

# A Study of the NOx Selective Catalytic Reduction with Ethanol and Its By-products

A. Flura, X. Courtois, F. Can, S. Royer, D. Duprez

### ► To cite this version:

A. Flura, X. Courtois, F. Can, S. Royer, D. Duprez. A Study of the NOx Selective Catalytic Reduction with Ethanol and Its By-products. Topics in Catalysis, 2013, 56 (1-8), pp.94-103. 10.1007/s11244-013-9935-2 . hal-00840145

## HAL Id: hal-00840145 https://hal.science/hal-00840145

Submitted on 22 Jan 2021

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Topics in catalysis 56 (2013) 94–103. DOI: 10.1007/s11244-013-9935-2

### A study of the NOx selective catalytic reduction with ethanol and its by-products.

A. Flura, X. Courtois\*, F. Can, S. Royer, D. Duprez

Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), UMR 7285 Université de Poitiers-CNRS, 4 rue Michel Brunet, F-86022 Poitiers Cedex, France \*Corresponding author: Tel.: 33(0)549453994, e-mail: <u>xavier.courtois@univ-poitiers.fr</u>.

Abstract

The NOx Selective Catalytic Reduction (SCR) with ethanol has been investigated over alumina supported silver catalyst with a special attention to the main involved reactions depending on the temperature test. With this aim, the possible reducers from ethanol transformations were also evaluated ( $C_2H_5OH$ ,  $CH_3CHO$ ,  $C_2H_4$ , CO). In addition, the contributions of the gas phase reactions and the alumina support were also pointed out.

Based on the C-products and N-compounds distributions, it is assumed that at low temperature (T<300°C), ethanol reacts firstly with NO+O<sub>2</sub> to produce acetaldehyde and N<sub>2</sub>. For higher temperatures, two reaction pathways have been proposed, supported by the CH<sub>3</sub>CHO-SCR results: a direct reaction between NO<sub>2</sub> and CH<sub>3</sub>CHO, or via –NCO species.

Keywords: NOx, SCR, ethanol, Ag/Al<sub>2</sub>O<sub>3</sub>, NH<sub>3</sub>, acetaldehyde

#### 1. Introduction

In addition to the emission control of pollutants such as CO, hydrocarbons, NOx and particulates, the reduction of the greenhouse gases emission, as CO<sub>2</sub>, also becomes stricter. As a consequence, the use of engines working in lean condition is very attractive. However, the usual three way-catalyst is not able to reduce NOx in excess of oxygen and other catalytic processes were proposed to achieve expected NOx abatement. One possible solution is to use NOx storage reduction (NSR) catalysts [1], which works in lean/rich cycling condition. The major drawback of this system is the possible deactivation of the catalyst, mainly due to sulfur poisoning [2,3] or thermal ageing [4-6]. Moreover, possible emission of NH<sub>3</sub> and N<sub>2</sub>O, a strong greenhouse gas, were also reported [7,8].

The second way to reduce NOx is the Selective Catalytic Reduction (SCR). For this process, numerous reducers have been investigated, such as hydrocarbons [9-11], oxygenated compounds [11-13] or nitrogen containing compounds (ammonia, urea,...) [14-16]. Recently, development of bio-ethanol gasoline aroused the interest for NOx SCR by ethanol. Alumina supported silver materials are reported to be the more efficient catalysts [17-19], and the reaction mechanism has been investigated in numerous studies [17,20-22]. A global overview is presented Figure 1. In this work, the NOx SCR with ethanol (EtOH-SCR) was studied over a 2wt.% Ag/Al<sub>2</sub>O<sub>3</sub> catalyst with a special attention to the main reactions involved depending on the temperature. With this aim, the possible reducers derived from ethanol (*i.e.* CH<sub>3</sub>CHO, C<sub>2</sub>H<sub>4</sub>, CO) were also evaluated. In order to understand the role of the gas phase reactions, as well as the catalytic reactions on the alumina support and the silver active phase, experiments were performed using three different conditions: i) without catalyst; ii) in presence of the Al<sub>2</sub>O<sub>3</sub> support and iii) in presence of the Ag/Al<sub>2</sub>O<sub>3</sub> catalyst.

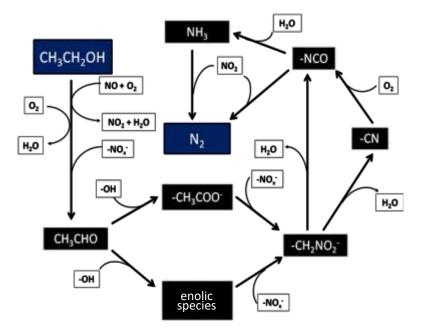



Figure 1: Global overview of EtOH-SCR mechanism

### 2. Experimental

The alumina support was synthesized using a sol-gel route [23]. Silver (2.0wt.%) was added by impregnation in ethanol [24]. Sample was finally calcined under air +10% H<sub>2</sub>O at 600°C for 4 h, and exhibits a specific surface area of 263 m<sup>2</sup>g<sup>-1</sup> (pore volume 1.13 cm<sup>3</sup>g<sup>-1</sup>). X-ray diffraction pattern evidences the  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> phase [ICDD PDF n° 00-050-0741(I)] with no visible reflection assigned to silver species (Ag<sup>0</sup>, Ag<sub>2</sub>O, AgO, Ag<sub>2</sub>Al<sub>2</sub>O<sub>4</sub>...). H<sub>2</sub>-TPR result reveals that 66% of the deposited silver is in metallic state, according to Musi *et al* [25]. TEM experiments show that Ag/Al<sub>2</sub>O<sub>3</sub> presents a low silver particles size distribution, most of the particles ranging below 10 nm.

Standard catalytic tests were performed under mixture of 400ppm NO, 500ppm CO, 167ppm H<sub>2</sub>, 1200ppm C<sub>2</sub>H<sub>5</sub>OH, 8% O<sub>2</sub>, 10% H<sub>2</sub>O, 10% CO<sub>2</sub> balanced in N<sub>2</sub>. The GHSV is fixed at 150,000 h<sup>-1</sup>. Catalytic tests were also performed with other reducers, keeping the C/N ratio constant (C/N = 6). Systematically, thermal decomposition (without catalyst) and catalytic reaction (alumina support alone or Ag/Al<sub>2</sub>O<sub>3</sub> catalyst) were performed for each gas mixture depicted in Table 1. Results are expressed as conversion or yield. Note that the NO conversion represents the global NO disappearance, *i.e.* taking into account both the NO oxidation into NO<sub>2</sub> and the NO reduction.

| Gas mixture          | HC *<br>(ppm) | NO<br>(ppm) | CO<br>(ppm) | H <sub>2</sub><br>(ppm) | O <sub>2</sub><br>(%) | CO <sub>2</sub><br>(%) | H <sub>2</sub> O<br>(%) | N <sub>2</sub> |
|----------------------|---------------|-------------|-------------|-------------------------|-----------------------|------------------------|-------------------------|----------------|
| HC*-SCR (standard)   | 1200          | 400         | 500         | 167                     | 8                     | 10                     | 10                      | balance        |
| HC*-SCR (simplified) | 1200          | 400         | -           | -                       | 8                     | -                      | -                       | balance        |
| HC*-NO               | 1200          | 400         | -           | -                       |                       | -                      | -                       | balance        |
| HC* decomposition    | 1200          | -           | -           | -                       | -                     | -                      | -                       | balance        |
| HC* oxidation        | 1200          | -           | -           | -                       | 8                     | -                      | -                       | balance        |
| NO oxidation         | -             | 400         | -           | (167)                   | 8                     | -                      | (10)                    | balance        |
| CO-SCR               | -             | 400         | 500         | -                       | 8                     | -                      | -                       | balance        |

Table 1: Gas mixtures of the main catalytic tests at constant GHSV of 150 000 h<sup>-1</sup>.

HC\*: CH<sub>3</sub>CH<sub>2</sub>OH or CH<sub>3</sub>CHO or C<sub>2</sub>H<sub>4</sub>

Most gases (NO, NO<sub>2</sub>, N<sub>2</sub>O, NH<sub>3</sub>, CO, CO<sub>2</sub>, C<sub>2</sub>H<sub>5</sub>OH, CH<sub>3</sub>CHO, C<sub>2</sub>H<sub>4</sub>) were analyzed using a Multigas FTIR detector (MKS 2030). The N<sub>2</sub> selectivity is calculated assuming that no other N-compounds than NO, NO<sub>2</sub>, N<sub>2</sub>O, NH<sub>3</sub> are emitted. In fact, no N<sub>2</sub>O emission was detected whatever the catalytic test conditions.

### 3. Results and discussion

### 3.1 Standard-SCR behaviors over Ag/Al<sub>2</sub>O<sub>3</sub> (C<sub>2</sub>H<sub>5</sub>OH-SCR, CH<sub>3</sub>CHO-SCR, C<sub>2</sub>H<sub>4</sub> –SCR)

Catalytic results obtained on Ag/Al<sub>2</sub>O<sub>3</sub> catalyst for the standard C<sub>2</sub>H<sub>5</sub>OH-SCR test (Table 1) are presented in Figure 2A and Figure 2B for C-compounds and N-compounds yields, respectively. A comparison of the NOx conversion depending on the introduced hydrocarbon (C<sub>2</sub>H<sub>5</sub>OH, CH<sub>3</sub>CHO or C<sub>2</sub>H<sub>4</sub>) is also illustrated in Figure 2C.

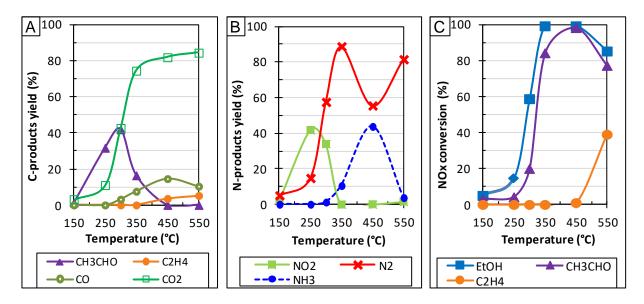



Figure 2: Standard-SCR tests over Ag/Al<sub>2</sub>O<sub>3</sub>. (A) C-compound yields and (B) N-compound yields with EtOH as reducer. (C) NOx conversion in SCR with  $C_2H_5OH$ ,  $CH_3CHO$  or  $C_2H_4$  as reducer.

 $C_2H_5OH$ -SCR test over Ag/Al<sub>2</sub>O<sub>3</sub> (Figure 2A) shows that acetaldehyde is the main C-product emitted at low temperature (250°C). Low ethylene concentration is also observed at high temperature (450-550°C). Maximum CO yield (17%) is observed at 450°C. The N-compounds distribution (Figure 2B) shows the emission of NO<sub>2</sub> and NH<sub>3</sub>, in addition to N<sub>2</sub>. In fact, the main N-compound product is nitrogen from 300°C, whereas, at 250°C, important amount of NO<sub>2</sub> is detected. An important NH<sub>3</sub> formation is observed at 450°C (NH<sub>3</sub> yield: 43%), which induces a strong decrease of the N<sub>2</sub> yield at this temperature.

Using the standard condition (Table1), Figure 2C shows that both ethanol and acetaldehyde are efficient to reduce NOx. Total NOx conversion is achieved at 350°C with ethanol. A shift of 25-50°C to higher temperatures is observed when acetaldehyde is used. Ethylene is not active until 450°C, but NOx conversion reaches 38% at 550°C. Indeed, it appears from Figure 2C, that ethanol, acetaldehyde and, to a lesser extent ethylene, are effective reducers for the NOx abatement in excess of  $O_2$ . Thereafter, in order to clarify the role of each reducer, the reactivity of the C-containing reducers ( $C_2H_5OH$ ,  $CH_3CHO$ ,  $C_2H_4$ , CO) has been examined in detail using simplified gas mixtures, with special attention to the N-compounds distribution.

3.2 Understanding the role of the gas phase reaction, alumina and silver supported catalyst: simplified-SCR behaviors ( $C_2H_5OH$ -SCR,  $CH_3CHO$ -SCR,  $C_2H_4$  –SCR)

Efficiency of various hydrocarbons ( $C_2H_5OH$ ,  $CH_3CHO$ ,  $C_2H_4$ ) in NOx SCR in simplified condition (HC + NO + O<sub>2</sub>, Table 1) is studied in this section. Catalytic tests were carried out always keeping the same introduced C/N ratio and GHSV. The CO behavior toward NO in excess of oxygen was also examined. In order to understand the role of each parameter, a special attention is focused on the influence of the condition test: without catalyst, in presence of alumina, or with Ag/Al<sub>2</sub>O<sub>3</sub>.

Firstly, with CO as reducer (400ppm NO + 500ppm CO + 8%  $O_2$  gas mixture), no SCR activity is observed in thermal condition as well as with  $Al_2O_3$  or  $Ag/Al_2O_3$  catalyst.  $CO_2$  is nevertheless detected, but only with  $Ag/Al_2O_3$  and at high temperature (550°C).

With  $C_2H_4$  as reducer, it is concluded that ethylene is not thermally decomposed and does not react with NO or  $O_2$  alone. It was observed that  $C_2H_4$  is converted (30%) only at 550°C in presence of both NO +  $O_2$ . The main product is then CO and NO<sub>2</sub>. The N<sub>2</sub> formation is negligible (9ppm). On alumina  $C_2H_4$  also reacts with NO +  $O_2$ , but only at 550°C. Comparison with the gas phase test indicates that NO<sub>2</sub> produced in the gas phase is converted on alumina, and the N<sub>2</sub> yield reaches 43% at 550°C. Finally, with Ag/Al<sub>2</sub>O<sub>3</sub>, NO conversion is detected from 450°C (20%), but NO<sub>2</sub> is the major product. At 550°C, the N<sub>2</sub> yield (53%) is just a little improved with silver.

Comparative results in CH<sub>3</sub>CHO-SCR and C<sub>2</sub>H<sub>5</sub>OH-SCR at different temperatures are presented in Table 2.

Concerning CH<sub>3</sub>CHO-SCR tests, surprisingly, NO conversion is similar either in thermal condition or with Al<sub>2</sub>O<sub>3</sub> sample, but the N-compounds selectivity is greatly modified, as reported in Table 2. In fact, in thermal condition, NO conversion mainly leads to NO<sub>2</sub> formation, even if N<sub>2</sub> concentration also calculated. With Al<sub>2</sub>O<sub>3</sub>, NO<sub>2</sub> emission is not observed before 450°C, and the drop of NO<sub>2</sub> yield observed with alumina is concomitant with a significant increase in N<sub>2</sub> emission. This result suggests that, using CH<sub>3</sub>CHO as reducer, the N<sub>2</sub> formation on alumina is correlated with the amount of NO<sub>2</sub> produced in thermal condition, upstream of the catalyst. Note that the NO<sub>2</sub> yields observed in thermal condition is in accordance with the NO/NO<sub>2</sub> thermodynamic equilibrium.

Compared with alumina,  $CH_3CHO$  and NO conversions are enhanced with silver supported catalyst. Addition of silver on alumina leads to an increase of the N<sub>2</sub> yield from 50% to 88% at 450°C, whereas the NO<sub>2</sub> yields are nil for both samples (Table 2). In this case, N<sub>2</sub> emission is not limited by the NO<sub>2</sub> formed upstream of the catalyst. This result clearly implies that silver species are active for NO oxidation into NO<sub>2</sub>. These results seem to indicate that the NO<sub>2</sub>

formation is an important step of the CH<sub>3</sub>CHO-SCR mechanism, as reported in the literature [26].

For C<sub>2</sub>H<sub>5</sub>OH-SCR, in thermal condition, NO conversion is effective essentially at 550°C (conv.: 92%) and it mainly leads to NO<sub>2</sub> (Table 2). On Al<sub>2</sub>O<sub>3</sub>, the NO conversion varies from 55% to 80% between 350°C and 550°C. The N<sub>2</sub> yield reaches a maximum of 48% at 450°C. Interestingly, the NO<sub>2</sub> yield at 550°C is lower on alumina (45%), than without any catalyst (78%). Ammonia is never observed in thermal condition, or with Al<sub>2</sub>O<sub>3</sub>.

Table 2: Comparative results in CH<sub>3</sub>CHO and C<sub>2</sub>H<sub>5</sub>OH-SCR in simplified condition (reducer + NO + O<sub>2</sub>). Reducer conversion, NOx conversion and N-compound yields for reaction in thermal condition, with Al<sub>2</sub>O<sub>3</sub> or with Ag/Al<sub>2</sub>O<sub>3</sub>.

|                                                              |                                   | $CH_3CHO + NO + O_2$ |       |       |       | $C_2H_5OH + NO + O_2$ |       |                                                                                                            |       |  |
|--------------------------------------------------------------|-----------------------------------|----------------------|-------|-------|-------|-----------------------|-------|------------------------------------------------------------------------------------------------------------|-------|--|
|                                                              |                                   | 250°C                | 350°C | 450°C | 550°C | 250°C                 | 350°C | 450°C                                                                                                      | 550°C |  |
| C-                                                           | Thermal                           | 0                    | 1     | 9     | 62    | 0                     | 0     | 8                                                                                                          | 49    |  |
| reducer<br>conv.                                             | Al <sub>2</sub> O <sub>3</sub>    | 0                    | 22    | 89    | 100   | 38                    | 95    | 100                                                                                                        | 100   |  |
| (%)                                                          | Ag/Al <sub>2</sub> O <sub>3</sub> | 2                    | 54    | 100   | 100   | 46                    | 100   | 450°C<br>8                                                                                                 | 100   |  |
| NO                                                           | Thermal                           | 0                    | 10    | 48    | 79    | 0                     | 0     | 3                                                                                                          | 92    |  |
| conv.                                                        | $AI_2O_3$                         | 0                    | 10    | 50    | 83    | 3                     | 55    | 60                                                                                                         | 80    |  |
| (%)                                                          | Ag/Al <sub>2</sub> O <sub>3</sub> | 8                    | 22    | 99    | 90    | 28                    | 69    | 450°C<br>8<br>100<br>100<br>3<br>60<br>100<br>1<br>48<br>76<br>2<br>12<br>0<br>2<br>12<br>0<br>0<br>0<br>0 | 90    |  |
| N₂<br>yield (%)                                              | Thermal                           | 0                    | 2     | 9     | 27    | 0                     | 0     | 1                                                                                                          | 14    |  |
|                                                              | Al <sub>2</sub> O <sub>3</sub>    | 0                    | 10    | 50    | 48    | 2                     | 35    | 48                                                                                                         | 35    |  |
|                                                              | Ag/Al <sub>2</sub> O <sub>3</sub> | 1                    | 22    | 88    | 55    | 14                    | 65    | 76                                                                                                         | 58    |  |
|                                                              | Thermal                           | 0                    | 8     | 39    | 52    | 0                     | 0     | 2                                                                                                          | 78    |  |
|                                                              | Al <sub>2</sub> O <sub>3</sub>    | 0                    | 0     | 0     | 35    | 1                     | 20    | 12                                                                                                         | 45    |  |
|                                                              | Ag/Al <sub>2</sub> O <sub>3</sub> | 7                    | 0     | 0     | 35    | 14                    | 0     | 0                                                                                                          | 32    |  |
|                                                              | Thermal                           | 0                    | 0     | 0     | 0     | 0                     | 0     | 0                                                                                                          | 0     |  |
| NO <sub>2</sub><br>yield (%)<br>NH <sub>3</sub><br>yield (%) | Al <sub>2</sub> O <sub>3</sub>    | 0                    | 0     | 0     | 0     | 0                     | 0     | 0                                                                                                          | 0     |  |
|                                                              | Ag/Al <sub>2</sub> O <sub>3</sub> | 0                    | 0     | 11    | 0     | 0                     | 4     | 450°C<br>8<br>100<br>3<br>60<br>100<br>1<br>48<br>76<br>2<br>12<br>0<br>2<br>12<br>0<br>0<br>0<br>0        | 0     |  |

Silver supported catalyst promotes the NO conversion and N<sub>2</sub> yield in the whole temperature range. NO<sub>2</sub> emission is lower than the one observed with alumina. In fact, NO<sub>2</sub> is not detected at 350°C or 450°C and reaches a yield of 32% at 550°C, compare to 45% for Al<sub>2</sub>O<sub>3</sub>. On Ag/Al<sub>2</sub>O<sub>3</sub> sample, NH<sub>3</sub> emission is likewise detected. The higher is the NH<sub>3</sub> yield, the higher is the NO conversion. In fact, total NO conversion is achieved at 450°C, when ammonia yield reaches about 25%. Such emission of ammonia is rarely reported in literature and was discussed in a previous work [23].

These first results indicate that NO oxidation into NO<sub>2</sub> plays an important role in the NO reduction mechanism. The reactivity of the SCR mechanism is complex and specific supplementary tests have been performed in order to understand and highlight the SCR mechanism.

### 3.3 Specific tests

### 3.3.1 NO oxidation

The reactions were carried out with 400ppm NO and 8%  $O_2$  (Table 1) in the presence or not of 167ppm H<sub>2</sub>. Dry condition (no water) or addition of 10% H<sub>2</sub>O was also used for comparison.

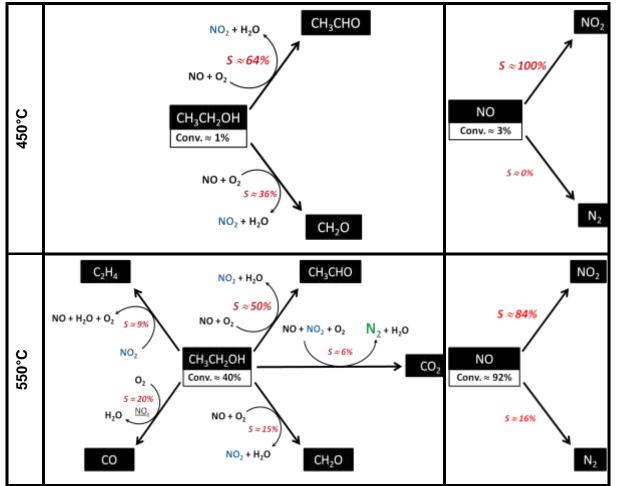
### NO oxidation in absence of H<sub>2</sub>

In absence of  $H_2$  and in dry condition (*i.e.* NO oxidation conditions presented in Table 1), the oxidation of NO into NO<sub>2</sub> is never observed in the gas phase. On the contrary, on  $Al_2O_3$ ,  $NO_2$  is observed, but only at high temperature (550°C), and with a low yield (5%). No other compounds are detected, namely  $N_2O$ ,  $NH_3$  or  $N_2$ . Surprisingly, similar result is obtained with silver supported catalyst (Ag/Al<sub>2</sub>O<sub>3</sub> sample).

It is reported in literature that NO oxidation starts by an adsorption step on acidic surface sites over  $AI_2O_3$  [27-32]. NO is furthermore oxidized to nitrites species which involve basic oxygen of alumina support, and is thereafter desorbed into NO<sub>2</sub>. This assumption was confirmed by  $O_2$  isotopic exchange experiments (not shown), which show that gas <sup>18</sup>O<sub>2</sub> is exchanged with <sup>16</sup>O<sub>2</sub> of alumina matrix from 500°C. In presence of H<sub>2</sub>O, the water dissociation on Lewis acidbase sites blocks this mechanism, and no NO<sub>2</sub> emission is then observed in this condition (NO +  $O_2$  + H<sub>2</sub>O) over alumina in the studied temperature range.

### NO oxidation in presence of H<sub>2</sub>

As mentioned above, without H<sub>2</sub> and H<sub>2</sub>O in the gas mixture (NO+O<sub>2</sub>), similar NO<sub>2</sub> yield is obtained at 550°C with alumina or with Ag/Al<sub>2</sub>O<sub>3</sub>. Silver is then not involved in the NO oxidation mechanism. If H<sub>2</sub> is added to the gas mixture (NO+O<sub>2</sub>+H<sub>2</sub>), no effect of H<sub>2</sub> is observed on Al<sub>2</sub>O<sub>3</sub>. On the contrary, NO<sub>2</sub> emission is detected from 150°C on Ag/Al<sub>2</sub>O<sub>3</sub> catalyst (vs. 550°C in absence of H<sub>2</sub>) and the NO<sub>2</sub> yield reaches about 60% at 550°C. Then, hydrogen favors the NO oxidation, but only with silver supported material. No other compound than NO<sub>2</sub> is detected (no N<sub>2</sub>O or NH<sub>3</sub>). It is proposed that, even in small amount (167 ppm), hydrogen is able to reduce silver particles, leading to higher oxidation performances. It is also likely that hydrogen favors the desorption of nitrate species adsorbed on silver, giving NO<sub>2</sub>. Besides, in presence of water (NO+O<sub>2</sub>+H<sub>2</sub>O), NO<sub>2</sub> yield increases up to 20% at 550°C over Ag/Al<sub>2</sub>O<sub>3</sub> catalyst, whereas NO<sub>2</sub>


is not emitted on Al<sub>2</sub>O<sub>3</sub> with these conditions. This result seems to support the assumption of nitrates desorption, since water cannot reduce silver species.

### 3.3.2 Investigation on $C_2H_5OH$ -SCR

The  $C_2H_5OH$ -SCR was studied in detail, with a special attention concerning the thermal decomposition and the catalytic results in regards on simplified reaction.

### Thermal decomposition and oxidation of C<sub>2</sub>H<sub>5</sub>OH

In thermal condition (without any sample),  $C_2H_5OH$  is not decomposed and does not react with  $O_2$  or NO. Nevertheless, if NO and  $O_2$  are both present in the gas mixture (simplified SCR tests, Table 2), a small conversion is observed from 450°C and, at 550°C, the NO and  $C_2H_5OH$  conversions reach 92% and 40%, respectively. Similar results are obtained in standard SCR tests.  $N_2$  is observed only at 550°C ( $N_2$  yield about 16%) whatever the gas mixture (i.e simplified or standard  $C_2H_5OH$ -SCR). The following suggested scheme is then proposed:



Scheme 1: Reaction mechanism pathway for  $C_2H_5OH$ -SCR in thermal condition for  $C_2H_5OH$  + NO +  $O_2$  gas mixture. S: selectivity.

To conclude, thermal C<sub>2</sub>H<sub>5</sub>OH-SCR reaction is active essentially at high temperature (550°C), leading to a maximum of about 90% of NO conversion, with N<sub>2</sub> selectivity close to 16% and an important amount of NO<sub>2</sub> detected (S $\approx$ 85%). Ethanol is mainly oxidized into CH<sub>3</sub>CHO (50% of selectivity at 550°C), but also into CO, CH<sub>2</sub>O, C<sub>2</sub>H<sub>4</sub> and CO<sub>2</sub>.

### C2H5OH reactivity over (Ag)/Al2O3

Different results were obtained on  $Al_2O_3$  or  $Ag/Al_2O_3$  catalyst. Firstly, ethanol (alone) is decomposed on alumina from 150°C (5% of conversion), and the conversion is total at 350°C. The main product is ethylene, with a yield of about 85% in the 350-550°C temperature range. Similar results (conversion and selectivity) are obtained on  $Ag/Al_2O_3$ . However, addition of  $O_2$ in the gas mixture ( $C_2H_5OH + O_2$ ) dramatically modifies the C-compound selectivities between  $Al_2O_3$  and  $Ag/Al_2O_3$  catalysts (Table 3).

| Read                                       |                                   | C <sub>2</sub> H <sub>5</sub> O | H + O <sub>2</sub> |       | $C_2H_5OH + NO + O_2$ |       |       |       |       |
|--------------------------------------------|-----------------------------------|---------------------------------|--------------------|-------|-----------------------|-------|-------|-------|-------|
| Temperature (°C)                           |                                   | 250°C                           | 350°C              | 450°C | 550°C                 | 250°C | 350°C | 450°C | 550°C |
| C₂H₅OH<br>conv. (%)                        | Thermal                           | 0                               | 0                  | 0     | 0                     | 0     | 0     | 1     | 40    |
|                                            | $AI_2O_3$                         | 48                              | 100                | 100   | 100                   | 38    | 95    | 100   | 100   |
|                                            | Ag/Al <sub>2</sub> O <sub>3</sub> | 35                              | 100                | 100   | 100                   | 46    | 100   | 100   | 100   |
| CH₃CHO<br>yield (%)                        | Thermal                           | 0                               | 0                  | 0     | 0                     | 0     | 0     | <1    | 20    |
|                                            | Al <sub>2</sub> O <sub>3</sub>    | 2                               | 2                  | 0     | 0                     | 4     | 21    | 1     | 0     |
|                                            | Ag/Al <sub>2</sub> O <sub>3</sub> | 31                              | 61                 | 0     | 0                     | 38    | 25    | 0     | 0     |
| C <sub>2</sub> H <sub>4</sub><br>yield (%) | Thermal                           | 0                               | 0                  | 0     | 0                     | 0     | 0     | 0     | 4     |
|                                            | Al <sub>2</sub> O <sub>3</sub>    | 12                              | 81                 | 85    | 73                    | 7     | 17    | 53    | 33    |
|                                            | Ag/Al <sub>2</sub> O <sub>3</sub> | 0                               | 2                  | 17    | 39                    | 0     | 1     | 10    | 0     |
| CO <sub>2</sub><br>yield (%)               | Thermal                           | 0                               | 0                  | 0     | 0                     | 0     | 0     | 0     | 2     |
|                                            | $AI_2O_3$                         | 34                              | 16                 | 13    | 21                    | 28    | 46    | 25    | 35    |
|                                            | Ag/Al <sub>2</sub> O <sub>3</sub> | 3                               | 33                 | 64    | 46                    | 5     | 59    | 67    | 94    |

Table 3:  $C_2H_5OH$  conversion and C-compound yields for ( $C_2H_5OH + O_2$ ) and ( $C_2H_5OH + NO + O_2$ ) reaction in thermal condition, with  $Al_2O_3$  or with  $Ag/Al_2O_3$ .

On alumina, no effect of  $O_2$  is observed on the ethanol conversion, similar catalytic results are observed with  $C_2H_5OH$  alone or  $C_2H_5OH + O_2$  (Table 3). In presence of NO+O<sub>2</sub> the selectivity is strongly modified and CH<sub>3</sub>CHO yield is greatly enhanced, especially at 350°C. Acetaldehyde yield then reaches 21%, compare to 2% in absence of NO in the gas mixture. In parallel, N<sub>2</sub> conversion over alumina is 2% and 35% at 250°C and 350°C, respectively (results reported in Table 2). Thus, it seems that NO+O<sub>2</sub> reacts with  $C_2H_5OH$  to produce both N<sub>2</sub> and CH<sub>3</sub>CHO on alumina active sites. This way is assumed to be the first reaction path to produce  $N_2$  at low temperature on alumina active sites.

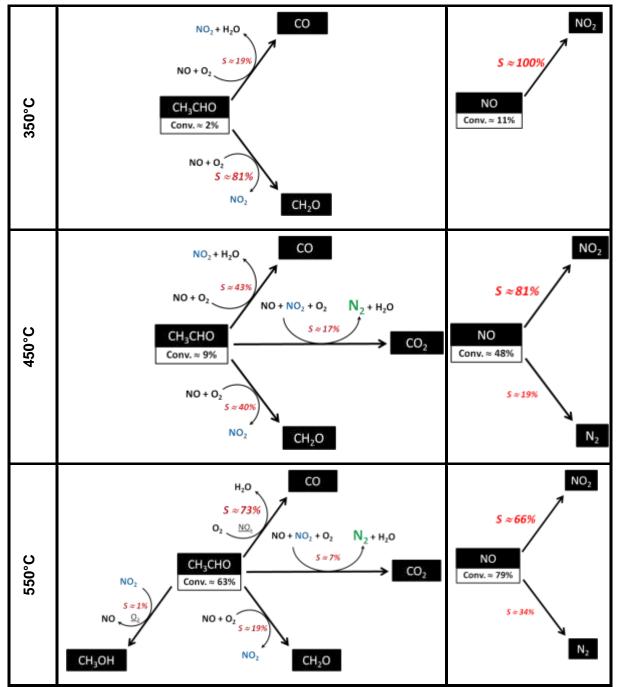
Using Ag/Al<sub>2</sub>O<sub>3</sub>, ethanol oxidation (C<sub>2</sub>H<sub>5</sub>OH + O<sub>2</sub>) leads mainly to acetaldehyde at low temperature (61% of CH<sub>3</sub>CHO yield at 350°C), whereas CO<sub>2</sub> and C<sub>2</sub>H<sub>4</sub> are the major products at 450°C and 550°C, with ethylene yields of 17% and 39%, respectively. Ethylene is no more observed at 550°C, whereas a yield of 33% is obtained with alumina without silver. When NO is added to the gas mixture, CH<sub>3</sub>CHO yield increases from 30% (C<sub>2</sub>H<sub>5</sub>OH + O<sub>2</sub>) to 40% (C<sub>2</sub>H<sub>5</sub>OH + NO + O<sub>2</sub>) at 250°C (Table 3). This higher acetaldehyde formation is directly correlated with the ethanol conversion which is 10% higher in presence of NO with Ag/Al<sub>2</sub>O<sub>3</sub> catalyst. Note that using acetaldehyde (simplified CH<sub>3</sub>CHO-SCR tests, Table 2), NO conversion is about 8% at 250°C, but mainly into NO<sub>2</sub>. Finally, acetaldehyde reactivity in NO reduction is a key parameter in C<sub>2</sub>H<sub>5</sub>OH-SCR, and investigation of CH<sub>3</sub>CHO-SCR behaviors is presented thereafter.

### 3.3.3 Investigation on CH<sub>3</sub>CHO-SCR

It was showed previously that acetaldehyde is as an active reducer in standard SCR condition (Figure 2C). Besides, during the  $C_2H_5OH$ -SCR experiments on silver supported material, CH<sub>3</sub>CHO is the main by-product, obtained by dehydrogenation. Thus reactivity of CH<sub>3</sub>CHO was carefully studied.

#### Thermal decomposition and reaction of CH<sub>3</sub>CHO

It was firstly checked that acetaldehyde is not thermally decomposed (CH<sub>3</sub>CHO alone) and it does not react with NO (CH<sub>3</sub>CHO + NO) from 150°C to 550°C. However, in presence of both NO +  $O_2$  (CH<sub>3</sub>CHO + NO +  $O_2$ ) a low acetaldehyde conversion (2%) with NO<sub>2</sub> production (3%) is observed starting from 350°C. It is important to note that the thermal oxidation of NO to NO<sub>2</sub> (without reducer, part 3.3.1) is not observed. Then, at 350°C, CH<sub>3</sub>CHO reacts with both NO and O<sub>2</sub> to produce NO<sub>2</sub>, formaldehyde (CH<sub>2</sub>O) and CO, according to the following reactions:


$$CH_3CHO + 2NO + 3/2O_2 \rightarrow 2CH_2O + 2NO_2$$
 (1)

$$CH_3CHO + 2NO + 5/2O_2 \rightarrow 2CO + 2NO_2 + 2H_2O$$
 (2)

The thermal conversion of CH<sub>3</sub>CHO increases with the temperature, to 9% at 450°C. Besides, at 450°C, N<sub>2</sub> formation is also observed according to reaction (3):

$$CH_3CHO + NO + NO_2 + O_2 \rightarrow 2CO_2 + N_2 + 2H_2O$$
 (3)

At higher temperature (550°C), the thermal conversion of acetaldehyde reaches 63%. Contrary to results obtained at 350°C and 450°C, CH<sub>3</sub>CHO can be directly oxidized by  $O_2$  at 550°C (CH<sub>3</sub>CHO +  $O_2$ ), mainly into formaldehyde and CO.



Based on the whole of results, the following reaction pathway for CH<sub>3</sub>CHO-SCR in thermal condition is proposed:

Scheme 2: Reaction mechanism pathway for  $CH_3CHO$ -SCR in thermal condition for  $CH_3CHO$  + NO + O<sub>2</sub> gas mixture.

### Catalytic decomposition and oxidation of CH<sub>3</sub>CHO

Acetaldehyde decomposition or oxidation (Table 1) was firstly studied over alumina and then over  $Ag/Al_2O_3$ . On  $Al_2O_3$ , the CH<sub>3</sub>CHO conversion starts from 300°C, and it is total at 550°C,

with or without  $O_2$  in the gas mixture. However, selectivity depends on the presence of  $O_2$ . Indeed, without oxygen, an important amount of CO is observed. With  $O_2$ , the main oxidative compound detected at 550°C is CO<sub>2</sub>. Addition of silver to alumina (Ag/Al<sub>2</sub>O<sub>3</sub>) enhances the acetaldehyde decomposition (CH<sub>3</sub>CHO alone) from 75% to 100% at 450°C, and favors the CO<sub>2</sub> formation at 550°C.

### Catalytic reduction of NO with CH<sub>3</sub>CHO (CH<sub>3</sub>CHO + NO + O<sub>2</sub>), effect of water

Catalytic results for the (CH<sub>3</sub>CHO + NO + O<sub>2</sub>) reaction, mentioned as simplified CH<sub>3</sub>CHO-SCR tests in Table 1, was previously presented in Table 2 for Ag/Al<sub>2</sub>O<sub>3</sub>. Conversions of CH<sub>3</sub>CHO and NO obtained over Al<sub>2</sub>O<sub>3</sub> and Ag/Al<sub>2</sub>O<sub>3</sub> are compared in Figures 3A and 3B, and the effect of H<sub>2</sub>O is depicted in Figure 3C.

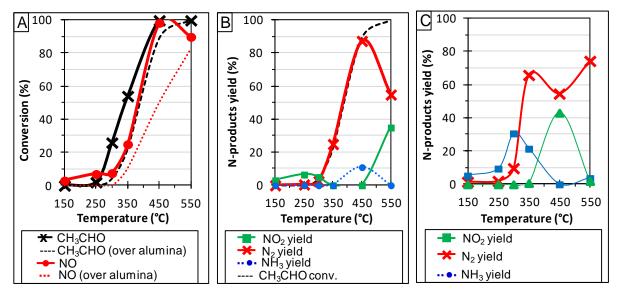



Figure 3: Simplified CH<sub>3</sub>CHO-SCR tests on Ag/Al<sub>2</sub>O<sub>3</sub>. (A) CH<sub>3</sub>CHO and NO conversion. (B) Ncompound yields; (C) Effect of water: N-compound yields for (NO + O<sub>2</sub> + H<sub>2</sub>O) condition. Catalytic results obtained over Al<sub>2</sub>O<sub>3</sub> are plotted in dotted line (CH<sub>3</sub>CHO yields in Fig B and C). Gas mixture: 1200 ppm CH<sub>3</sub>CHO, 400 ppm NO, 8% O<sub>2</sub>, (10% H<sub>2</sub>O) balanced with N<sub>2</sub>.

As expected,  $CH_3CHO$  and NO conversions are enhanced with  $Ag/Al_2O_3$  catalyst, compare to  $Al_2O_3$ . Figure 3B also reveals that the  $N_2$  yield observed with  $Ag/Al_2O_3$  catalyst is correlated with the  $CH_3CHO$  conversion obtained with alumina (in dotted line), in a large temperature range (150-450°C). This result seems to indicate that the  $N_2$  formation in  $CH_3CHO$ -SCR is linked to the activation of acetaldehyde over the alumina support.

Addition of water in the feed stream (CH<sub>3</sub>CHO + NO + O<sub>2</sub> + H<sub>2</sub>O mixture) significantly changes the N-compound yields (Figure 3C). The N<sub>2</sub> yield is then improved in the low temperature range. For instance, at 350°C, the N<sub>2</sub> yield reaches 67%, compared to 22% without water. In opposition, the N<sub>2</sub> yield is strongly decreased at 450°C, which is correlated with the enhancement of the ammonia yield with water. Another important point is that NO<sub>2</sub> yield is also enhanced with  $H_2O$  around 300°C, from 7% to 30% at this temperature. Besides, the  $N_2$  yield is no more correlated with the CH<sub>3</sub>CHO conversion obtained with alumina (in dotted line, Figure 3C), as it was reported in absence of  $H_2O$  in the gas mixture (Figure 3B).

### 3.4 Highlights on the EtOH-SCR mechanism with Ag/Al<sub>2</sub>O<sub>3</sub>

#### 3.4.1 Low temperature limitation in EtOH-SCR with Ag/Al<sub>2</sub>O<sub>3</sub> (T≤300°C)

At 250°C, the presence of NO in the gas mixture increases the ethanol conversion on Ag/Al<sub>2</sub>O<sub>3</sub>, from 35% to 46% (Table 3). In fact, in absence of NO, a higher C<sub>2</sub>H<sub>5</sub>OH conversion is observed on Al<sub>2</sub>O<sub>3</sub> support than on Ag/Al<sub>2</sub>O<sub>3</sub> catalyst. Besides, NO conversion is effective at 250°C on Ag/Al<sub>2</sub>O<sub>3</sub> (28%, Table 2), but is very low on alumina (3%). At this temperature, Table 3 reveals that on Ag/Al<sub>2</sub>O<sub>3</sub> catalyst, ethanol activation leads mainly to the formation of CH<sub>3</sub>CHO (yield about 38%) when NO is present on the gas mixture. In absence of NO (C<sub>2</sub>H<sub>5</sub>OH + O<sub>2</sub>), CH<sub>3</sub>CHO yield drops to 31%. Note that acetaldehyde is produced in very low amount on alumina (C<sub>2</sub>H<sub>5</sub>OH + O<sub>2</sub> mixture). Thus on Ag/Al<sub>2</sub>O<sub>3</sub> catalyst, it appears that the dehydrogenation reaction (4), leading also to the formation of hydrogen, becomes faster than the dehydration one.

$$C_2H_5OH \rightarrow CH_3CHO + H_2 \tag{4}$$

It was previously reported in section 3.3.1 that  $Ag/Al_2O_3$  and  $Al_2O_3$  samples act differently in presence of H<sub>2</sub>, especially for the NO oxidation reaction. In fact the presence of a low concentration of H<sub>2</sub> (167 ppm,) enables the oxidation of NO into NO<sub>2</sub> on Ag/Al<sub>2</sub>O<sub>3</sub> at low temperature (starting from 150°C). Without hydrogen in the gas mixture, NO<sub>2</sub> is not observed at low temperature (T≤300°C). Then, the use of C<sub>2</sub>H<sub>5</sub>OH leads to the formation of NO<sub>2</sub> at low temperature (i.e 250°C) on Ag/Al<sub>2</sub>O<sub>3</sub> (yield about 14%, Table 2).

It is thus assumed that the NO<sub>2</sub> formation is the rate-determining step in N<sub>2</sub> formation. In fact, based on the work of Sachtler et al. [22], it is proposed that the first reaction step of NO oxidation into NO<sub>2</sub> leads to the formation of adsorbed nitrates species at low temperature. As reported in literature [30,33], NO<sub>2</sub> adsorption on alumina support leads to the formation of three kinds of nitrate species (bridging, monodentate and bidentate). The C<sub>2</sub>H<sub>5</sub>OH-SCR reaction is thereafter limited by the low reactivity between adsorbed nitrates and ethanol. The deduced N<sub>2</sub> formation at T < 300°C may be due to few active nitrite species [34].

In fact, nitrites are reported to be very reactive but formed with a very low extent over alumina [34]. Over alumina, NO<sub>2</sub> is much more active than NO [26], especially for T>300°C. At lower temperature, nitrates are too strongly adsorbed [28,35,36], but addion of H<sub>2</sub> allows the increase of the low temperature activity due to the nitrates reduction into highly active nitrites [37,38,39]

#### 3.4.2 High temperature mechanism

A comparative study of the effect of water over Ag/Al<sub>2</sub>O<sub>3</sub> catalyst is presented in Figure 4 for the C<sub>2</sub>H<sub>5</sub>OH-SCR and CH<sub>3</sub>CHO-SCR tests in simplified condition (reducer + NO + O<sub>2</sub>). It appears that the profile distribution of N-compound is quite similar whatever the reducer (ethanol or acetaldehyde, Figure 4A and 4C). In fact, for both reducers, the maximum N<sub>2</sub> yield is obtained at 450°C, at about 75% and 88% for C<sub>2</sub>H<sub>5</sub>OH-SCR and CH<sub>3</sub>CHO-SCR tests, respectively. Total NOx conversion is achieved in both cases and the lower N<sub>2</sub> yield obtained with ethanol as reducer is associated with the higher ammonia emission. The presence of water (Figure 4B and 4D) increases the ammonia yield with still a maximum at 450°C. As a consequence, the N<sub>2</sub> yield at this temperature is strongly decreased and maximum N<sub>2</sub> yield is then obtained at 350°C. NO<sub>2</sub> emission in the low temperature range is also favored if H<sub>2</sub>O is introduced in the feed stream.

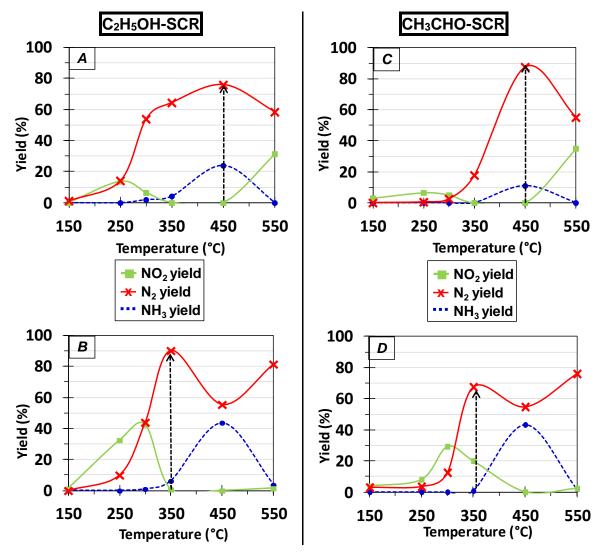
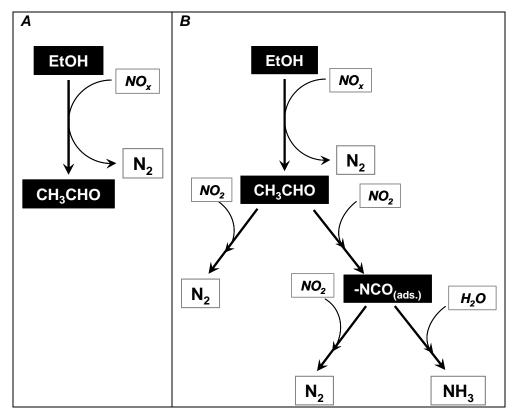




Figure 4: N-compound yields for  $C_2H_5OH$ -SCR (A) and  $CH_3CHO$ -SCR (C) tests in simplified condition over Ag/Al<sub>2</sub>O<sub>3</sub> catalyst. Effect of water on  $C_2H_5OH$ -SCR (B) and  $CH_3CHO$ -SCR (D).

Ammonia formation mechanism is well established in literature [18,40], it involves the hydrolysis of -NCO species to form NH<sub>3</sub>. The formation of –NCO species has been observed in numerous papers over Ag/Al<sub>2</sub>O<sub>3</sub> catalysts when high NOx reduction efficiency is achieved [40,41]. It is proposed that –NCO species are formed by reaction between acetate species (adsorbed acetaldehyde) and adsorbed nitrites/nitrates species. Ammonia can thereafter react with NO<sub>2</sub> to form ammonium nitrite. Ammonium nitrite is then decomposed into H<sub>2</sub>O and N<sub>2</sub>. Isocyanate ions also react with O<sub>2</sub> but this reaction is slower than that of -NCO with water, which leads to ammonia formation [17]. Since no NH<sub>3</sub> is emitted on Al<sub>2</sub>O<sub>3</sub> support, -NCO bridged with silver cluster and coordinatively unsaturated sites was recently proposed by Thibaut-Starzik *et al.*[42]. Finally, reaction pathway for EtOH-SCR is summarized in scheme 4. At low temperature, around 250°C, the N<sub>2</sub> formation is virtually nil with acetaldehyde whereas acetaldehyde is observed together with N<sub>2</sub> using ethanol as introduced reducer. In addition, N<sub>2</sub> is observed only if O<sub>2</sub> is introduced, suggesting that NO<sub>2</sub> are the reactive species.

At higher temperature, the  $CH_3CHO + NO + O_2$  reaction can occur over alumina, without silver. However, silver is supposed to favor –NCO species formation, which explains the enhancement of the nitrogen formation. However, if the ( $NO_x$  / isocyanate species) ratio is unbalanced with too many –NCO species, ammonia emission is observed.



Scheme 4: Proposed reaction pathway for EtOH-SCR at (A) low temperature (T $\leq$ 300°C) and (B) high temperature (T $\geq$ 300°C)

### 4. Conclusion

The mechanism of the NOx SCR with ethanol over Ag/Al<sub>2</sub>O<sub>3</sub> catalysts was already extensively studied and a global overview is proposed. However, some parameters were not evidenced, such as the test temperature or the roles of the gas phase reactions and alumina support. In this study, we tried to understand the reaction mechanism toward these parameters. During the C<sub>2</sub>H<sub>5</sub>OH-SCR test, CO, C<sub>2</sub>H<sub>4</sub> and CH<sub>3</sub>CHO are also emitted. CO is not active for the NOx reduction, and CO<sub>2</sub> is observed only with Ag/Al<sub>2</sub>O<sub>3</sub> and at high temperature (550°C). Ethylene is able to reduce NOx into N<sub>2</sub> only at 550°C over alumina with a limited impact of silver. Ethanol is activated at low temperature over alumina (T≤300°C) but N<sub>2</sub> is obtained only with Ag/Al<sub>2</sub>O<sub>3</sub> and with NO and O<sub>2</sub> in the feed stream. In fact, Ag allows NO<sub>2</sub> formation from 150°C. Acetaldehyde is also observed as a product in this low temperature range. At higher temperature CH<sub>3</sub>CHO is an effective NOx reducer over Al<sub>2</sub>O<sub>3</sub>. It is demonstrated that alumina active sites are involved in the NO<sub>2</sub> reduction with CH<sub>3</sub>CHO leading to a possible NOx reduction pathway to N<sub>2</sub>. However, silver is supposed to favor –NCO species formation, which explains the enhancement of the nitrogen formation and ammonia emission.

### Acknowledgments

The Authors thank the French Ministry of Economy, Finance and Industry for its financial support (FUI contract n° 07 2 90 6511 REDNOx)

#### References

[1] Epling WS, Campbell LE, Yezeerets A, Currier NW, Parks JE (2004) Catal Rev 46:163-245 [2] SedImair C, Seshan K, Jentys A, Lercher JA (2002) Catal Today 75:413-419 [3] Corbos EC, Courtois X, Bion N, Marecot P, Duprez D (2008) Appl Catal B 80:62-71 [4] Li J, Theis J, Chun W, Goralski C, Kudla R, Ura J, Watkins W, Chattha M, Hurley R (2001) SAE Technical Paper 2001-01-2503 [5] Uy D, O'Neill AE, Li J, Watkins WHL (2004) Top Catal 95:191-201 [6] Casapu M, Grunwaldt JD, Maciejewski M, Wittrock M, Göbel U, Baiker A (2006) Appl Catal B 63:232-242 [7] Le Phuc N, Courtois X, Can F, Royer S, Marecot P, Duprez D (2011) Appl Catal B 102:353-361 [8] Corbos EC, Haneda M, Courtois X, Marecot P, Duprez D, Hamada H (2009) Appl Catal A 365:187-193 [9] Konsolakis M, Yentekakis IV (2001) J Catal 198:142-150 [10] Cordoba LF, Sachtler WMH, de Correa CM(2005) Appl Catal B 56:269-277 [11] Maunula T, Ahola J, Hamada H (2000) Appl Catal B 26:173-192 [12] Tran D, Aardahl CL, Rappe KG, Park PW, Boyer CL (2004) Appl Catal B 48:155-164 [13] Haj KO, Ziyade S, Ziyad M, Garin F(2002) Appl Catal B 37:49-62 [14] Cant NW, Liu IOY (2000) Catal Today 63:133-146

- [15] Zuzaniuk V, Meunier FC, Ross JRH (2001) J Catal 202:340-353
- [16] Liu IOY, Cant NW (2005) J Catal 230:123-132
- [17] Bion N, Saussey J, Haneda M, Daturi M (2003) J Catal 217:47-58
- [18] Yeom YH, Li M, Sachtler WMH, Weitz E (2007) J Catal 246:413-427
- [19] He H, Yu Y (2005) Catal Today 100:37-47
- [20] Chafik T, Kameoka S, Ukisu Y, Miyadera T (1998) J Mol Cat A 136:203-211
- [21] Poignant F, Saussey J, Lavalley JC, Mabilon G (1995) J Chem Soc-Chem Comm 1:89-90
- [22] Yeom YH, Li M, Sachtler WMH, Weitz E (2006) J Catal 238:100-110

[23] Can F, Flura A, Courtois X, Royer S, Blanchard G, Marécot P, Duprez D (2011) Catal. Today 164:474-479

- [24] Sato T, Goto S, Tang Q, Yin S (2008) J Mater Sci 43:2247-2253
- [25] Musi A, Massiani P, Brouri D, Trichard JM, Da Costa P (2009) Catal Letters 128:25-30
- [26] Bethke KA, Kung HH (1997) J Catal 172:93-102
- [27] Westerberg B, Fridell E (2001) J Mol Cat A 165:249-263
- [28] Meunier FC, Breen JP, Zuzaniuk V, Olsson M, Ross JRH (1999) J Catal 187:493-505
- [29] Kijlstra WS, Brands DS, Poels EK, Bliek A (1997) J Catal 171:208-218
- [30] Parkyns ND, in: J.E. Hightower (Ed.), Elsevier, New york, (1993) 255
- [31] Apostolescu N, Schröder T, Kureti S (2004) Appl Catal B 51:43-50
- [32] Pozdnyakov DV, Filimonov VN (1973) Kinetic and Catalysis 14:665-669
- [33] Ozensoy E, Herling D, Szanyi J (2008) Catal Today 136:46-54
- [34] Bentrup U, Richter M, Fricke R (2005) Appl Catal B 55:213-220
- [35] Shimizu K, Shibata J, Yoshida H, Satsuma A, Hattori T (2001) Appl. Catal. B 30: 151-162
- [36] Yamaguchi M, Goto I, Wang ZM, Kumagai M (1999) Science and Technology in Catalysis 121: 371-374

[37] Burch R, Breen JP, Hill CJ, Krutzsch B, Konrad B, Jobson E, Cider L, Eranen K, Klingstedt F, Lindfors LE (2004) Topics in Catalysis 30: 19-25

- [38D] Breen JP, Burch R (2006) Topics in Catalysis 39: 53-58
- [39] Shimizu K, Shibata J, Satsuma A (2006) J. Catal 239: 402-409
- [40] Yu Y, He H, Feng Q, Gao H, Yang X (2004) Appl Catal B 49:159-171
- [41] Macleod N, Lambert RM (2003) Chem Commun 9:1300-1301
- [42] Thibault-Starzyk F, Seguin E, Thomas S, Daturi M, Arnolds H, King DA (2009) Science 324:1048-1051