N

N

A formal framework for model verification in System
Engineering: UPSL
Vincent Chapurlat

» To cite this version:

Vincent Chapurlat. A formal framework for model verification in System Engineering: UPSL. 2010.
hal-00839870

HAL Id: hal-00839870
https://hal.science/hal-00839870
Submitted on 1 Jul 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00839870
https://hal.archives-ouvertes.fr

;j Internal Research Report / Rapport Interne de Rextteen® RR/10-02

MINES
Ales

A formal framework for model verification in System

Engineering: UPSL

V.Chapurlat

Ecole Nationale Supérieure Mines Alés -- 6 avenue de Claviére, 30319 Ales cedex
LGI2P - Laboratoire de Génie Informatique et d’Ingénierie de Production, Parc scientifique Georges
Besse, F30035 Nimes

A formal framework for model verification in System
Engineering: UPSL

V.Chapurlat

LGI2P - Laboratoire de Génie Informatique et d'imgéie de Production, Site EERIE de I'EMA, Parce8tifique George
Besse, 30035 Nimes cedex 1- tél. (+33) 466 387 066

Abstract: the aim of this paper is to present and to itatst a formal model verification framework calle® 8L
(Unified Property Specification Language) appliegtehin System Engineering verification activitientext.
The concepts and principles, the associated lamguagd supporting platform specification are pregerrhis
framework is based on formalization of requiremender the form of properties and the use of proetima-
nisms of properties taking into account the multdals, multi disciplinary, multi domains, multi paligms,
and last the collaborative characteristic of aesyséngineering project.

Keywords: System Engineering, Modelling, Verification, Peoty, Formal proof

I ntroduction

Systems Engineering (SE) isar interdisciplinary approach and means to enable tealization of successful
systems. It focuses on defining customer needsemjuired functionality early in the developmentleyadocu-
menting requirements, and then proceeding withgilesynthesis and system validation while considetire
complete problem (INCOSE 2007, ISO 2002, CDT 2007)

Verification and validation (V&V) activities represt today a huge but necessary investment in SEegpses
and impacts Integration System processes. Howavgystem engineering project is by definition atirdikci-
plinary, multi actors, multi paradigms i.e. multodelling approaches and tools candidate, and lastlabora-
tive process during which actors with differentedijves, skills, competences and tools have toanten order
to realize a system-of-interest. This is may beréasons for which verification activities remaioply formal.
This article presents a formal verification framekvaamed UPSLaiming to associate modeling andieatibn
concepts, tools and techniques in a coherent aaahle collaborative working space. The first plagcribes
and illustrates the problematic to be cover. Theosd part presents the core concepts of UPSL. fAihe part
presents principles of formal verification approashlLast the fourth part presents and illustrdiesmtethodolo-
gy of use of UPSL.

Problematic

Verification is defined asthe process of determining whether or not the patglof a given phase of the sys-
tem/software life cycle fulfill the requirementsadsdished during the preceding phask the same way valida-
tion is defined asthe process of determining that the requirementésthe correct requirements and that they
form a complete set of requirements this is dortbakarly stages of the development prdcdéssother words
verification and validation must prove the systeatisfies the requirements (verification) and thaneets the
users needs (validation). So, these activitiesegeaested all along engineering process becaugddhmalize
the dependence between modelling and decision.tbdbdelling tasks provide system models allowingite
derstand, to specify, to communicate between gdtomvaluate rapidly solutions and so on. Decisasks aim

to design, to manage the differences between esakitand then to confirm some of these solutionsauach
development of prototypes and so on. For this iffetechniques are used:

* Analyze: if system do not exist or if a prototymenot be designed, model analysis can be perfommeoh-
fidence by using in general simulation, even phrtiam these models.

 Inspection: this aims to provide some proof by eixamg for example prototypes of the system.

« Demonstration: the proof consists to gather soragli®considered as sufficient for a given purpo$spme
trials made on a prototype or a demonstrator.

» Test: the proof is then a very detailed result mering performance measures.

The problem considered here is to improve confiddnanodels used all along a project for being ableon-
centrate engineers’ efforts on model analysis teglas. Numerous more or less formal techniques sansed
in Fig. 1 can be found in the bibliography (Loved20Jagdev 1995, RPG 2001, NASA 2001). Adopting @ne
them depends from different criteria: type and retf system, relevance and well known techniqubdnfield,
existing best practices, skills and experiencelstomore or less “easy to use”, project constrajotsts, dura-
tion)...

This paper focuses on the use of a formal techrégueroposed in other domains (Van Lamsweerde 2982,
ard et al. 2001, Balci et al. 2002), particularlgdel checking and theorem proving approaches. @heyased
on mathematical concepts, reasonning rules and anésrhs that guarantee the absence of ambiguityeipto-
duced models, the possibility to reason about §pations in order to discover potential incompietss, incon-
sistencies. The proposed framework called UnifieapBrties Specification Language (UPSL) focus awppr-
ties proof and covers three main needs:

« Describing a system requires building several no¢iedquirements, functional, organic, behaviourgl by.
using several modeling languages which can beufitiently formal to support checking techniqu@eir
verification requires being able to translate withimss and ambiguities these models under moredones
and to check the pointed out properties on thesdetao

e These properties can concern consistency (no abcti@n in the information contained in one or sede
models of the same system), completeness (consigdthe expectations of the entire project) andvealee
(i.e. completeness vs. interest or fidelity) of thedel vs. system-of-interest. They can also foigaahe re-
guirements having to be verified by the modelstLihey can formalise physical, chemical, electricalaws
from environment of the system which remain alwagndatory to respect all along a SE process.thes
necessary to be able to formalize and to handketpeoperties.

 Last, the proposed framework must stay open tonpiatererification tools.

Focus on (Information, Resource, Organisation, Behaviour)

Static aspect | Dynamic aspect
A Informal | Reference models and reference architectures utilization, Audit, Human expertise, Face Validation ,
Reviews (models, project), Walkthroughs, Desk Checking, Inspections, Turing Test
Automated documentation generation, Models comparison (by human expert)
Semi- | Cause-Effect Graphing Acceptance Testing, Assertion Checking, Bottom-Up Testing
formal | DataAnalysis (data Compliance Testing (authorization, performance, security standards)

dependency, data flow) Execution Testing (monitoring, profiling, tracing, reporting)
Interface Analysis (model Field Testing, Graphical Comparisons, Object-Flow Testing
interface, userinterface) Predictive Validation, Regression Testing, Statistical Techniques
Structural Analysis Structural testing (White-Box), Functional testing (Black-Box)
SyntaxAnalysis Control Testing (branch, condition, data and controls flow, loop, path, path

$ Analysis (calling structure, | condition, statement,)

=l concurrentprocess, Debugging (symbolic, classic) , Comparison Testing

c control flow, state Fault/Failure Insertion Testing, Interface Testing (data, model, user)

S transition) Partition Testing, Product Testing, Sensitivity Analysis

'a_) Fault/Failure Analysis Special Input Testing (boundary value, equivalence partitioning,
Semantic Analysis extreme input, invalid input, real-time input, self-driven input, stress,
Symbolic Evaluation trace-driven input)
Traceability Assessment Sub-model/Module Testing, Top-Down Testing,
Automated documentation | Visualization/Animation
generation

Formal | Formal methods utilization (B,Z,VDM; other) and associated tools
Induction, deduction, abduction, model checking, theorem proving, Inference, Inductive Assertions,
Proof (correctness, completeness, consistence), Properties proof, Model mapping
Predicate transformations, Predicate Calculus, Logic (temporal, propositional, firstorder, etc.),
Algebra (linear, process algebra, dedicated algebras), Lambda calculus
vl Simulation (when based on formal behavioral rules and models), Bi simulation

Fig. 1: an overview of verification techniques

UPSL : aformal verification framework

UPLS aims to enlarge the engineer tools box witlomplementary way with other approaches such aglaim
tion, expertise or test. In this it has to helpseruo specify, to organise and to check a sebmhdl properties
according to the different models of the systenmtérest. UPSL provides concepts and mechanisnwsided
and illustrated in the next parts:

» Support requirements specification. This requirescuirement modelling language whatever may bedhe
quirement origin calle®Requirement M odel.

» Support properties formalisation including the eeibty of properties defined in other projectdis requires
a property modelling language call@REDI model and a properties reference data base catlegerty
Reference Repository.

« Be able to take into consideration different pugsosf modelling and different modelling languagssdi
during SE process. It maust then provide a setahanisms supporting modelling languages conceptual
modelling, conceptual enrichments andmodels transfor mation.

Last, using UPSL requires an implementation apgrdesed on three main phases of work summarisgedyin
2:

* The first phase consists for experts from domaiprtivide a meta model of the different used modegllan-
guages during SE process (eFFBD, State diagram#ISYMODELICA...). This allows first to propose con
ceptual enrichments of these languages in ordkiinto account the CRED model. It permits sedonskt
up a list of concepts and relations, attributes eomstraints (cardinality, rules) and operatiorehantic re-
quired for the re writing process. This phase isedfor each modelling language.

* The second phase consists to model in same tintensyf- interest and to formalize its requiremeamtsler
the form of properties when it is possible. Indesgime properties can be checked by using formas too
(model checkers and theorem provers), can be wedetermining and adjusting a simulation or casoal
dedicated only to expertise point of view if thestgyns models cannot be checked due to an inapatepri
level of formalisation.

Property graph
or model —
completion

Modelling
system

‘] I
|
| ' 1
I
Choice } v_ ! i
Instanciation Properties !
Reuse } to be checked Model(s) |
‘ |
|
|

\/‘”’%

! I
! I
| I
|
| I
| I
| I
| I
| I
|
! 1
£ I
} £ M 0 Modelling | Rewriting
| 2! }xperts } g PP
| I 1
} ; 1 Concepts and :——,
1 . .
I Modelling Ianguages ! | | Relations lattices Iobo
1| (unified) meta model | i N -
mog |
} 5 } o | Conceptual i I !
| ‘ £ : Graphs : I :
| T
i l il I
} ! @ ! -
Y S
| | | £ 1
| } i = o0 Reasoning (.
. |
i i i Mechanisms I : :
|
‘L ! LSystem model verification (Conceptual Graphs) | : :
____________________________________ J
! System model verification (Model checker) : I
______________________________________ |
| System model verification (Simulator) !

Fig. 2: UPSL principles

« The third phase consists to translate the systeimt@fest relevant models (i.e. selected for forpralof) and
the associated properties (i.e. properties assuotiatthese models) to checking tools. This phagpd with
previous phase regarding verification results. Himss to improve models and will end when all theper-
ties provable from formal manner are verified.

Following this implementation approach, UPSL framewis proposed in Fig. 3 and its main elementsnang
presented.

3 J‘J‘ Taraet . Modelling pointof
(1 ! «SystemksJ o 0@ view, tool, language(s)

[————
| Modelm(S) | %
{ Model
Implementation checking
approach i_ModelY_j Theorem
Properties Reference proving
* Model

Repository "
M.Z-J Simulation
Properties modelling - —

language (CREDI, NL) i_ModelT j Expertise

E;tg base proTeE@

Fig. 3: a simplified view of the UPSL framework

‘ Re-writing mechanisms

Requirement model

Taking into account the model usage in SE pro@essguirement having to be verified can considerstystem-
of-interest itself or its model(s):

* System requirements corresponding to customer tahkeéfsolders needs (functional and non-functiorefe-s
ty, performance, etc.) or induced by technologitedices.

« Constraints induced by normative rules, naturaklafyphysics, etc.

* Model expectations: consistency (intra and intedets, languages and inter views required for desgithe
system-of-interest: functional, behavioural andamig views), completeness (partial) and if possiblées
having to be respected in order to begin validatibmodel relevance vs. system.

Usually, informal specifications technique are prefl in industry. Several formal requirements tepmes
(Easterbrook 2002) can be also used such as KA@B [dmsweerdet al 1998) which is very attractive for its
possibility to define, analyse and reason aboutiremments. These formal approaches remain howeffeutt
to use in conjunction or applied taking into systefinterest model account. Proposed requiremerdeiis
based on a tree model containing one kind of nodetao types of link as shown in Fig. 4. A nodedldms an
expectation expressed considering a level of detilabstraction level at which the requiremengipressed.
For an abstract level (by convention, more absteetl is from level 0), it is described by usingtural lan-
guage. At a high level of detail i.e. when systerrterest models can be expressed, highlightiegbdhaviour,
the functions or the structure of it, a node isitdescribed by using CREDI modelling language preeskin the
next part. This permits to handle modeling variapparameters and predicates extracted from thelsod
Link between two nodes can be from first from ondeN from a level D and a node N’ from level imrnagely
more precise D+1 (respecting level notation coneejt In this case, link are associated to a coomhd func-
tion by using logical operators in order to desettbe role of the node N’ in the verification oéthode N. This
allows decomposing a requirement in more precigairements with potential alternatives. A final rodle. a
requirement from the more elevated level of detaih be:
— Temporized: requirement depends from time evolution
— A-temporal: requirement characterizes only thecstme or the functional aspect of the system withiaking
into account the time.
— Simple requirement: cause is empty and effectd&e tchecked in every case.
— Composite requirement: cause and effect are irtagac

Requirement node: from Causal typed relation
interviews, expertise, - Implication
standards, norms, - Equivalence
reference models:) - Influence
node(i.1) . .
combining nodes by logical
B node(i.2) — o operators:
| pase _ R J.nocel | Default: node(i,1) O
’94""1’8']{'8"’ node(ikl) ~ = s node(i,2) C... O node(i,k)
NOde:Trom = oge(ik2) — /R> node(i.k) described
models K by using
T node(i.k.n) By using knowledge
lNatural coming from the
By using knowledge (anguige) experts: cannot be
expertise
extracted from model: P ‘formally’ proved
UPSL .
contextualised and
Isre- provable
written L L l
Conceptual Test Temporal
Graphs scenarios Logic

B P — § .
% Cuam Jadex "4
Fig. 4: requirement model principles and use ‘7

An example of a requirements tree is proposed gn Fifollowing a classification into requirementmncerning
models, system-of-interest or project management.

CREDI property modelling language

A property is defined as knowledge (an expectatorgquirement or attribute definition and valudlichk char-
acterizes a (set of) given model(s) of a systenmiafrest and which must be respected in order $arasr the
quality of this (these) model(s) during the project

Ferfarmance
Security)
Safety |
B

Deployment

MHon functional

taintenakbilite |

Constraints

requirement 1 |
requirement 2

recuirerment i1

requirementi.? \]
requirement . '

requirement .z

) _ Functional ¢
requirerment i — |
reguirement ij — |

Svstem
requirements

reguirement i.m | |
recuirernent k |

__Functional Induced
requirements f
¢solutionichoicey /|

Mlon functional

. Functional

Stakeholders, | |
_ Mon functional * |

svstems
contributors | |
requirements

Process

Team and organisation Managerment systerm /|

Stakeholder

Coherence

Relsvance

Semantic

Pragrmatic

Fig. 5: example of a classical requirements tresste
A property aims then to model as formally as pdesiequirements and to support different provingrapches:

« Formally proof (that is to say respected by the ehdry using formal proof mechanisms — model chegkin
theorem proving - taking into account the mode#igstem characteristics as far as possible).

» Expertise

* Used in complement with other V&V techniques basednodel execution i.e. simulation or emulation.

They are several property modelling languages sisctemporal logics (LTL, TCTL...) (Emerson 1990)R$L
(Accelera 2004) for example. They remain much spiseid and require some expertise to use. The gfoal
CREDI property modelling language is then to enagarus to take into account more precisely the aihas
property presented above and to make more effettteie usage.

A property is described in a first way by usingumat language to be more comprehensive. It is thedelled

by a composite entity made up with a group of caidenoted C) linked up with a group of effectsn(uied E)
via a parameterised relation (denoted R). Thidioelahip formally describes how the set of causésddces a
modification on the whole set of effects R by redjpgy the conditions described in R. R may be fawombi-
nation of the following types:

« Logical: the occurrence of C implies or is equivdl® the occurrence of E,

« Temporal: the occurrence of C must get there bejosgrictly after the occurrence of E,

« Emerging: C describes how different objects caeratt in order to bring out E which may be obsee/alh a
lower level of abstraction but not directly dedbtifrom the causes,

» Influence: C and E are linked together and eadhetwo sets depends on the other one. The irfRierust
be interpreted as beneficial or harmful.

The degree D (optional) of shrewdness allows udefine the pointed out abstraction level of the etambn-
cerned by the property. Last the set | (optioreldmposed of of a set of criterium which can belweated for
characterising the thruhfulness of the propertyc@se of simulation or for guiding the expertiSEde reader
will find more detailed model and grammar of CREB®delling language in (Chapurlat 2007). Last, gpprty
can be from different types:

« Static (a-temporal): consistency and coherencéh@fmiodel regarding its meta model, coherence betwee

models (inter views and inter languages) and betieels of detail D, requirements independent ftone
evolution. In this case, a proof tool has been ibpexl (Chapurlat et al. 2009) around Conceptuapfsa
(Sowa 1984) with the Cogitant tool (Genest 2003)

* Dynamic (time / timed / event): behavioral expdota about the model bahaviour taking into accdbat

operational semantics of the modeling languages-til@pendent requirements about the expected bemavio
of the system-of-interest. In this case, formalgbrmols (Yahoda 2005) are used (for example, UPPAA

(Behrmann et al. 2004), SMV (McMilan 2000), SPINP(N 2005), COQ (Coq 2005) or STEP (Bjorner et al.
1998)).

Properties Reference Repository

Using formal languages to specify properties remdifficult and sometimes even impossible withougyé ef-
fort and practice from the engineer. The PropeReference Repository aims then:

To dispose of existing formulation of properties. These ones can be extracted from other studrey Tan
also be considered as generic. A generic propedgribes facts which are commonly recognised avaat
for given systems or models. It is formulated aigh level of abstraction independently of any scbpt de-
pending from system-of-interest modelling languageshe repository remains dedicated. The usersean
lect, instanciate and set a generic property adogrieb the model elements to be analyzed beforgipgat

by using modelling variables, parameters and petégcissued from the model. The CREDI modelling lan
guage is used to describe properties: using ordyl@mguage ensures consistency and uniquenessre$ea-
tation in the PRR.

To structure the properties into relevant user-defined classifications. Theostory is then considered as a
knowledge data base gathering and mapping a dahdamental properties making these ones avaifable
the engineer to support and organize its work. bastpository remains dedicated to a given systemef
ling framework.

The repository can isolate three classes of prigsert

Axiomatic property: property allowing to take into consideration pafta norm or standard, physical law,
etc. which may then be considered as an axiom afledge having to be checked absolutely.

System property: property which describes (part of) system requeets such as deployment constraints,
geographical, architectural, performance, depetitighlionfidentiality, maintainability, etc.

Model property: property that characterizes the meta model (laggunodel-ling employee), the structure or
semantic behavioural rules of the model itselfs Igenerally known properties of liveliness, safestgcurity
and reachability. It allows for example to ensuagistency, synchronization, sequence, boundacje cy

A PRR is built and validated by a group of expeftshe system-of-interest modelling framework byngsfor
example different approaches to help the emergehceew properties: Brain Storming, Brain writingjna
map, five questions....

UPSL implementation approach

For each domain, a USPL framework must be develépinving the approach described in the next.

1 - Establish the needs of modeling (concepts and relationships to be added to egistyistem modelling lan-

guages. This consists to define the purpose ofyktem-of-interest models analysis, its objectitedimit the

time required for the study (min, max), to achievkevel of confidence, to analyse only models cehee...),

the used terms, concepts and relationships bettieooncepts and to formalize them in a meta-m@diiL

class diagram). This metamodel will be completedakyng into account potential modelling framewdnkulti

languages and multi views which is used and theametlel of each used modelling language. Some exampl

of models may be also required by experts in chafghis task. Last, the existing skills abilitiesactors hav-

ing to handle checking tools, the chosen toolsthrd input.output modelling language have to beaeined.

The metamodel is then enriched again with the CREBBtamodel and validated with the help of the etsper

2 - Egtablish functional requirements for handling properties taking into account the area covered. This in-

duces to consider the following questions:

* How the actors wish to manipulate and prove progs?t

* What interfaces actors suggest?

* What are modeling envrionement having to be takémaccount (e.g. GMF in Eclipse, GME, CORE...)8 It
then necessary to provide a meta model or gramfdanguage input / output of each modeler

« What are checking tools to take evidence into astéeig. UPPAAL, STEP, Spin...)? As for the moatelli
environment, a meta model or grammar of languagetihoutput of each tool is required.

3 - Structuring / Organizing / Formalizing data and manipulation mechanisms highlighted & grevious
questions. .

4 — Developing rewriting mechanisms of system-of-interest enriched modelling languaged CREDI lan-
guage to input language of chosen prover. Thisigedy respecting MDA principles as summarisedign &

Meta Meta S

Model (UML) ~ Conformto ...,

Conform to

________________ Proof language
Modelling language !
onform to

Rewritin ;
grules i
model i v Lol

Meta (generic) |1

model

3 Rewritin ;
e 2 y==2 | grules 3
e i s i| model |}
Conceptual ! Sy : 3 (specific) i Conform to
enrichments = L . - : :,
Conform to ! — T — [‘ Proof tool
Modelling tool [= e \ ¢ i| Rewritin | | .

s | | ' A4 | ogrules | .

A = ! i =N il model | I
model y - “ " " == : (specific) 3

-

- - g Checking
Modelling view Transformation
(System/Properties)

Fig. 6: model transformation principles

4 - Proceed with development of a dedicated domain platfornrSUP

5 - Design the dedicated PRR.

Once the framework elements (modelling languageistement, PRR and re-writing mechanisms) and the do
main platform UPSL available, a model study capédormed following 6 steps:

< Framing: this requires system modelling by using the dritmodelling languages and choosing the models
having to be checked. The objectives of the veifn study are then defined taking into accounjqmt ob-
jectives and constraints.

» Specifying properties by selecting and reusing (i.e. interpret, setytaxj properties in the PRR or specify-
ing them by using classical textual editor allowtndhandle CREDI model.

e Analyze:
0 By proof. In this way, system-of-interest modelsg rewritten into Conceptual Graphs (xxx) in cake

static properties or to model checkers if the m@#ahantic corresponds to the input language offaiblein case
of dynamic properties.

0 By running the model if the modelling language pdeg an operational semantic i.e. a set of ruléis-de
ing how the model can be simulated or emulatedhi;wway, a study under development concerns theldg-
ment of a Multi Agents Platform based on JADEX (Rie&t al. 2009)

0 By expertise if a property cannot be checked frofaremal manner but can be verified by analysing the
model behaviour and structure by an expert.

Conclusion and per spectives

UPSL offers different concepts and mechanismsdaatbe helpful for SE project verification tasksl garticu-

larly in Model Based System Engineering contexte Tiin works currently under development consistdo

fine interest and to apply these concepts on Syaktl MODELICA, to define rewriting mechanisms to rabd
checker UPPAAL and to set up a Reference Propdreg®sitory for interoperability requirements (Chidat et

al. 2009, Mallek et al. 2009).

Bibliography

(Accelera 2004) Accelera Formal Verification Tedali Committee (FVTC), PSL Property Specificationngaage Reference
Manual, Version 1.1 (see http://www.eda.org/vi2004

(Balci et al. 2002) O.balci, W.Ornwsby, Expanding dorizons in verification, validation and acctetibn research and practice,
2002 Winter Simulation Conference, E. Yilcesan, CHen, J. L. Snowdon, and J. M. Charnes (éditeR@),

(Behrmann et al. 2004) Behrmann G., David A., Larke G., A tutorial on Uppaal, Department of CongruScience, Aalborg
University, Denmark, 2004

(Bérard et al. 2001) Bérard B., Bidoit M., Finkel, Aaroussinie F., Petit A., Petrucci L., SchnoeheéPh. McKenzie P. Systems and
Software verification: model checking techniqued &ols, Springer, 2001

(Bjorner et al. 1998) N.Bjorner, Z.Manna, H.SipriidJribe, Deductive Verification of Real-Time Systeftdsing STeP, Technical
Report STAN-CS-TR-98-1616, Computer Science DepamtpStanford University, 1998

(CDT 2007) System Engineering guide book for tramgion systems, California Department of Trantg@n, Division of re-
search and transportation, 2007

(Chapurlat 2007) Chapurlat V., Vérification et dation de modeles de systémes complexes : applicatia modélisation d'entre-
prise, Research Habilitation Direction manusctipontpellier University, France, 2007 (in French)

(Chapurlat et al. 2009) Chapurlat V., Roque M.gilaperability constraints and requirements formaldetling and checking
framework. Advances in Production Management Syst&RMS 2009, Bordeaux, France, 2009

(Coq 2005) The Coq Proof Assistant - Reference Man(ersion 8.0, Janvier 2005 (see http://coq.ififja

(Easterbrook 2002) S.Easterbrook, Introduction ¢onfal Modeling in Requirements Engineering, 10tintiinternational Re-
quirements Engineering Conference, in Essen, Gernza02

(Emerson 1990) E.Emerson, Temporal and modal Iétandbook of Theoretical Computer Science, volMBI Press. Editeur: J.
van Leeuwen ISBN 0262220393, pp. 955-1072, 1990

(Genest 2003) D.Genest, CoGITaNT Version-5.1 : Refee manual (in French), 2003

(INCOSE 2007) INCOSE, System Engineering (SE) Han#bWorking Group, System Engineering Handbook, Maw To »,
Version 3.1, Guide For All Engineers, 2007

(ISO 2002) ISO/IEC 15288: 2002(E) — Systems enginge- System life cycle processes

(Love et al. 2000) G.Love, G.Back, Model Verificatiand Validation for Rapidly Developed Simulatidiodels: Balancing Cost
and Theory, Project Performance Corporation, 2000

(Mallek et al. 2009) Mallek S., Daclin N., ChapuylBeveloping interoperability in collaborative pess: an Anticipative Effects-
Driven Approach, Advances in Production Managensystems, APMS 2009, Bordeaux, France, 2009

(McMilan 2000) K.L.McMilan, The SMV System for SMVVersion 2.5.4: SMV Manual (see http://www-
2.cs.cmu.edu/~modelcheck/smv.html), 2000

(NASA 2001) NASA, VV&A Recommended Practices Guidslossary, 2001

(Rebai & al. 2009) A.S.Rebai, V.Chapurlat, Systererioperability analysis by mixing system modellangd MAS: an approach,
ATOP/AAMAS, International Workshop on Agent-baseechnologies and applications for enterprise interapility, Eighth
International Joint Conference on Autonomous Agénkdulti-Agent Systems, Budapest, Hungary, 2009

(RPG 2001) RPG, V&V Techniques, RPG reference Danirfaccessible a I'adresse http://vva.dmso.ni)SO (Defence Mod-
elling and Simulation Office), 2001

(Sowa 1984) J.F.Sowa, Conceptual structures: irdtom processing in mind and machine, New York (A.5 Addison-Wesley,
1984

(SPIN 2005) SPIN Primer and Reference Manual, Amdesley, ISBN 0-321-22862-6, 2005

(Van Lamsweerde 2002) A.Van Lamsweerde, Formal iBpation: a Roadmap, The Future of Software Engiimgy, A. Finkelstein
(ed.), ACM Press, 2002

(Van lamsweerde et al. 1998) Van Lamsweerde, Ariniat, R. & Letier, E. Managing conflicts in goafiven requirements engi-
neering. IEEE Transactions on Software Engineedgl1): 908-926, 1998.

(Yahoda 2003) Formal verification tools overviewbagste (see http://anna.fi.muni.cz/yahoda/), 2003

