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Abstract

The aim of this paper is to analyze the uncertainty quantification in a voice
production mechanical model and update the probability density function cor-
responding to the tension parameter using the Bayes method and experimental
data. Three parameters are considered uncertain in the voice production me-
chanical model used: the tension parameter, the neutral glottal area and the
subglottal pressure. The tension parameter of the vocal folds is mainly respon-
sible for the changing of the fundamental frequency of a voice signal, generated
by a mechanical/mathematical model for producing voiced sounds. The three
uncertain parameters are modeled by random variables. The probability density
function related to the tension parameter is considered uniform and the prob-
ability density functions related to the neutral glottal area and the subglottal
pressure are constructed using the Maximum Entropy Principle. The output of
the stochastic computational model is the random voice signal and the Monte
Carlo method is used to solve the stochastic equations allowing realizations of
the random voice signals to be generated. For each realization of the random
voice signal, the corresponding realization of the random fundamental frequency
is calculated and the prior pdf of this random fundamental frequency is then
estimated. Experimental data are available for the fundamental frequency and
the posterior probability density function of the random tension parameter is
then estimated using the Bayes method. In addition, an application is per-
formed considering a case with a pathology in the vocal folds. The strategy
developed here is important mainly due to two things. The first one is related
to the possibility of updating the probability density function of a parameter,
the tension parameter of the vocal folds, which cannot be measured direct and
the second one is related to the construction of the likelihood function. In gen-
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eral, it is predefined using known pdf. Here, it is constructed in a new and
different manner, using the own system considered.

Key words: Uncertainty quantification; Voice production; Probabilistic
model; Bayes method

The production of voiced sounds (vowels are particular cases of voiced sounds)
starts with the contraction-expansion of the lungs causing an airflow (due to the
difference of pressure between the lungs and the mouth), which will induce the
auto-oscillation of the vocal folds (located in the larynx). After passing through
the glottis and due to the movement of the vocal folds, the airflow is transformed
into pulses of air which are generated (quasi)-periodically. The pressure signal
created is so called the glottal signal, which will further be filtered and amplified
by the vocal tract to generate the sound we hear. The fundamental frequency
of the voice signal, which is the frequency of the vocal folds oscillation, is the
inverse of the period of the glottal signal. As the glottal signal is not exactly
periodic, for each time interval corresponding to a complete cycle of the vocal
folds, a different fundamental frequency is associated with. This variation of the
fundamental frequency in a voice signal is known in the literature as jitter (see
for instance Titze, 1994). So, the voice signals constitute a stochastic process
and the fundamental frequency will be a random variable.

Some authors have modeled the vocal folds dynamics, mainly in a deter-
ministic way (Koizumi et al., 1976; Lous et al., 1998; Zhang et al., 2005). One
of these models is the well-known model proposed by Ishizaka and Flanagan
(1972) and it will be used here because it has provided a simple and effective
representation of the system for studying the underlying dynamics of voice pro-
duction.

In the present work, the Ishizaka and Flanagan model is used as the voice
production mechanical model. The three main parameters of this model are
the tension parameter, the neutral glottal area and the subglottal pressure. It
should be noted that the tension parameter of the vocal folds is mainly respon-
sible for the changing of the fundamental frequency of a voice signal, generated
by a mechanical/mathematical model for producing voiced sounds. These three
parameters are considered as uncertain parameters. The propagation of uncer-
tainties in the voice production mechanical model is carried out using the Monte
Carlo method. For each realization of the random voice signal, the correspond-
ing realization of the random fundamental frequency is calculated and the prior
pdf of this random fundamental frequency is then estimated. Two experimental
validations have been presented using experimental data available for the funda-
mental frequency, one considering a normal voice and another considering a case
with pathology in the vocal folds. The posterior probability density function of
the random tension parameter, which cannot be easily measured, is estimated
using the Bayes method. The likelihood function is construction using the own
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model considered for producing voice.

1. Brief description of the Ishizaka and Flanagan model

A diagram of the model is shown in Fig 1. The dynamics of the system is

Figure 1: Two-mass model of the vocal folds.

given by Eqs. (1) and (2) (Cataldo et. al., 2008, 2009):

ψ1(w)u̇g + ψ2(w)|ug|ug + ψ3(w)ug +
1

c̃1

∫ t

0

(ug(τ) − u1(τ))dτ − y = 0 (1)

[M ]ẅ+ [C]ẇ + [K]w + h(w, ẇ, ug, u̇g) = 0 (2)

where w(t) = (x1(t), x2(t), u1(t), u2(t), ur(t)), the functions x1 and x2 are the
displacements of the masses, u1 and u2 describe the air volume flow through the
(two) tubes that model the vocal tract and ur is the air volume flow through
the mouth. The subglottal pressure is denoted by y and ug is the function that
represent the glottal pulses signal. The output radiated pressure function pr is
given by pr(t) = ur(t)rr , in which rr = 128ρvc

9π3y2

2

, ρ is the air density, vc is the

sound velocity, and y2 is the radius of the second tube. The description of the
other quantities that appear in the equation and a detailed discussion of the
model, including its implementation, can be found in (Cataldo et al., 2009).

The process to generate a voiced sound is complex and its modeling involves
a lot of quantities which should be controlled. Here, the interest is in the
changing of the fundamental frequency. The three main parameters responsible
for these changings, as discussed in (Ishizaka and Flanagan, 1972; Cataldo et
al., 2008, 2009) are described in the following:

ag0: the area at rest between the vocal folds, called the neutral glottal area.

y: the subglottal pressure.
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q: the tension parameter which controls the fundamental frequency of the
vocal-fold vibrations because vocal fold abduction and tension are the
main factors used by a speaker to control phonation. In order to control
the fundamental frequency of the vocal folds, parameters m1, k1, m2, k2,
kc are written as m1 = m̂1/q, k1 = q k̂1, m2 = m̂2/q, k2 = q k̂2, kc = q k̂c,

in which m̂1, k̂1, m̂2, k̂2, k̂c are fixed values.

These three parameters are considered as uncertain and are then modeled by
random variables. Consequently, the output of the model is a random voice
signal which is then a stochastic process. It means that for each realization
of these three random variables, a realization of the random voice signal is
produced.

Figures 2 and 3 show the blocks diagram with the deterministic system and
the corresponding stochastic system.

Figure 2: Deterministic system.

Figure 3: Corresponding stochastic system.

The prior probability density functions of these random variables which
model the uncertain parameters will be constructed by using the Maximum
Entropy Principle (Jaynes, 1957a, 1957b) which consists in maximizing the en-
tropy (Shannon, 1948) from Information Theory, under the constraints defined
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by the available information. The entropy measures the level of uncertainties
and is written as

S(pX) = −
∫ +∞

−∞

pX(x) ln ( pX(x) ) dx , (3)

in which pX is the pdf of the random variable X . The constraints defined by
the available information are written as

∫ +∞

−∞

pX(x)dx = 1 and

∫ +∞

−∞

pX(x)gi(x)dx = ai , i = 1, . . . ,m , (4)

in which a′is are usable information related to the functions g′is. According
to the first part of the principle, only probability distributions consistent with
the constraints given should be used. However, an infinity of probability dis-
tributions compatible with the constraints may exist. The second part of the
principle states the way to choose one among the many pdf’s that satisfy the
constraints, the (unique) pdf that maximizes the entropy.

2. Prior probabilistic model of the uncertain parameters

The three parameters q, ag0 and y are modeled by the random variables
Q, Ag0 and Y , respectively. Consequently, parameters m1, k1, m2, k2, and
kc become random variables denoted by M1, K1, M2, K2, and Kc given by
M1 = m̂1/Q, K1 = Qk̂1, M2 = m̂2/Q, K2 = Qk̂2, and Kc = Qk̂c. Since no
information is available concerning cross statistical moments between random
variables Q, Ag0 and Y , they will be considered independent. Taking into
account the sensitivity of the fundamental frequency with respect to Q (Ishizaka
and Flanagan, 1972; Cataldo et al., 2009), we propose to construct a Bayesian
posterior for the pdf of Q using experimental data. In such a case the prior pdf
of Q is chosen as a uniform pdf on an adapted interval [a , b] and is then written
as

pprior
Q (q) = 1[a ,b](q)

1

b− a
. (5)

Concerning the construction of the prior pdf of random variables Ag0 and Y ,
we use the Maximum Entropy principle. The details about the construction of
the pdf’s related to these two random variables can be found in (Cataldo et al.,
2009) and their expressions are recalled hereinafter. The pdf for Ag0 is written
as

pAg0
(ag0) = 1]0,+∞[e

−λ0−λ1ag0
−λ2(ag0

)2 , (6)

where λ0, λ1 and λ2 are the solution of the three following equations,

∫ +∞

−∞

pAg0
(ag0) dag0 = 1 , (7)
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∫ +∞

−∞

ag0 pAg0
(ag0) dag0 = Ag0 , (8)

∫ +∞

−∞

a2g0 pAg0
(ag0) dag0 = c , (9)

in which Ag0 = E{Ag0} and where the second-order moment c of random vari-

able Ag0 is expressed as c = A2
g0

(
1 + δ2Ag0

)
with δAg0

the coefficient of variation

of Ag0. The pdf for Y is written as

pY (y) = 1]0,+∞[(y)
1

Y

(
1

δ2Y

) 1

δ2
Y × 1

Γ (1/δ2Y )

(
y

Y

) 1

δ2
Y

−1

exp

(
− y

δ2Y Y

)
, (10)

in which Y = E{Y }, where δY = σY /Y is the coefficient of variation of the
random variable Y such that 0 ≤ δY < 1/

√
2 with σY the standard deviation

of Y and where Γ(α) =

∫ +∞

0

tα−1e−tdt is the Gamma function.

In (Cataldo et al., 2009) the prior pdf of Q was also constructed using the
Maximum Entropy Principle and it was a Gamma distribution. The idea here
is to start from an uniform distribution for Q and then update the pdf using the
Bayes method and experimental data. It is also important to remember that Q
is a tension factor and it is very difficult to be measured directly. This justifies
the methodology presented here to find its corresponding pdf.

3. Stochastic system with the prior and the posterior probabilistic

models and experimental validation

The fundamental frequency f0 can be written as f0 = M(q, ag0, y) in which
the nonlinear mapping (q, ag0, y) 7→ M(q, ag0, y) is not explicitly known but is
implicitly defined by solving Eqs. (1) and (2). As explained above, the stochas-
tic system is deduced from the deterministic one substituting q, ag0 and y by
the random variables Q, Ag0 and Y . Consequently, the random fundamental
frequency F0 is the random variable defined by F0 = M(Q,Ag0, Y ). A real-
ization of the random fundamental frequency is calculated as the inverse of the
period of the realization of the random voice signal.

3.1. Experimental data considering a normal voice

In order to validate the development presented here, voice signals produced
by one person have been analyzed and their statistics have been compared with
simulations. A voice signal corresponding to a sustained vowel /a/ has been
recorded from one person and νexp = 1800 frames were obtained from this signal,
each one with 0.01s of length. For each frame, the corresponding fundamental
frequency has been calculated. The experimental data are then made up of the
νexp values f exp,1

0 , . . . , f
exp,νexp

0 of the fundamental frequency. So the experimental
pdf of the fundamental frequency, denoted by pexp

F0
(f0), is estimated using the

kernel density estimation method (nonparametric statistics, see for instance [?
] with the νexp values f

exp,1
0 , . . . , f

exp,νexp

0 . Figure 4 shows the experimental pdf
of the fundamental frequency deduced from the experimental data.
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Figure 4: Experimental probability density function f0 7→ p
exp
F0

(f0) for the fundamental fre-
quency

3.1.1. Posterior pdf of Q

The estimation of the posterior pdf, ppost
Q , of the random variable Q us-

ing experimental data for the fundamental frequency and the Bayes method
is discussed below. The posterior pdf ppost

Q is then given by the Bayes formula
(Bernardo and Smith, 2000; Kaipio and Somersalo, 2005; Congdon, 2007; Carlin
and Louis, 2009),

p
post
Q (q) = Lbayes(q) p

prior
Q (q) , (11)

in which Lbayes(q) is the likelihood function defined by

Lbayes(q) =

∏νexp

ℓ=1 pF0|Q(f
exp,ℓ
0 |q)

E{∏νexp

ℓ=1 pF0|Q(f
exp,ℓ
0 |Qprior)}

. (12)

3.1.2. Posterior pdf of F0

The posterior pdf, ppost
F0

, of the random variable F0 (fundamental frequency)
is then given by

ppost
F0

(f0) =

∫

R

pF0|Q(f0|q) p
post
Q (q)dq , (13)

in which pF0|Q(f0|q) is the conditional pdf of F0, given Q = q. Using Eqs. (11)
and (13) yields,

ppost
F0

(f0) = E{Lbayes(Qprior) pF0|Q(f0|Qprior)} . (14)
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3.1.3. Computational aspects

Let Qprior(θ1), . . . , Q
prior(θν) be ν = 100 independent realizations of the ran-

dom variable Qprior for which the prior pdf is p
prior
Q and with ν sufficiently large.

The posterior pdf ppost
F0

(f0) of the random variable F0 is then estimated by

ppost
F0

(f0) ≃
1

ν

ν∑

ℓ=1

Lbayes(Qprior(θℓ) pF0|Q(f0|Qprior(θℓ)) . (15)

The prior pdf is defined by Eq. (5) with a = 0.65 and b = 0.70. This interval
has been chosen in taking into account the values of the experimental data of
the fundamental frequency.

Figure 5 illustrates how to obtain the conditional pdf pF0|Q(f0|Qprior(θℓ)).

Figure 5: Generation of pF0|Q(f0|Qprior(θℓ)).

For each fixed realization Qprior(θℓ) with ℓ = 1, . . . , ν, the conditional proba-
bility density function pF0|Q(f0|Qprior(θℓ)) is calculated with the kernel density
estimation method, with ν′ = 100 independent realizations F0(θ

′
1|θℓ), . . . , F0(θ

′
ν′ |θℓ)

of random variable F0 calculated with the stochastic model for q = Q(θℓ) and for
the ν′ independent realizations (Ag0, Y )(θ′1), . . . , (Ag0, Y )(θ′ν′) of vector-valued
random variable (Ag0, Y ), using the prior probability model defined in Sec-
tion 2. The calculations are carried out with the following values: Ag0 = 0.05,
δAg0

= 0.03, Y = 750Pa and δY = 0.03. These values were chosen according
the following procedure:

Step 1: The values of q, ag0 and y are identified to obtain the experimental
value f0 = 123.56 of the fundamental frequency with the deterministic
model. This is the mean value of the experimental fundamental frequency.
Then, a trial method, iterative, is used to identify the parameters, with
a cost function constructed taking the square of the difference between
fundamental frequencies (experimental and simulated). The initial values
of q, ag0 and y for solving the identification problem are considered the
typical values obtained from the literature. The values obtained here were
q = 0.67, ag0 = 5× 10−2m2 and y = 750Pa.

Step 2: The values of ag0 and y found in step 1 are then used as the mean
values Ag0 and Y of the random variables Ag0 and Y . Therefore, the

values considered here were mAg0
= 5× 10−2m2 and mY = 750Pa.
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Step 3: With the mean values defined in step 2, the values of δAg0
and δY

are identified, with q maintained fixed, to obtain the experimental value
δF0

= 0.008 of the coefficient of variation of the fundamental frequency
with the stochastic mechanical model. The values obtained here were
δAg0

= 0.03 and δY = 0.03.

Step 4: The values of mAg0
, δAg0

, mY and δY are maintained and the values
of Q varied from 0.65 up to 0.7, in order to obtain all the experimental
frequencies, from the minimum value up to the maximum one.

Figure 6 displays the ν graphs of functions f0 7→ pF0|Q(f0|Qprior(θℓ)) for ℓ =
1, . . . , ν and the graph of f0 7→ pexp

F0
(f0). Then, for each value q = Q(θℓ),

Figure 6: Graphs of conditional pdf’s f0 7→ pF0|Q(f0|Qprior(θℓ)) for ℓ = 1, . . . , ν (one hundred

thin lines). Graph of pdf f0 7→ p
exp
F0

(f0) of the fundamental frequency (dotted line).

Lbayes(q) is calculated with Eq. (12) and the denominator is estimated by

E{
νexp∏

ℓ=1

pF0|Q(f
exp,ℓ
0 |Qprior)} ≃ 1

ν

ν∑

ℓ=1

νexp∏

ℓ=1

pF0|Q(f
exp,ℓ
0 |Qprior(θℓ) . (16)

The posterior pdf ppost
Q (q) is estimated using Eq. (11) and the posterior pdf

p
post
F0

(f0) of random fundamental frequency is estimated using Eq. (15). Figure 7

displays the graph of the prior pdf q 7→ pprior
Q (q) and the graphs of posterior

pdf q 7→ p
post
Q (q) for the values νexp = 1, 100, 500 and 1800 obtained using the

procedure described above (step 1 up to step 4). It should be noted that the
posterior pdf of Q has a narrow support centered to the value 0.675. Then, the
pdf of Q was updated from experimental data. In order to validate this result,
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Figure 7: Graph of the prior pdf q 7→ p
prior
Q

(q) and graph of the posterior pdf q 7→ p
post
Q

(q) for

the values νexp = 1, 100, 500 and 1800.

the posterior pdf of F0 will be constructed and compared with the pdf corre-
sponding of the experimental data. Figure 8 shows the graph of the posterior
pdf f0 7→ ppost

F0
(f0) of the random fundamental frequency for the values νexp = 1,

100, 500 and 1800 and the graph of the experimental pdf f0 7→ pexp
F0

(f0). It can

Figure 8: Graph of the posterior pdf f0 7→ p
post
F0

(f0) of the random fundamental frequency for

the values νexp = 1, 100, 500 and 1800 and graph of the experimental pdf f0 7→ p
exp
F0

(f0).
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be noted that when 500 values are used, the posterior pdf of F0 is very near
of the experimental pdf and for 1800 values, they are almost the same, which
confirms the methodology presented (see Figure 9, in which the pdfs are showed
separately).

Figure 9: Graph of the posterior pdf f0 7→ p
post
F0

(f0) of the random fundamental frequency for

νexp = 1800 and graph of the experimental pdf f0 7→ p
exp
F0

(f0).

3.2. Experimental data considering a case of a pathology in the vocal folds

An application was performed considering signals from a person with a nodu-
lus in the vocal folds. In this case, a voice signal also corresponding to a sus-
tained vowel /a/ has been recorded considering νexp = 440 frames, each one with
0.01s of length. Figure 10 shows the probability density function obtained from
the experimental values of the fundamental frequency.

It can be observed that the curve obtained has a different shape from the
one obtained with a normal voice.

The procedure followed here to find the posterior pdf of Q is the same used
in the case of a normal voice. The values obtained from step 1 up to step 4 are
described in the following:

Step 1: The values of q, ag0 and y were identified to obtain the experimental
value f0 = 193.02 of the fundamental frequency with the deterministic
model, here the mean value of the fundamental frequency for the patho-
logical case. Again, a trial method, iterative, was used to identify the
parameters. And also the cost function constructed takes the square of
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Figure 10: Experimental probability density function f0 7→ p
exp
F0

(f0) for the fundamental
frequency considering the pathological case.

the difference between fundamental frequencies (experimental and simu-
lated). The values obtained here were q = 0.76, ag0 = 5 × 10−2m2 and
y = 1000Pa.

Step 2: The mean values considered for the random variables Ag0 and Y were
then mAg0

= 5× 10−2m2 and mY = 1000Pa.

Step 3: The experimental value for the coefficient of variation of the fundamen-
tal frequency was δF0

= 0.01. And the values obtained for the coefficients
of variation of the other random variables were δAg0

= 0.03 and δY = 0.02.

Step 4: The values of mAg0
, δAg0

, mY and δY were maintained and the values
of Q varied from 0.750 up to 0.775.

In this case, the prior pdf of Q was constructed considering a = 0.750 and
b = 0.775 (from step 4) and the same procedure as for the normal voice was
used in order to find the posterior pdf of Q. Figure 11 shows the graph of
prior pdf q 7→ pprior

Q (q) and the graphs of posterior pdf q 7→ ppost
Q (q) for νexp = 1,

100 and 440. The posterior pdf of Q has a narrow support centered in 0.762.
It can be observed that the graphs constructed with 100 experimental values
and with 440 experimental values are almost the same. In order to validate
the results, Figure 12 is constructed showing the graphs of the posterior pdf
f0 7→ ppost

F0
(f0) of the random fundamental frequency for νexp = 1, 100 and 440

and the graph of the experimental pdf f0 7→ pexp
F0

(f0). The pdfs constructed
with 440 experimental values and the corresponding pdf constructed directly
from the experimental data are very near. It is important to note that there
is a difference between the pdfs, which did not happen when a normal voice
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Figure 11: Graph of the prior pdf q 7→ p
prior
Q

(q) and graph of the posterior pdf q 7→ p
post
Q

(q)

for the values of νexp = 1, 100 and 440.
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Figure 12: Graph of the posterior pdf f0 7→ p
post
F0

(f0) of the fundamental frequency for the

values νexp = 1, 100 and 440 and graph of the experimental pdf f0 7→ p
exp
F0

(f0).

was considered. However, one can say that the methodology discussed here is
very well applied because in the case of a pathology the pdf constructed from
experimental data has really a particular shape.

4. Conclusions

A methodology to perform the experimental identification of an uncertain
mechanical model for producing voice is proposed. Such a model is mainly sen-
sitive to three system parameters, and in particular, to the tension parameter
which controls the fundamental frequency of the vocal-fold vibrations. This
methodology developed to solve a statistical inverse problem consists in con-
structing the prior stochastic models of the three parameters and then to use
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the Bayes method to construct the posterior stochastic model of the random
tension parameter (which cannot be measured directly) using the observable
quantity of the system which is the fundamental frequency. The likelihood
function is constructed using the system considered to produce voice. The pos-
terior stochastic model of the random fundamental frequency has been deduced
and all the useful numerical formula which allows the methodology to be imple-
mented for the calculations has been presented. Two experimental validations
have been presented using experimental data, one considering a normal voice
and another considering a case with pathology in the vocal folds. The method-
ology applied showed to be efficient in both cases. The validated posterior
stochastic mechanical model then allows voice signals to be simulated.
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