of such system are often based on a split-
ting method, solving first shallow water equations on a time step and updating
afterwards the topography using the Exner equation. It is shown that this
strategy can create spurious/unphysical oscillations. By contrast, a numerical
method that solves the whole system at once will be called a coupled approach
in the following.
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This paper is organized as follows: in next section, we describe a relaxation
approach of the coupled system (1) and we derive a numerical solver. Next, we
describe the parallelization procedure we apply in order to run 2D test cases.
Finally we present numerical test cases for moving dunes in one and two dimen-
sions, including so-called anti-dune process.

3 Numerical method

In this work we want to investigate a coupled approach to numerically solve
the 1D and 2D SW-Exner system. Such methods were already proposed in
the last decade, mostly by considering extension of classical methods to non-
conservative systems : Hudson et al. [42] and Castro et al. [18] use a non-
conservative Roe scheme based on the theory of paths, see [24] ; Benkhaldoun
et al. [5] apply the SRNH scheme whereas Canestrelli et al. [15] introduce
the PRICE-R scheme, that is the extension to non-conservative systems of the
so-called FORCE scheme. In [19, 4, 16], 2D versions of the preceding works are
presented. Other authors also present 2D numerical schemes based on approx-
imate Riemann solvers as extension of HLLC scheme [56, 61, 52]. In [9], the
authors present an implicit procedure using the solvers presented in [18, 5].

Here we apply a relaxation solver to find approximate solutions of (1). The
relaxation framework for the SW-Exner model was introduced and analysed in
[3]. Note that a first relaxation model for SW-Exner model was introduced
in [27] but it slightly differs from the model that we are using in this work
since it is very generic and it does not use the particular form of the SW-Exner
system in its definition. A relaxation solver is a particular approximate Riemann
solver where the linearization is introduced in the definition of the relaxation
model. By comparison to other types of approximate Riemann solvers, the
relaxation framework presents some advantages since it is possible to ensure the
positivity of the water height and to prove discrete energy estimates. Moreover
the relaxation approach does not need a precise computation of the eigenvalues
of the original system and it can be applied to conservative and non-conservative
systems. The main idea if the relaxation framework is to replace the fully non-
linear system (1) by an enlarged relaxation model that involves two types of
parameters (called relaxation parameter and wave celerity parameters) and that
satisfies the following properties

• The relaxation model formally tends to the original system when the re-
laxation parameter tends to zero.

• The relaxation model is stable under some bounds on the wave celerity
parameters.

• The hyperbolic part of the relaxation system is linearly degenerate.

• The related Riemann problem can be analytically solve in a (quite) easy
way.

Starting from the numerical approximation at time tn, the numerical procedure
is then very simple : first the auxiliary quantities are computed by using the
physical quantities at time tn, then a homogeneous Riemann problem is solved
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at each interface on time step [tn, tn+1] and the new physical quantities at time
tn+1 are computed by considering the mean value of the solution of these Rie-
mann problems on each cell.

The particular relaxation system that we consider in this work stands

∂H

∂t
+
∂Hu

∂x
= 0 (8)

∂Hu

∂t
+

∂

∂x

(
Hu2 + Π

)
+ gH

∂Z

∂x
= 0 (9)

∂Π

∂t
+ u

∂Π

∂x
+
a2

H

∂u

∂x
=

1

λ
(
gH2

2
−Π) (10)

∂Z

∂t
+
∂Ω

∂x
= 0 (11)

∂Ω

∂t
+

(
b2

H2
− u2

)
∂Z

∂x
+ 2u

∂Ω

∂x
=

1

λ
(Qs − Ω) (12)

where Π and Ω are the auxiliary quantities (associated to fluid pressure and
to sediment flux, respectively), λ is the relaxation parameter and a and b are
wave celerity parameters. The detailed analysis of this relaxation model and
the derivation of the related relaxation scheme have been performed in [3]. Let
us recall some important points

• The ”fluid” part of the relaxation model (8)-(12), i.e. the three first equa-
tions, is nothing but the so-called Suliciu relaxation model for the classical
shallow water system. The ”solid” part of the relaxation model (8)-(12),
i.e. the two last equations, is a classical relaxation model for a scalar
conservation law and the coefficients are chossen in order to retrieve wave
celerities that are centered around the water velocity u.

• The stability of the relaxation model is ensured by the fact that the first
order perturbation regarded parameter λ is a diffusive perturbation. It
requires some bounds on the wave celerity parameters

a ≥ H
√
gH, b ≥

√
(Hu)2 + gH2∂uQs (13)

• The problem of the choice of the value of the relaxation parameter λ is
avoided by the numerical strategy that has been used for the relaxation
scheme. We consider a time splitting scheme : first we only consider the
right hand side of system (8)-(12) with λ = 0, which only means that
the auxiliary quantities instantaneously reduce to their equilibrium values
; second we compute the solution of the homogeneous (since there is no
more right hand side in the equations) Riemann problem and then there
is no more λ parameter at this step.

• The well-defined character of the relaxation scheme and the positiviy of the
discrete water height may require strenghter bounds on the wave celerity
parameters a and b.

In [3], first numerical results show that this relaxation system is stable in
some situations where the splitting approach leads to unphysical oscillations.
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Here we want to quantitatively analysed our results on some classical test cases
but also to present the ability of the numerical model to simulate the so-called
anti-dune formation. We want also to present the 2D extension of this work by
using some parallelization procedure.

4 Parallelization

As we noted in [3], the relaxation method is very diffusive. This defect may
disappear by increasing the order of the scheme. However, there is another defect
thus the rise in order is not trivial. Indeed, the scheme is not well balanced.
Since [6], it is well known that the topography source term has to be treated
carefully. In case of steady states at rest with varying topography, velocities
might be non null. Schemes which preserve these steady states are said to be
well balanced [36]. Since [6], numerous schemes have been developed for shallow
water equations [6, 7, 36, 51, 43, 44, 45, 2, 1, 17, 53]... So we will have to modify
our method in order to get a well-balanced scheme. But this is not trivial and
unnecessary if the scheme does not catch the expected physics.

Thus the solution consists in considering finer meshes and using a parallel
version of the code. Relaxation has been coded in 2D on a structured mesh. It
is based on methods of line, thus parallelization is much easier than getting a
high order well-balanced scheme. Parallelization has been performed thanks to
domain decomposition based on the classical MPI (Message Passing Interface)
library. We have adapted what is done for advection-diffusion problem in [11]
to our problem.

These last decades, domain decomposition methods have increasingly at-
tracted interest. These methods are well suited to distributed memory parallel
architectures. We decompose a domain into several sub-domains (as many sub-
domains as process). In each of these sub-areas is performed calculations at
the local level. The data on each side of the interfaces between sub-domains
are exchanged via communication messages. The size of the domain interface is
much smaller than the size of the overall problem. This domain decomposition
approach leads to very natural parallelization and has the advantage to be well
suited to the use of local memory.

A parallel version of the algorithm, based on the general principle of the
domain decomposition adapted to structured grids, is as follows:

• divide the total computational domain into as many sub-domains as pro-
cess

• assign each sub-domain as the local domain of a process

• for each sub-domain determine its sub-domain neighbours

• iterate in time

– each process has to communicate with its adjacent process in order
to get the flow data required for solving the equations on its local
boundary cells

– each process executes the serial code for all the computational cells
lying in its local domain.
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The use of MPI in case of domain decomposition is efficient. There are
indeed several predefined functions that allow to create a virtual grid processes,
to identify adjacent processes,... which simplify parallel programming.

The programming model chosen is a SPMD model (Single Program Mul-
tiple Data). One code runs on each of the sub-domains. There are as many
processes as sub-domains. Each sub-domain (or process) needs to know its 8
neighbours. In the time loop, it will exchange data with 8 neighbouring inter-
faces and calculating within each sub-domain. We split the domain in blocks
using the MPI topology feature MPI CART CREATE. This function returns
a communicator to which the cartesian topology information is attached. We let
the function reorder the processes to match with the topology on the physical
machine. Because of the first order scheme, we only need one ghost point to
manage communications between blocks, see Figure 2. The main advantage of
using the MPI function is robustness because it is well implemented in every
available MPI distribution. More details concerning this domain decomposition
method might be found in [11].
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Figure 2: The computational domain with its boundary conditions

In next section, the numerical method is validated on numerical tests, which
is eased thanks to the code parallelization.

5 Numerical test cases

This numerical method has already been validated on a number of test cases
[3] including an analytical solution [8] integrated in the library SWASHES [26].
The idea is here to test it on more physical tests. These tests and the results
will be described in what follows.

5.1 1D dune evolution

We first consider a classical test case considered in several works (among others
[39, 41, 42, 12, 10, 27, 18, 19, 4, 9]), i.e. the evolution of a dune. It is a
sediment transport problem in a channel of length L = 1000 m. The initial
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Figure 3: 1D dune evolution.

bottom topography is a bump, we have the following initial data
zb(0, x) =

 0.1 + sin2

(
(x− 300)π

200

)
if 300 ≤ x ≤ 500 m

0.1 elsewhere
h(0, x) = 10− zb(0, x)

u(0, x) =
q0

h(0, x)

with q(t, 0) = q0 = 10 m2/s the inflow discharge. Thus the flow is sub-critical.
Fluid velocity increases as the bump increases and then decreases when it de-
creases, so does the same qb. So before the top of the bump, there is erosion
(∂xqb is positive), after which there is sedimentation (∂xqb is negative). So the
bump decreases before the summit, after increases, the overall result is move-
ment to the right. This is the evolution of the dune. For this test, we consider
the Exner’s law with the Grass formula (2): Ag = 1 and mg = 3. Thus we have
a fast speed of interaction between water flow and bed-load. For the simulation
time, we have taken T = 700 s, as in [9] in order to validate our results. Four
uniform grids are considered for the discretization of the computational domain
composed by J = 2000, 6000, 10000 and 20000 cells. We recover kinematics
obtained in [9]. With J = 2000 cells, we notice that the numerical method is
diffusive (Fig. 3). Adding cells improves the results. With these results, the
2D code parallelization is fully justified. The numerical method is suitable for
sub-critical flow where dune phenomenon occurs. With the following test, we
will see that, it is suitable for supercritical flow as well.

5.2 1D antidune evolution

With this test we consider a configuration which allows the occurrence of the
anti-dune phenomenon. The channel is L = 24 m long. The initial data are a
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topography with a parabolic bump

zb(0, x) =

{
0.2− 0.05 (x− 10)

2
if 8 ≤ x ≤ 12 m

0 elsewhere
,

a uniform discharge q(0, x) = q0 = 1.7 m2/s and the water height is the station-
ary supercritical profile (for the Shallow Water equations) obtained thanks to
Bernoulli’s law  q(t, x) = q0

q20
2gh2

+ h+ zb = H0

where H0 =
q20

2gh2
0

+ h0 + zb(0, 0) is the total hydraulic head at inflow (Fig. 4

top left). The water height at inflow is h(t, 0) = h0 = 0.5 m. This is the
opposite conclusion as for the previous test: the speed decreases before the top
of the bump, there is deposition, and after the summit, the speed rises again
and thus causes erosion. We get anti-dune going upstream. For this test, we
consider the Exner’s law with the Grass formula (2): Ag = 0.001 and mg = 3.
The simulation time is T = 50 s and the computational domain is divided
into J = 2400 space cells. On Fig. 4, we notice the propagation of the anti-
dune upstream (from right to left). This phenomenon has already been studied
theoretically et experimently (see e.g. [47, 59, 37, 38, 21, 22]), but up to us, it
is the first time that anti-dunes are simulated numerically.

5.3 2D dune evolution cases

In these classical purely two-dimensional tests, considered in many publications
(see e.g. [39, 40, 27, 10, 19, 4, 25, 16, 9]), we study the evolution of a bump in
a channel (Fig. 5). The dimensions of the domain are (Lx × Ly) = (1000m ×
1000m). The initial data common to each test are

zb(0, x, y) =

 0.1 + sin

(
π

(x− 300)

200

)2

sin

(
π

(y − 400)

200

)2

if (x, y) ∈ [300, 500m]× [400, 600m]

0.1 elsewhere
h(0, x, y) = 10− zb(0, x, y)

u(0, x, y) =
q0

h(0, x, y)
v(0, x, y) = 0

with u (resp. v) the velocity in x (resp. y) direction and q0 = 10m2/s the
upstream constant discharge in x direction. In all other boundaries, we assume
free flow conditions. For these tests, we consider the Exner’s law with the 2D
Grass formula with mg = 3 and two different values: Ag = 1 and then Ag = 0.1.
Thus we get a fast and an intermediate ground/flow interaction.

5.3.1 Fast interaction – Ag = 1

For this test, intial data are those described previously with Ag = 1. The
simulation time is T = 500 s and the computational domain is divided into
(J ×K) = (4000×4000) cells. At the end of the simulation (Fig. 6), we recover
the shape obtained in [19] and [9] for this value of Ag.
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Figure 4: Antidune evolution for different times 0s, 6s, 10s, 15s, 30s and 50s.

Figure 5: 2D bump - initial condition.

11



Figure 6: 2D bump at T = 500 s for Ag = 1.

5.3.2 Intermediate interaction – Ag = 0.1

Figure 7: 2D bump evolution at T = 500 s (up) and T = 1000 s (down) for
Ag = 0.1.

For this test, intial data are those described previously with Ag = 0.1. The
simulation time is T = 1000 s and the computational domain is divided into
(J ×K) = (4000 × 4000) cells. At the location of the of the bump, we notice
that the method is diffusive (Fig. 7): indeed, we have circles on the pictures
representing contours. However, as for the previous test, the overall shape is
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correct.
In order to evaluate the speed-up, we ran the simulation on 4, 8, 16, 32 and

64 cores. The computation time and acceleration are represented on Fig. 8.
Usually, speed-up is defined by S = T1/Tp, with p the number of processors,
T1 the execution time of the sequential algorithm and Tp the execution time
of the parallel algorithm with p processors. Thus speed-up is a very classical
criteria to know how much a parallel algorithm is faster than a corresponding
sequential algorithm (see among others [31, 30] and [58]). A linear speed-up or
ideal speed-up is obtained when Sp = p. In our case, performing the sequential
code was too consuming, thus we have used T4 as the reference. The ”speed-
up” is calculated as what follows: S = 4T4/Tp. We get a speed-up not far from
the ideal one. For future improvements and to take advantage of the power of
massively parallel machines of the last generation, hybrid parallelization should
be considered. Using OpenMP with MPI could increase benefits like: memory
saving, better load balancing and better adequacy to the hardware specificities.
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Figure 8: CPU time and speedup for Ag = 0.1.

6 Conclusions and perspectives

The objective of this work was to prove that the relaxation solver that we
introduced in [3] is adapted to reproduce

• well known physical phenomena as the anti-dune process that are not so
easy to handle at the numerical level, in particular when soft coupling (i.e.
independent solvers or fluid and solid parts) are considered as it is mostly
the case for industrial applications,

• two dimensional situations when coupled with a parallelization procedure.

For future works, some improvements have to be performed at the numerical
level : high order, well balancing... But the most promising way seems to
propose some improvements for the SWE model (1) itself. We see at least two
directions that can be investigated. The first one is to introduce more physics
in the sediment layer by considering a more complete system for which energy
equation can be exhibited. This can be done by considering formal reduction
procedure starting from three dimensional model (in the spirit of [34] for classical
shallow water system) or by directly introducing adapted multilayer models,
see for example [62]. The other one is to improve the fluid model. Indeed,

13



performing linear stability analysis can show that the Saint-Venant equations,
which is a averaged models, do not admit instability rising on the bed from a
suitable initial perturbation contrary to those observed in real life. This relative
failure of the models led to the consideration of a full fluid flow model, in which,
rather than supposing that the flow is shear free and that viscous effects were
confined to a turbulent boundary layer, rotational effects were considered, and
a model of turbulent shear flow incorporating an eddy viscosity, together with
the Exner equation for bedload transport, was adopted (see e.g. [21, 49, 29, 28,
20, 48, 14]).
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l’érosion des sols de la parcelle au bassin versant. PhD thesis, Uni-
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