Dominique Duval
email: dominique.duval@imag.fr.

Scalability using effects

come

Scalability using effects

Introduction

A well-known pedagogical trick for teaching complex features is to "lure" the students by first providing a simplified version of this feature, before adding the required corrections to this approximate version. Typically: "The plural form of most nouns is created by adding the letter 's' to the end of the word, but there are some exceptions. . . ". In computer science, such an approach is used in the mechanism of exceptions, as well as in many other computational effects. The aim of this note is to present computational effects as a tool for solving some scalability issues in the design of specifications.

There are several approaches for managing a large specification (or program). For instance, components and modules can be used for breaking down the specification into smaller pieces; the intended semantics of the whole specification is obtained by "merging" the semantics of its components. Then each module is "right", in the sense that its semantics describes some "part" of the intended semantics. Another method is the stepwise refinement, where one builds progressively the required specification from more abstract specifications; during the refinement process, the specification gets more and more complex while its semantics gets more and more precise, until the intended semantics is obtained. Then each step is "right", in the sense that the intended semantics is one of the possible semantics of each intermediate specification.

In this note we focus on using computational effects for scalability. With this method, the specification gets more and more complex while its semantics gets more and more correct. Thus, each step is "wrong", in the sense that the intended semantics is not a semantics of any intermediate specification.

It follows that the main issue for using computational effects for scalability is whether it is possible to use the intermediate specifications for testing or verifying or proving non-trivial properties of the final specification. In the next sections we argue in favour of a positive answer to this question, from two examples which both rely on a common general algebraic framework. The key point is that each intermediate specification may become "right" simply by classifying its features according to the way they behave with respect to the corresponding effect, without describing explicitly this behaviour.

This note is based on work with J.-C. Reynaud, J.-G. Dumas, L. Fousse and C. Domínguez.

Exceptions

The mechanism of exceptions has two parts: raising exceptions (with keywords throw or raise) and handling them (with keywords try/catch or handle).

The lure in the raising of exceptions lies in the fact that a function f which takes an argument of type A and returns a value of type B is not interpreted as a

map from [[A]] to [[B]] (where [[T]] denotes the interpretation of a type T) but as a map [[f]] : [[A]] → [[B]

] + Exc, where Exc is the set of exceptions and "+" denotes the disjoint union. This can be expressed in a categorical framework [START_REF] Moggi | Notions of Computation and Monads[END_REF]:

a function f : A → B is interpreted as a map [[f]] : [[A]] → [[B]
] in the Keisli category of the monad X → X + Exc on the category of sets. The lure in the handling of exceptions is that a function f : A → B inside a catch clause may recover from an exception (it may also raise an exception), so that is interpreted as a map

[[f]] : [[A]] + Exc → [[B]] + Exc.
Thus, in order to deal with exceptions, our proposal is to add decorations to the syntax: a catcher f (2) :

A → B is interpreted as [[f]] : [[A]] + Exc → [[B]] + Exc while a propagator f (1) : A → B is interpreted as [[f]] : [[A]] → [[B]] + Exc and a pure function f (0) : A → B is interpreted simply as [[f]] : [[A]] → [[B]].
In order to prove properties of programs involving exceptions, we must also add decorations to the equations: when f, g : A → B are catchers (which is the general case), a strong equation f

≡ g means that [[f]] = [[g]] : [[A]] + Exc → [[B]]+ Exc and a weak equation f ∼ g means that [[f]]• in 1 = [[g]]• in 1 : [[A]] → [[B]] + Exc, where in 1 : [[A]] → [[A]] + Exc is the left coprojection.
A major point is the existence of a deduction system associated to these decorations, which can be used for proving properties of specifications using exceptions. For instance, there are rules for the obvious hierarchies: each pure function can be seen as a propagator, each propagator as a catcher, and each strong equation as a weak one. There are also rules expressing the facts that composition preserves the decorations, that the strong equations generate a congruence, and that the weak equations generate a kind of "weak" congruence: if

f 1 ∼ f 2 then f 1 • g ∼ f 2 • g (but in general h • f 1 ∼ h • f 2)
. More details can be found in [START_REF] Dumas | Adjunctions for exceptions[END_REF].

States

Imperative programming relies on the notion of side-effect for states: a state of the memory can be observed thanks to lookup functions and it can be modified thanks to update functions.

The lure in this situation is that a function f which takes an argument of type A and returns a value of type B may be interpreted either as

[[f]] : [[A]] × St → [[B]] if f is an observer or as [[f]] : [[A]] × St → [[B]] × St if f is a modifier (
where St is the set of states and "×" the cartesian product). In order to deal with imperative programs, we add decorations to the syntax: a modifier f (2) :

A → B is interpreted as [[f]] : [[A]] × St → [[B]] × St while an observer f (1) : A → B is interpreted as [[f]] : [[A]] × St → [[B]]. As with exceptions, a pure function f (0) : A → B is interpreted simply as [[f]] : [[A]] → [[B]
]. We also add decorations to the equations: when f, g : A → B are modifiers (this is the general case), a strong equation f ≡ g means that

[[f]] = [[g]] : [[A]] × St → [[B]] × St and a weak equation f ∼ g means that pr 1 • [[f]] = pr 1 • [[g]] : [[A]] × St → [[B]] where pr 1 : [[B]] × St → [[B]
] is the left projection. This can also be expressed in a categorical framework: an observer f (1) :

A → B is interpreted as a map [[f]] : [[A]] → [[B]
] in the co-Keisli category of the comonad X → X × St on the category of sets, while a modifier f (2) : A → B may be interpreted as a map

[[f]] : [[A]] → [[B]]
in the Keisli category of the monad X → (X × St) St [START_REF] Moggi | Notions of Computation and Monads[END_REF]. For instance, when dealing with a toy class for bank accounts in an object oriented language, the expressions "deposit(7); balance();" and "7 + balance();" have different effects but they return the same integer. They can be seen as decorated terms f (2) = balance (1) • deposit (2) • 7 (0) and g (1) = + (0) • (7 (0) , balance (1)), and indeed it can be proved that f (2) ∼ g (1) without introducing any type of states.

In fact, our approach reveals a duality between exceptions and states [START_REF] Dumas | A duality between exceptions and states[END_REF]. Thus, we get rules for proving properties of imperative programs which are dual to the rules mentioned above for exceptions. More details are given in [START_REF] Dumas | Decorated proofs for computational effects: States[END_REF]. In this duality, the exception monad X + E corresponds to the comonad X × St, but there is no comonad on sets corresponding to the states monad (X × St) St ; from our point of view this is not an issue, in contrast with the point of view of monads and Lawvere theories where there is a need for specific tools for handlers [START_REF] Plotkin | Notions of Computation Determine Monads[END_REF][START_REF] Plotkin | Handlers of Algebraic Effects[END_REF].

Conclusion

In the previous sections we have outlined the construction of deduction systems for dealing with exceptions and states in an implicitly way, i.e., without using any "type of exceptions" or "type of states"; we have simply added some decorations to the syntax of the language. This can be done for other computational effects: several examples are given in [START_REF] Dumas | Cartesian effect categories are Freyd-categories[END_REF], where we propose a formalization of the fact that the order of evaluation of the arguments of a binary function becomes crucial in presence of effects.

This work relies on categorical tools [2]: mainly on adjunction, more precisely on categories of fractions [8], and on limit sketches [7,1].

We have described one step in our approach to scalability. Thanks to the categorical framework it should be easy to express the composition of effects, thus getting a stepwise scalability method. The combination of this method with other scalability methods still has to be studied.