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Abstract: In this paper, we wish to find a minimal data size in order to better conceptualize
industrial maintenance activities. We based our study on data given by a Synthetic Hidden
Markov Model. This synthetic model is intended to produce real industrial maintenance
observations (or “symbols”), with a corresponding degradation indicator. These time series events
are shown as Markov chains, also called “signatures”. The production of symbols is generated by
using a uniform and a normal distribution. The evaluation is made by applying Shannon entropy
on the HMM parameters. The results show a minimal number of data for each distribution
studied. After a discussion about the use of a new “Sliding Window” of symbols usable in a
Computerized Maintenance Management System, we developed two industrial applications and
compare them with the best optimized “signature” previously found.

Keywords: Hidden Markov Models, Shannon entropy, model optimization, learning algorithm,

predictive maintenance.

1. INTRODUCTION

Hidden Markov Models (HMM) can be used for modeling
complex systems. In this study, we use this kind of model
to detect faults in systems. Nowadays, industrial robots
operating in a stochastic environment need upstream fault
detection in order to prevent any breakdowns. Indeed, it
is conceivable for poorly maintained equipment to break
down, bringing the entire production line to a halt. In
order to help maintenance experts, we built a Synthetic
Model based on a reference model, which fits real in-
dustrial processes (Vrignat et al. (2010)). We showed in
Vrignat et al. (2010), that this reference model provided
good failure prediction. This Synthetic Model produced
observations or symbols, commonly used in a CMMS ! . It
also produced degradation indicators: S1, S2, S3 and S4
depicted in Figure 1. We have previously found in Roblés
et al. (2012) the best HMM topology usable in industrial
maintenance (see Figure 2).

Most published papers aim to optimize stochastic prob-
lems by using the principle of minimum Cross-Entropy
(Shahid (2012) and Botev et al. (2007)). Indeed, this
method introduced first by Rubinstein (1997) is usually
applied to combinatorial optimization problems (e.g. the

1 A Computerized Maintenance Management System is an infor-
mation database about maintenance operations. This information is
intended to make a decision support for maintenance experts.

traveling salesman problem).

In this paper, we attempt to find the minimal number of
data necessary to have the best relevancy of the HMM
parameters. In order to find this minimal data size, we try
to find a maximum entropy value or a convergence entropy
limit on from the synthetic industrial databases. Different
kinds of distributions are tested: uniform and normal dis-
tributions. Assessment of the produced observations was
made by using criteria usually used in model selection: the
Shannon Entropy.

The structure of this paper is as follows: in Section 2 we
outline HMM, present methods to assess the relevancy
of model parameters and describe the Synthetic Model
design. The results are given in Section 3 and discussed
in Section 4. Finally the findings are compared with two
industrial applications, in Section 4.3.

The purpose of this study is to find a minimal data size
given by a Synthetic Hidden Markov Model. We would
like to show that our minimal size choice meets objectives
in the improvement of preventive maintenance and break-
down prediction, in the industrial sector.

2. METHODOLOGY
2.1 Hidden Markov Model

In this study, we chose HMM to describe industrial main-
tenance events. An HMM consists of a hidden stochastic



process modeled by a Markov chain and an observable
stochastic process. This kind of model is represented by
automaton with hidden states which consists of unobserv-
able variables (Rabiner (1989), Fox et al. (2006)). These
unobservable variables represent the system status to be
modeled. Only output variables are observable. Moreover,
this automaton is intended to generate observation se-
quences from its outputs (see an example of model topol-
ogy depicted in Figure 1). Indeed, we attempted to assess
the minimal data number for a HMM use.

HMM is characterized by:

State number;

Number of distinct observation symbols per state,
observation symbols corresponding to the physical
output of the system being modeled;

Distribution probability of state transitions;
Distribution probability of observation symbols;
Initial states distribution.

HMM .
Symbol production

Symbol production

1: SEC
2: OT
3: NTR
4: OBS
5.

Fig. 1. A four-state discrete HMM. A discrete HMM
consists of a hidden stochastic process modeled by
a Markov chain and an observable stochastic process
whose states dependent on the hidden process. This
model is a stochastic automaton. It represents the
degradation level (S1 to S4) of an industrial process.
S1 state: the system is stopped. S4 to S2 state:
progressive degradations of the process. This is the
general case, when all transitions are possible. This
kind of automaton produces observation sequences or
symbols. These symbols represent the Markov chain
given by a maintenance database.

Markov assumption  States prediction is not made any
more accurate by adding a priori knowledge of the infor-
mation, i.e. all useful information for future prediction is
contained in the present state of the process (i.e. it’s a
Markov chain of order 1).

P(Xpy1=j41X0, Xq,..., X =1) = (1)
P(Xn-H = J|Xn = Z)
We used this assumption to take into account several
orders of a Markov chain.

Definitions of a discrete HMM  We describe here the
variables used in an HMM:

e Let N, be the number of workable hidden states and
S = {51, 82,...,5n}, the set of states. Let ¢, be the
value of this variable at time t;

e The modeled process must match first-order Markov
assumption (see Eq. 1);

e Let T, be the full number of observation symbols and
let X = {1, z2,...,z7}, observations sequence of the
modeled process;

o Let A = {a;;}, distribution probability of state
transitions where:

aij = Pqes1 = sjlar = 5:) @)
1<, <N,

e Let B = {b;(m)} distribution probability of observa-
tion symbols in j state, where:

bj(m) = P(X; = zm|q: = s5)

1<j<N 1<m<T, )
where X4, is the value of observation variable at time
t.
e Let m = {m;}, initial states distribution where:
=Pl =s) 1<i<N, (4)

e HMM will be set as: (A, B, 7).

2.2 Shannon entropy

This criterion was used in Robleés et al. (2012), to evaluate
relevancy of the “signatures” and find the best model
studied. In this paper, we calculated the Shannon entropy
in the 1%¢ order Markov chains for simulated data and real
industrial data.

Shannon entropy is a function which calculates the in-
formation rate contained in an information source. This
source can be a text written in any language, an electrical
signal or an unspecified electronic file.

Entropy definition  Shannon entropy is defined in Cover
and Thomas (1991) as follows:

H(S)=—> Pilogy, P, (5)
=1

P; is the average probability to find the i symbol in S.

The two principles of entropy maximization in Agouzal
and Lafouge (2008) are the following:

e The principle of probabilities assignment to a distri-
bution when we haven’t enough information on it;

e For all probability distributions that satisfy the con-
straints, we choose the one which has the maximum
entropy according to Shannon.

The 2°¢ principle is used in Chandrasekaran et al. (2007)
for model selection, and Arminjon and Imbault (2000)
for building even more accurate models, by adding infor-
mation. Our approach consists in calculating the entropy
evolution in order to find a maximum entropy or an asymp-
totic entropy value. The minimal number of data will then
appear for different distributions and for the industrial
cases.

Beyond model selection, we used these two principles
to eliminate outlier symbols. Indeed, some observations
might be due to human input mistake. We therefore elim-
inated these symbols an try to find a convergence entropy
with the others.

The convergence entropy value (L) is defined by the limit
of entropy function of S, as S (the observations serie)
approaches +oo:



lim H(S)=L (6)

S——+oo
2.3 Fvaluation process

We have used synthetic model to produce about 1000
data events. These simulated symbols, according to real
industrial process, are obtained by using uniform and
normal distribution. Correlatively, we produced states for
others topologies by using the same process. Afterwards,
these states are used to compare states models. Insofar
as states are obtained by different learning and decoding
algorithms:

o Baum-Welch learning (Baum et al. (1970)), decoding
by Forward Variable (Rabiner (1989)),

e Segmental K-means learning (Juang and Rabiner
(1990)), decoding by Viterbi, (Viterbi (1967)).

HMM 2
Symbol production

Symbol production

{

@<

Fig. 2. The four-state Hidden Markov Model. S1 to S4
represent the degradation levels. S1: the system is
stopped. S4 to S2: progressive degradations of the
process. The production of symbols represents the
Markov chain given by a maintenance database. \;
are failure rates and pu; are repair rate. m is the
initialization matrix.

2.4 HMM topology

We used the HMM topology (see Figure 2), represented
by automata with four oriented states. These stochastic
automata, depicted in Figure 2, represent the degradation
level of an industrial process, S4 to S1. {S4, S3, S2} states,
when the process is running (“RUN”), and {S1} state, when
the process is stopped (“STOP”). With this topology we
need to go through all states (S2 and S3) to go from a high
level of availability (S4) to a low level of availability (S1).
S1 is the state of a breakdown.

Regular temporal sampling is a requisite to have a
Markov process. Both the simulated process and industrial
database must have the same temporal sampling. We can
therefore use Markov modeling.

2.5 Simulated industrial CMMS

Nowadays, many industrial factories use preventive
maintenance. Maintenance operators consign their ac-
tions and observations in a centralized database. We show
an example of such database in Table 1. For instance, sym-
bols “PM, OT, SP, ...” could characterize maintenance
activities carried out on industrial processes. We recall the
meaning of selected symbols resulting from observations

Name Date Ope. Cd IT N° Code
Dupond  11/01/2007  Lubrication PM 20 1 9
Dupond  11/01/2007  Lubrication PM 20 2 9
Dupond  12/01/2007  Lubrication SEC 30 3 5
Dupond  12/01/2007  Lubrication PM 30 4 5
Dupond  13/01/2007  Padlock PM 10 5 6
Dupond  13/01/2007 Padlock NTR 30 6 5
Dupond  16/01/2007  Lubrication SP 90 8 1
Dupond  19/01/2007 Padlock oT 10 9 3

Table 1. Example of recorded events from a
maintenance database.

given in Table 2. The “SP” symbol corresponds to a stop
of production units: process state = “STOP” in Table 2. It
is a critical condition, which our research aims to minimize.
Process state = “RUN” when production units are running
without failure.

We conceptualized this kind of maintenance here by using

N°Obs. Symbols Interventions type

SP (Troubleshooting / Stop Production)
SM (Setting Machine)

oT (Other)

OBS (Observation)

PM (Preventive Maintenance)

SEC (Security)

PUP (Planified Upgrading)

CM (Cleaning Machine)
PMV (Preventive Maintenance Visit)
NTR (Nothing to report)

Process states
STOP
Table 2. Symbolic coding system of mainte-
nance interventions.

a Synthetic Model presented in the next paragraph
(§2.6) to simulate this real industrial environment. We
chose “\;” (failure rate) and “u;” (repair rate) of HMM
parameters (Vrignat et al. (2010)), to match the mainte-
nance register as closely as possible (Table 1).

2.6 Conceptual Synthetic Model

We designed a Synthetic Model with Matlab by using four-
state oriented HMM presented in Figure 2. This choice is
discussed in the paragraph § 4.

HMM topology only depends on matrix elements, where
{a;;} # 0 (If all matrix elements are different from zero, we
have a “total connectivity matrix”). The transition matrix
(A) has been specified in Vrignat et al. (2010) by:

0.500 0.250 0 0.250

0.100 0.070 0.500 0.330 (7)
0 0.005 0.495 0.500 |
0 0 0.001 0.999

The Synthetic Model built sequences of data (also named
“signatures”) by using 2 discrete distributions:

A=

e Uniform distribution: This law makes it possible to
model random variables uniformly distributed, as
shown in Figure 5. A random variable of n values

{x1,29,..., 2y} has equal probability of:
1
P(xi)ie{l,.“,n} = n (8)



e Normal distribution (Laplace — Gauss): This law
makes it possible to model many distributions of
random variables. This distribution is defined by the
probability density function ¢ : R — RY, where
parameter u is expectation, and o the standard
deviation (See Figure 4):

1
p(x) = ﬁe 9)

We used these symbol sequences as a Markov chain (see
Table 3), to model the degradation level of a process.

_l(z=p)?
=

1
2

PM  PM |

SEC | PM PM | NTR | NTR | SP |
Table 3. Sequence of a message from mainte-
nance database.

We will now describe the entropy assessment specifications
used for data analysis (see Figure 3). We produced 12
sequences distributed among:

e 1000 2-tuple (Symb_U, State_U), for a Uniform dis-
tribution (Figure 5),

e 1000 2-tuple (Symb_ N, State N), for a Normal law
(Figure 4).

Each sequence ends with a production stop (symbol SP in
red).

Synthetic
model

Hidden

Markov
odel

(Reference)

Synthetic Model
generated 12 sequences
of 1000 2-tuple using
Uniform distributions:
(Symb_U,State_U).

Entropy assessement of

(Symb_U,State _U).

N

Synthetic Model
generated 12 sequences
of 1000 2-tuple using
Normal distributions:
(Symb_N,State_N).

Entropy assessement of

(Symb_N,State N).

pd

Minimal data size by using entropy.

Fig. 3. Entropy assessment specifications: The Syn-
thetic Model generated 1000 (Symbols, States) by
using the normal and the uniform distribution
((Symb_U, State_U) and (Symb_N, State_N)).
All 2-tuple are distributed among the 12 sequences.
The number of the estimated 2-tuple are assessed to
determine the minimal size of data by using Shannon
Entropy.

States / Symbols, Normal distribution

150

1
goonm
ENEANNISN

50

o - L J]] M J:i:l
SP SM oT OBS PM

Fig. 4. The Normal distribution of symbols, given by
Hidden Markov Model reference. Stop Production
symbol (SP) represents the state 1 of the model.
(OT) symbol (OTher) is the most representative of
state 2. (SECurity) is the most representative of state
3, Preventive Maintenance Visit (PMV) is the most
representative of state 4.

SEC PUP CM PMV  NTR

States / Symbols, Uniform distribution

EODONm
ENFRENIEN

100
|
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Fig. 5. The Uniform distribution of symbols, given by
Hidden Markov Model reference.

2.7 Industrial applications

This approach involves optimizing the signatures of any
industrial CMMS by using HMM topologies. Furthermore,
our minimal data size would be able to provide best
decision support for organizing daily maintenance and
would help experts to improve maintenance activities.

Context:  The industrial cases consist in studying a con-
tinuous process of bread production (HARRYS) and a
glass factory (Arc International). When any failure oc-
curs on the subsystems of the line, that involves stop-
ping the entire production line (a lot of bakery products
are wasted). Therefore, preventive maintenance has been
scheduled to prevent such cases. The factory operates all
over the year, without any interruption. Teams are orga-
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Fig. 6. Shannon Entropy evolution according to the num-
ber of data. We used the Synthetic Model to simulate
data. These simulated symbols are obtained by using
uniform and normal distribution. Entropy is maxi-
mum for 152 symbols with the Normal distribution
and for 88 symbols with the Uniform distribution.

nized in shifts. Every maintenance operation or problem
in the process must be recorded in the CMMS database.
According to the internal maintenance policy, one day
sampling is chosen. This regular temporal sampling makes
it possible to be in a Markov process situation. We made
comparisons with data for a period of 2 years. We had
more than 2000 records from their database (see Table 1).

3. RESULTS
8.1 Synthetic model

The Synthetic Model is used to simulate data and produce
symbols by using the Normal and the Uniform distribu-
tion. Shannon entropy evolution, depicted in Figure 6,
shows a maximum for 152 symbols with the Normal
distribution and for 88 symbols with the Uniform dis-
tribution. We also outlined an entropy value limit for each
distributions, which shows that the number of symbols
necessary to describe the maintenance activities is finite.

3.2 Entropy in industrial applications

Data comes from the HARRYS and the ARC International
CMMS database. Data was collected from the years 2005
to 2007. Shannon entropy evolution according to the
number of data is depicted in Figure 7. This figure shows
an asymptotic value for both industrial cases. The entropy
reached the asymptotic value with 180 symbols for the
HARRYS database and with 160 symbols for the ARC
International database.

160 symbols

180 symbols

0.15
|

Entropy evolution

0.10
|

0.05
|

—— ARC Internationnal (2 years)
—— HARRYS (2 years)

T T T T T
0 500 1000 1500 2000

Number of symbols

Fig. 7. Shannon Entropy evolution according to the num-
ber of data from the industrial cases: HARRYS and
ARC International. The industrial data was collected
from the years 2005 to 2007. Entropy obtained the
asymptotic result for 180 symbols with the HARRYS
database. The asymptotic value reach its maximum
with 160 symbols for the ARC International database.

4. DISCUSSION

The purpose of the study was to find a minimal data size
given by a Synthetic Hidden Markov Model and compare
findings with the two industrial applications.

4.1 Maximum entropy

Without a priori knowledge, we evaluated the relevancy
of the signatures by measuring the Shannon entropy. We
considered this signature as a 1%! order Markov Chain. As
we showed in Robles et al. (2011), Shannon entropy is a
good indicator for model relevancy.

We found a maximum entropy value and results Figure 6
show an asymptotic value for the two distributions. The
first peak of the entropy value for the uniform distribution
is reached with 88 symbols and with 152 symbols for the
normal distribution. These values are also the asymptotic
entropy limit. It means that a finite number of symbols is
necessary to describe the maintenance activities.

For predictive maintenance use, we could establish a “slid-
ing window” containing the number of symbols previously
found.

4.2 Sliding Window

The sliding window (see Figure 8) contains the minimal
number of symbols found in Figures 6 and 7, where
entropy is maximal. All symbols inside the sliding windows
would be able to provide decision support for organizing



daily maintenance and would help experts to schedule
maintenance activities. We found the minimal size of data
that should be implemented in the learning algorithms,
in order to re-evaluate the model. Indeed, at the sample
time “Now”, we do not know the next observation. With
this sliding window, we would be able to estimate the next
hidden states. The main purpose of the sliding window is
to provide an update of the models occasionally.

Old symbols Minimal number of symbols

Next symbols

(unknown)

Sliding Window
{00 PSP NTR[TOT| OBS [ PM [SEC [PUP[CM | [ PM [NTR[ CM

Estimating system degradation (hidden states)

1 (estimated)

i time

now

Fig. 8. The sliding window contains the minimal number of
symbols, where entropy is maximal. All symbols inside
the sliding windows would be able to provide decision
support for organizing daily maintenance and would
help experts to schedule maintenance activities. The
main purpose of the sliding window is to provide an
update of the models.

4.8 Confrontation of the Synthetic Model with two industrial
applications

To confront the Synthetic Model with the real industrial
cases, we compared data from industrial CMMS, with data
given by the Synthetic Model: Symb_U and Symb_ N (see
Figure 3). The two tested distributions are the normal and
the uniform ones.

In the two industrial cases studied (see the industrial con-
texts in Section 2.7.1), 160 symbols for ARC international
and 180 symbols for HARRYS are necessary to find the
maximum entropy value. As we see in Figure 6 and 7,
the “industrial” entropy has almost the same evolution
than the synthetic model. Moreover, the first maximum
entropy value corresponding to the asymptotic entropy
value. With these two numbers found, we could establish
a minimal sliding window in order to optimize the main-
tenance activities in industrial sector. We showed that we
can find a minimal number of data to properly estimate
a model. Indeed these sliding windows from industrial
database should determine the best number of symbols
to conceptualize a predictive maintenance model.

4.4 Conclusion

The approach outlined in this study should be replicated
with other subject areas with other models, as well as at
other entropy orders. In an operational phase of industrial
production, we will then re-evaluate the model regularly
insofar the scheduled actions will change the behavior of
the system.
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