
HAL Id: hal-00839759
https://hal.science/hal-00839759v3

Submitted on 25 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Power of Oracle Omega? for Self-Stabilizing
Leader Election in Population Protocols

Joffroy Beauquier, Peva Blanchard, Janna Burman, Oksana Denysyuk

To cite this version:
Joffroy Beauquier, Peva Blanchard, Janna Burman, Oksana Denysyuk. On the Power of Oracle
Omega? for Self-Stabilizing Leader Election in Population Protocols. 18th International Symposium
on Stabilization, Safety, and Security of Distributed Systems (SSS 2016), Nov 2016, Lyon, France.
�hal-00839759v3�

https://hal.science/hal-00839759v3
https://hal.archives-ouvertes.fr

On the Power of Oracle Ω? for Self-Stabilizing

Leader Election in Population Protocols

Jo�roy Beauquier1, Peva Blanchard2, Janna Burman1, and Oksana Denysyuk3

1 LRI, Université Paris-Sud, Orsay, France, {beauquier, burman}@lri.fr
2 LPD, EPFL, Lausanne, Switzerland, peva.blanchard@epfl.ch

3 University of Calgary, Canada

Abstract. This paper considers the fundamental problem of self-stabilizing
leader election (SSLE) in the model of population protocols. In this model
an unknown number of asynchronous, anonymous and �nite state mobile
agents interact in pairs. SSLE has been shown to be impossible in this model
without additional assumptions. This impossibility can be circumvented for
instance by augmenting the system with an oracle (an external module pro-
viding supplementary information useful to solve a problem). Fischer and
Jiang have proposed solutions to SSLE, for complete communication graphs
and rings, using the oracle Ω?, called the eventual leader detector. In this pa-
per, we investigate the power of Ω? on larger families of graphs. We present
two important results.
Our �rst result states that Ω? is powerful enough to allow solving SSLE over
arbitrary communication graphs of bounded degree. Our second result states
that, Ω? is the weakest (in the sense of Chandra, Hadzilacos and Toueg) for
solving SSLE over rings. We also prove that this result does not extend to
all graphs; in particular not to the family of arbitrary graphs of bounded
degree.

Keywords: networks of mobile agents, population protocols, self-stabilization, leader
election, oracles

1 Introduction

There are fundamental problems in distributed computing that are subject to impos-
sibility results. The impossibility can be related to the system asynchrony, limited
resources, the presence of failures, their type, or other general conditions. For in-
stance, the consensus problem has been shown to be impossible in asynchronous
systems even with only one crash fault [18]. An elegant approach for circumventing
the impossibility of consensus is the abstraction known as failure detectors intro-
duced by Chandra and Toueg [13]. A failure detector can be viewed as an oracle,
which provides to the system nodes a supplementary information about failures
allowing to solve a given problem. A fundamental issue is to determine the ora-
cle providing the minimum amount of information for solving the problem. Among
the di�erent failure detectors proposed to solve consensus in the conventional asyn-
chronous communication model, the eventual leader elector Ω, has been proven to be

2 Jo�roy Beauquier, Peva Blanchard, Janna Burman, and Oksana Denysyuk

the weakest [12]. Informally, that means that it supplies the minimum supplementary
information necessary to obtain a solution.

In this work, we consider a very basic communication model called population
protocols. It has been introduced as a model for large networks of tiny, anonymous
and asynchronous mobile agents communicating in pairs [1]. The network has an
unbounded but �nite population of agents, each with only O(1) states, implying that
the size of the population is unknown to the agents. With such minimal assumptions,
the impossibility results are not a surprise. For example, consensus is impossible in
such a model even without any crash failure [6]. Another impossibility concerns a
problem called self-stabilizing leader election (SSLE), which consists in electing a
leader (a distinguishable agent) in a self-stabilizing way. Self-stabilization [16] is a
framework for dealing with transient state-corrupting faults and can be viewed as
allowing the system to start from an arbitrary con�guration. In this work, we focus
on this fundamental problem SSLE that is shown to be impossible in many di�erent
cases [4,17,5].

The eventual leader elector Ω of Chandra and Toueg and other classical fail-
ure detectors cannot be used with population protocols, because they assume that
the network nodes have unique identi�ers, unavailable to anonymous bounded state
agents in population protocols. Many other previous oracles, like those proposed for
anonymous models (e.g., [9]), cannot be used in population protocols either, e.g.,
because they assume �nite, but unbounded memory depending on the size of the
network (see a survey in [6]).

To deal with this issue, Fischer and Jiang introduced a new type of oracle, called
the eventual leader detector [17] and denoted by Ω?. Instead of electing a leader, like
Ω, Ω? simply reports to each agent an (eventually correct) estimate about whether
or not one or more leaders are present in the network (see Sec. 2 and 3.2 for a formal
de�nition). This oracle does not require unique identi�ers and has additional dras-
tic di�erences. One of the important di�erences is motivated by the self-stabilizing
nature of the SSLE problem considered in [17]. While Ω is designed to circumvent
impossibility related to crash faults, Ω? is designed to deal with state-corrupting
faults. Thus, while Ω is related to a failure pattern and is independent of the pro-
tocol using it, Ω? interacts with the protocol, providing information related to the
system con�gurations reached during the execution. With Ω?, there is some sort of
feedback loop: the outputs of the oracle in�uence the protocol; and conversely, the
protocol in�uences the outputs of the oracle. Yet, there are some features in common
with Ω. Both Ω and Ω? are unreliable in the sense that Ω? can make errors, that
is, to give false information at some point and at some agents, and is only required
to eventually provide correct answers, similarly to Ω. Finally, such weak guarantees
allow both Ω and Ω? to be implemented in practice using timeouts and other fea-
tures often found in real systems (more details about the implementation of Ω? can
be found in [17]; about Ω, in [13]).

To demonstrate the power of Ω?, [17] gives a uniform solution to SSLE using
Ω? in complete communication graphs and rings. Uniform means that the solution

On the Power of Ω? for SSLE in Population Protocols 3

is independent of the actual communication graph; the agents only know the graph
family to which the graph belongs. Our focus here is on uniform solutions too.1

Contribution. In this work, we investigate the power of Ω?. In particular, in Sec. 4,
we show that its power exceeds considerably the case of rings and complete graphs
(concerned in [17]). In fact,Ω? is su�cient for solving SSLE on almost all graphs, the
only restriction being that the graph must be connected (obvious) and of bounded
degree (related to the model requirement of bounded agent states).

In Sec. 5, we show that SSLE allows to implement Ω? on rings. Coupled with
the fact that Ω? is su�cient for solving SSLE on rings [17], this implies that any
oracle strong enough for solving SSLE on rings can be used to implement Ω? (on
rings); i.e. Ω? is the weakest oracle for solving SSLE on rings.

In contrast with the previous case, we also show that over arbitrary communica-
tion graphs of bounded degree (and more generally, over non-simple graph families),
SSLE is not equivalent to Ω? (Th. 2). Intuitively, our results mean that, whereas
SSLE and Ω? are not equivalent over certain families of graphs, this di�erence
disappears on rings due to the strong communication constraints imposed by this
topology.

For modeling oracles and problems, and obtaining relations between them, we use
the formal framework proposed in [5] and adapted to population protocols (see Sec.
2.2). In this framework, there is no di�erence between an oracle and a problem, so
the relations that we exhibit can equivalently be viewed as relations between oracles
or between problems. Note that the framework and our results concern an extremely
general class of oracles.

Related Work. Being an important primitive in distributed computing, leader
election has been extensively studied in various other models, however much less in
population protocols. Because of model di�erences, previous results do not directly
extend to the model considered here. For surveys on these previous results in other
models, refer to [4,17]. In the following, we mention only the most relevant works to
SSLE in population protocols.

It was shown, e.g. in [2,8], that fast converging population protocols can be
designed using an initially provided unique leader. Moreover, many self-stabilizing
problems on population protocols become possible given a leader (though together
with some additional assumptions, see, e.g., [4,7]). Nevertheless, SSLE is impossible
in population protocols over general connected communication graphs [4]. Yet, [4]
presents a non-uniform solution for SSLE on rings. A uniform algorithm for rings
and complete graphs is proposed in [17], but uses Ω?. Recently, [10] showed that
at least n agent states are necessary and su�cient to solve SSLE over a complete
communication graph, where n is the population size (unavailable in population
protocols). For the enhanced model of mediated population protocols (MPP) [19],
it is shown in [20] that (2/3)n agent states and a single bit memory on every agent
pair are su�cient to solve SSLE. It is also shown that there is no MPP that solves

1 This is in contrast to the non-uniform solutions given to SSLE over rings in [4] that
does not use oracles.

4 Jo�roy Beauquier, Peva Blanchard, Janna Burman, and Oksana Denysyuk

SSLE with constant agent's state and agent pair's memory size, for arbitrary n.
In [11], versions of SSLE are considered assuming Ω? together with di�erent types
of local fairness conditions. In the current paper, we consider only global fairness
(classical for population protocols).

In [5], it is shown that the di�culty in solving SSLE in population protocols
comes from the requirement of self-stabilization. Indeed, [5] presents a solution for
arbitrary graphs with a uniform initialization without any oracle. Then, [5] proposes
also a solution for SSLE over arbitrary graphs, but the protocol uses amuch stronger
oracle. This oracle can be viewed as a composition of two copies of Ω?, where one
copy is used to control the number of (stationary) leaders and another one to control
the number of moving tokens. There, tokens are used for eliminating supplementary
leaders. In this paper, we prove that, surprisingly enough, there is no need to control
the number of tokens and that a single instance of Ω? is enough (at least, in the case
of bounded degree graphs). Finally, [5] shows that SSLE and Ω? are not equivalent
over complete communication graphs. Here, we extend this result to so called non-
simple families of graphs (Th. 2).

2 Model and De�nitions

2.1 Population Protocol

We use here the de�nitions of [1,4,17] with some slight adaptations. A communication
graph is a directed graph G = (V, E) with n vertices. Each vertex represents a �nite-
state sensing device called an agent, and an edge (u, v) indicates the possibility of
a communication (interaction) between u and v in which u is the initiator and v
is the responder. The orientation of an edge corresponds to this asymmetry in the
communications. In this paper, every graph is weakly connected.

A population protocol A(Q, X, Y,Out, δ) consists of a �nite state space Q, a �nite
input alphabet X, a �nite output alphabet Y , an output function Out : Q → Y and
a transition function δ : (Q × X)2 → P(Q2) that maps any tuple (q1, x1, q2, x2)
to a non-empty (�nite) subset δ(q1, x1, q2, x2) in Q2.1 A (transition) rule of the
protocol is a tuple (q1, x1, q2, x2, q

′
1, q
′
2) s.t. (q′1, q

′
2) ∈ δ(q1, x1, q2, x2) and is denoted

by (q1, x1)(q2, x2) → (q′1, q
′
2). The protocol A is deterministic if for every tuple

(q1, x1, q2, x2), the set δ(q1, x1, q2, x2) has exactly one element.
A con�guration is a mapping C : V → Q specifying the states of the agents in

the graph, and an input assignment is a mapping α : V → X specifying the input
values of the agents. An input trace T is an in�nite sequence T = α1α2 . . . of input
assignments. It is constant if α1 = α2 = An input trace can be viewed as the
sequence of input values given to the agents from the outside environment.

We now de�ne agents' interactions (called here actions) involving the input val-
ues. An action is a pair σ = (e, r) where r is a rule (q1, x1)(q2, x2) → (q′1, q

′
2)

1 The input alphabet can be viewed as the set of possible values given to the agents from
the outside environment, like sensed values, output values from another protocol or from
an oracle. The output alphabet can be viewed as the set of values that the protocol itself
outputs outside. X and Y are both the interface values of the protocol.

On the Power of Ω? for SSLE in Population Protocols 5

and e = (u, v) is a directed edge of G, representing a meeting of two interacting
agents u and v. Let C,C ′ be con�gurations, α be an input assignment, and u, v
be distinct agents. We say that σ is enabled in (C,α) if C(u) = q1, C(v) = q2 and

α(u) = x1, α(v) = x2. We say that (C,α) goes to C ′ via σ, denoted (C,α)
σ−→ C ′, if σ

is enabled in (C,α), C ′(u) = q′1, C
′(v) = q′2 and C

′(w) = C(w) for all w ∈ V−{u, v}.
In other words, C ′ is the con�guration that results from C by applying the transition
rule r to the pair e of two interacting agents. We write (C,α)→ C ′ when (C,α)

σ−→ C ′

for some action σ. Given an input trace Tin = α0α1 . . . , we write C
∗−→ C ′ if there is

a sequence of con�gurations C0C1 . . . Ck s.t. C = C0, C
′ = Ck and (Ci, αi)→ Ci+1,

for all 0 ≤ i < k, and we say that C ′ is reachable from C given the input trace Tin.
An execution is a sequence of con�gurations, input assignments and actions

(C0, α0, σ0) (C1, α1, σ1) . . . such that for each i, (Ci, αi)
σi−→ Ci+1. In addition, the

sequence satis�es global fairness if, for every C,C ′, α s.t. (C,α) → C ′, if (C,α) =
(Ci, αi) for in�nitely many i, then C ′ = Cj for in�nitely many j. This de�nition
together with the �nite state space assumption, implies that, if in an execution there
is an in�nitely often reachable con�guration, then it is in�nitely often reached [3].
Global fairness can be viewed as an attempt to capture the randomization inherent
to real systems, without introducing randomization in the model.

The output function Out : Q → Y is extended from states to con�gurations
and produces an output assignment Out(C) : V → Y de�ned as Out(C)(v) =
Out(C(v)), given a con�guration C. The output trace associated to the execution
E = (C0, α0, σ0)(C1, α1, σ1) . . . is given by the sequence Tout = Out(C0)Out(C1)
In the sequel, we use the word trace for both input and output traces.

2.2 Behaviour, Oracle, Problem and Implementation

The de�nitions below are adopted from [5] and di�erent from the ones in [4,17].
They are required to obtain a proper framework for de�ning oracles and establishing
relations between them and/or between problems.1 In particular, this framework is
real time independent, which in turn provides self-implementable oracles, in contrast
with the traditional failure detectors [14,15]. In short, in this framework, we de�ne
a general notion of behaviour, which is a relation between input and output traces.
A problem and an oracle are de�ned as behaviours. Then, to compare behaviours,
we de�ne a partial order relation using an abstract notion of implementation by a
population protocol using a behaviour.

In the following, a communication graph G is supposed to be �xed and is some-
times implicitly referenced.

A schedule is a sequence of edges (representing meetings). An input or an output
trace T = α0α1 . . . is said to be compatible with the schedule S = (u0, v0)(u1, v1) . . .
if, for every meeting i, for every agent w di�erent from ui and vi, αi(w) = αi+1(w).
That is, any two consecutive assignments of a compatible trace can di�er only on
the values of the two meeting (neigboring) agents. This de�nition is natural since
an agent can only be activated during a meeting, and it makes no sense to allow a

1 In [17], where Ω? has been introduced, the oracle is de�ned in a rather informal way.

6 Jo�roy Beauquier, Peva Blanchard, Janna Burman, and Oksana Denysyuk

change in inputs which cannot be detected by the agents. Note also that the output
trace (associated with an execution with a schedule S) is necessarily compatible with
S by de�nition.

A history H is a couple (S, T) where S is a schedule and T is a trace compatible
with S. Depending on the type of trace, a history can be either an input or an
output history. A behaviour B over a family of graphs F is a function that, for a
graph G ∈ F and a schedule S on G, maps every input history Hin with schedule S
to a set B(G,Hin), or simply B(Hin), of output histories with the same schedule S.
The output histories of B(Hin) are the legal output histories of B given Hin.

In a natural way, behaviours can be composed in series, parallel, or by self-
loop. For instance, in the serial composition, an output trace of a behaviour is the
input trace of another one. Formally, consider two behaviours B1, B2 over the same
family F of graphs, with input alphabets X1, X2 (for the input traces), and output
alphabets Y1, Y2 (for the output traces). In the following, TZ denotes a trace with
values in Z.

Let S be a schedule on G ∈ F . If Y1 = X2 = Z, the serial composition B =
B2 ◦B1 is the behaviour over F , with alphabets X1, Y2 s.t. (S, TY2

) ∈ B(S, TX1
) i�

there exists a trace TZ compatible with S, s.t. (S, TZ) ∈ B1(S, TX1) and (S, TY2) ∈
B2(S, TZ).

The parallel composition B = B1 ⊗ B2 is the behaviour over F , with alphabets
X1 × X2, Y1 × Y2 s.t. (S, TY1 , TY2) ∈ B(S, TX1 , TX2) i� (S, TY1) ∈ B1(S, TX1) and
(S, TY2) ∈ B2(S, TX2).

If X1 = U×V and Y1 = U×W , the self-loop composition B = SelfU (B1) on U is
the behaviour over F , with alphabets V,W , s.t. (S, TW) ∈ B(S, TV) i� there exists a
trace TU compatible with S s.t. (S, TU , TW) ∈ B1(S, TU , TV). As already mentioned,
the self-loop composition is necessary to describe the interactions between a protocol
and an oracle.

Given a (possibly in�nite) set U of behaviours, a composition of behaviours in U
is de�ned inductively as either a behaviour in the family U , or the parallel, serial or
self-loop composition of compositions of behaviours in U .

The behaviour B2 is called a sub-behaviour of B1 if they are de�ned over the
same family of graphs F , and for every graph G ∈ F , for every history H on G,
B2(G,H) ⊆ B1(G,H).

Given a population protocolA with input alphabetX and output alphabet Y , the
behaviour Beh(A) associated to the protocol A is the behaviour with input alphabet
X, output alphabet Y s.t. (S, TY) ∈ Beh(A)(S, TX) i� there exists an execution of
A with schedule S, input trace TX and output trace TY .

A problem and an oracle are simply de�ned as behaviours. Now, we are ready
to de�ne what it means for a protocol A to implement a behaviour (or solve the
problem) B using an oracle O. The population protocol A implements the behaviour
B (or solves the problem B) using the behaviour O if there exists a composition B∗

involving the behaviours O and Beh(A), s.t. B∗ is a sub-behaviour of B.

On the Power of Ω? for SSLE in Population Protocols 7

We say that a behaviour B1 is weaker than a behaviour B2 over a graph family
F , denoted by B1 4F B2, if there exists a self-stabilizing1 population protocol that
implements B1 using B2 over F . The two behaviours are equivalent over F , denoted
B1 'F B2, if B1 4F B2 and B2 4F B1. In the case where B2 is a problem and B1 is
an oracle, B1 is the weakest oracle for implementing B2 over F . The reason is that,
because B1 4F B2, any oracle that can be used to implement B2, can be used to
implement B1, and thus, B1 is weaker than any such oracle.

3 Speci�c Behaviours

3.1 Eventual Leader Election Behaviour ELE
ELE is de�ned with the input alphabet {⊥} (i.e., no input) and the output alphabet
{0, 1} such that, given a graph G and a schedule S on G, a history (S, T) ∈ ELE(S)
if and only if the output trace T has a constant su�x T ′ = ααα . . . and there exists
an agent λ such that α(λ) = 1 and α(u) = 0 for every u 6= λ. In other words, λ is
the unique leader. Notice that for all our protocols, there is an implicit output map
that maps a state to 1 if it is a leader state, and to 0 otherwise.

In our framework, the problem of Self-Stabilizing Leader Election (SSLE) con-
sists in de�ning a population protocol that solves ELE using another behaviour (if
necessary) and starting from arbitrary initial con�gurations.

3.2 Oracle Ω?

Informally, Ω? (introduced in [17]) reports to agents whether or not one or more
leaders are present. Thus, it does not distinguish between the presence of one or
more leaders in a con�guration (of a protocol composed with Ω?).

Formally, Ω? is simply a relation between input and output traces with binary
values. The input and output alphabets are {0, 1}. Given an assignment α, we denote
by l(α) the number of agents that are assigned the value 1 by α. Given a graph G
and a schedule S on G, (S, Tout) ∈ Ω?(S, Tin) if and only if the following conditions
hold for input and output traces Tin and Tout. If Tin has a su�x α0α1 . . . such that
∀i, l(αi) = 0, then Tout has a su�x during which at each output assignment at least
one agent is assigned 0. If Tin has a su�x α0α1 . . . such that ∀s, l(αs) ≥ 1, then Tout
has a su�x equal to the constant trace where each agent is permanently assigned
the value 1. Otherwise, any Tout is in Ω?(S, Tin).

Ω? is easy to implement in practice, provided that timeouts are available. Each
leader periodically broadcasts a "leader signal". Each agent resets the timer when it
receives the signal. If the timeout expires, the agent sets a �ag to false, signaling the
absence of leader. The �ag is reset to true when a "leader signal" is received. In a
chaotic environment in which communications are bad or nodes are malfunctioning,
the implemented oracle can give incorrect answers, making the system unstable. But,
eventually, after the environment has regain its consistency, Ω? will give a correct
information and the system will stabilize.

1 In this paper, we are only interested in comparing oracles as far as self-stabilization is
concerned.

8 Jo�roy Beauquier, Peva Blanchard, Janna Burman, and Oksana Denysyuk

4 SSLE using Ω? over Graphs with Bounded Degree

In this section, we show that, for any given integer d, the behaviour ELE can be
implemented in a self-stabilizing way using Ω? over the family of weakly connected
graphs with a degree bounded above by d. Precisely, we present a population proto-
col Ad and prove that the behaviour given by the composition Self(Beh(Ad) ◦Ω?)
is a sub-behaviour of ELE . We �rst give a solution over the family of strongly con-
nected graphs with bounded degree. The transformation of this solution into one over
weakly connected graphs with bounded degree is formally presented in the appendix
(Sec. A.2, Th. B).

Fig. 1. Serial composition Beh(Ad) ◦Ω? followed by a self-loop composition.

We �rst brie�y recall how the Fischer and Jiang's protocol for rings [17] works.
As said before, the information given by Ω? does not allow to distinguish between
the presence of a single or more leaders. Thus, a leader should try to eliminate
other leaders, while avoiding a scenario where all leaders are eliminated in�nitely
often (without any help from the oracle). On a ring, a strategy performing this goal
is relatively simple to install. Leaders send tokens, circulating on the ring in one
direction and send also shields, circulating in the opposite direction. Shields absorb
tokens when they meet, but a leader that receives a token is eliminated. When there
remains a single leader, it sends a token and a shield (in opposite directions) and
the ring structure ensures that the token cannot avoid the shield, so that a unique
leader cannot eliminate itself.

The situation is completely di�erent on arbitrary graphs, since tokens and shields
can take di�erent routes. This requires a completely di�erent management for a
single leader not eliminating itself. As the agents are �nite-state, a bounded degree
is needed for implementing such a management.

For distinguishing between the di�erent possible routes, each agent has to give
di�erent (local) names to its neighbors. For that, we use the 2-hop coloring self-
stabilizing population protocol, denoted by 2HC, proposed in [4]. A 2-hop coloring
is a coloring such that all neighbours of the same agent have distinct colors. We
denote by Colors the corresponding set (of size O(d2)) of possible colors.

The input variables (read-only) of our protocol Ad at each agent x are: the oracle
output Ω?x (values in {0, 1}); and the agent color cx (values in Colors), which stores
the output of 2HC. The working variables are: the leader bit leaderx (values {0, 1});
the token vector tokenx (vector with values in {0, 1} indexed by Colors); and the
shield vector shieldx (vector with values in {0, 1} indexed by Colors).

On the Power of Ω? for SSLE in Population Protocols 9

The idea of the protocol is the following. An agent may hold several shields (resp.
tokens), each of them waiting to be forwarded to an out-neighbour, from initiator to
responder, with associated color, lines 14 � 18 (resp. in-neighbour, from responder
to initiator, lines 7 � 12). The information required for implementing this is encoded
in the shield and token vectors. The purpose of the tokens is to eliminate leaders
(line 10), whereas the purpose of the shields is to protect them by absorbing tokens
(line 17). A leader is created when the oracle reports that there are no leaders in the
system (lines 2, 3). When a leader is created, it comes with (loads) a shield for every
color (line 5), and thus is protected from any token that could come from one of its
out-neighbors. To maintain the protection, each time an agent receives a shield from
its in-neighbor, it reloads shields for every color (line 16). Dually, any time an agent
receives a token, it reloads tokens for every color (line 11). In addition, whenever a
leader interacts as an initiator, it loads tokens for every color (line 22).

Algorithm 1: Protocol Ad - initiator x, responder y
1 (Create a leader at x, if needed)
2 if Ω?x = 0 then

3 leaderx ← 1
4 ∀c ∈ Colors, tokenx[c]← 1
5 ∀c ∈ Colors, shieldx[c]← 1

6 end

7 (Move token from y to x, if any)
8 if tokeny[cx] = 1 then

9 if shieldx[cy] = 0 then

10 leaderx ← 0
11 ∀c ∈ Colors, tokenx[c]← 1

12 tokeny[cx]← 0

13 end

14 (Move shield from x to y, if any)
15 if shieldx[cy] = 1 then

16 ∀c ∈ Colors, shieldy[c]← 1
17 tokeny[cx]← 0
18 shieldx[cy]← 0

19 end

20 (Load tokens if x is a leader)
21 if leaderx = 1 then

22 ∀c ∈ Colors, tokenx[c]← 1

Before proving the correctness of the algorithm, we introduce some de�nitions. A
path in G is a sequence of agents π = x0 . . . xr such that (xi, xi+1) is a directed edge
of G. If x0 = xr, π is a loop at x0. If u is an agent that appears in π, we denote it by
u ∈ π, and by indπ(u) the index of the �rst occurrence of u in π, i.e. the minimum
i such that xi = u. If (x, y) is an edge of G, we say that x has a shield against y if
shieldx[cy] = 1. Similarly, we say that y has a token against x if tokeny[cx] = 1.

The crucial idea of the proof relies on the notion of protected leader. Intuitively,
a leader λ is protected if, in any loop at λ, some agent (the protector) protects λ
thanks to a shield against its successor, and no agent between λ and the protector
has a token against its predecessor.

De�nition 1 (Protected Leader). Consider a loop π = x0 . . . xr+1 at a leader λ
(= x0 = xr+1). We say that λ is a leader protected in π if there exists i ∈ {0, . . . , r}
such that xi has a shield against xi+1 and, if i ≥ 1, xi is not a leader and has no
token against xi−1. In addition, for every j ∈ {1, . . . , i− 1}, xj is not a leader, has
no shield against xj+1 and no token against xj−1. The agent xi is the protector of λ

10 Jo�roy Beauquier, Peva Blanchard, Janna Burman, and Oksana Denysyuk

in π; the path x0 . . . xi is the protected zone in π. The agent λ is a protected leader
if it is protected in every loop at λ.

Note that a new leader or a leader that receives a shield becomes protected by loading
shields for every color.

Given an execution E, SE denotes the maximum (in�nite) su�x of E such that
each couple (C,α) (C being a con�guration, and α an input assignment) in SE
occurs in�nitely often. IRCE denotes the (�nite) set of con�gurations occurring in
SE , i.e., the set of con�gurations that occur in�nitely often in E. The following
lemma constitutes the core of our argument. We give a detailed proof.

Lemma 1. If C ∈ IRCE has a protected leader, then every con�guration in IRCE
has a protected leader.

Proof. Consider a couple (C,α) that occurs in SE , C being a con�guration (in IRCE)
and α an input assignment. The assumption on the protocol 2HC states that α yields
a correct 2-hop coloring. Consider a con�guration C ′ that follows the occurrence of
(C,α) in SE . In particular, (C,α)→ C ′. We note (x, y) be the pair of edges involved
(initiator x, responder y).

When a leader is created, it is already protected by itself since it has a shield
against every of its out-neighbors. We thus focus on transition rules that do not
involve the creation of a leader. Hence, such a transition may eliminate a leader, or
move or create shields and tokens.

Let λ be a protected leader in γ and π be any loop at λ. Let µ be the protector
of λ in π. If x and y do not appear in the protected zone in π, then after the
transition, the states of the agents in the protected zone have not changed and λ
is still protected in π. Then, assume that x or y appear in the protected zone. Let
z ∈ {x, y} be the agent with the lowest index indπ(z). The previous assumption
implies indπ(z) ≤ indπ(µ).

Consider �rst the case indπ(z) < indπ(µ). If z = x, then z cannot receive a token
(from y), i.e., either x has a shield against y or y has no token against x. Otherwise,
the path that goes from λ to (the �rst occurrence of) z = x followed by any path
that goes from y to λ yields a loop within which λ is not in protected in C; hence
a contradiction. Hence, if z = x, after the transition, λ is still protected by µ in π.
Now, if z = y, y may only receive a shield, and thus, after the transition, λ is still
protected in π (by µ or y).

Now, assume that indπ(z) = indπ(µ). This implies that z = µ ∈ {x, y}, and that
every agent in the protected zone, except µ, is di�erent from x and y. If µ = y, then
during the transition, µ may only receive a shield (which merges with its shield);
hence, λ is still protected by µ in π after the transition. We now focus on the case
µ = x. First consider the subcase where y is not the agent that follows the �rst
occurrence of µ in π. Then µ cannot receive a token during the transition, otherwise,
the same argument as above shows the existence of a loop at λ within which λ is
not protected in C. After the transition, (the �rst occurrence of) µ still has a shield
against the agent right after it, which proves that λ is still protected in π. Consider
now the subcase where y is the agent that follows the �rst occurrence of µ in π. If y

On the Power of Ω? for SSLE in Population Protocols 11

is not a leader, then after the transition, y becomes the new protector of λ in π. If
y is a leader, then after the transition, λ is no longer protected, but y is protected
since the reception of a shield produces shields for every color. In both cases, after
the transition, there is a protected leader in C ′.

We thus have shown that, in every case, C ′ contains a protected leader. Given
any con�guration C ′′ ∈ IRCE , there must be a sequence of actions from (C,α)
to (C ′′, α′′) during SE , for some input assignment α′′. Since C has a protected
leader, the previous argument shows that every con�guration in this sequence has
a protected leader, in particular C ′′. Therefore, any con�guration in IRCE has a
protected leader. ut

Lemma 2. All con�gurations in IRCE have the same number l ≥ 1 of leaders. In
addition, no con�guration in IRCE contains an unprotected leader.

Proof (Sketch). Full details are presented in the appendix, Sec. A. If there is either
no leader, then at some point, Ω? will force the creation of a (protected) leader. If
there is always at least one leader, but they are all unprotected, then it means that
in�nitely often there is a possibility to kill a leader. Global fairness ensures that all
the unprotected leaders will eventually be eliminated, which is a contradiction. In
all cases, it means that every con�guration in IRCE contains at least one protected
leader. In particular, Ω? will not create new leaders. This implies that, once all
unprotected leaders have been killed, there is a constant number of protected leaders.

ut

Theorem 1. The protocol Ad solves the problem ELE using Ω? (i.e., Ω? < ELE)
over strongly connected graphs with degree less than or equal to d.

Proof (Sketch). See the appendix, Sec. A for full details. Any con�guration in IRCE
has the same number l ≥ 1 of (protected) leaders. Assume that l ≥ 2, consider two
protected leaders λ1, λ2 and the loop π built from the shortest path from λ1 to λ2
followed by the one from λ2 to λ1. By moving the protector of λ1 behind λ2, and
making λ2 �res a token, it is possible to eliminate λ1. The global fairness ensures
that this eventually happens, which reduces the number l; hence a contradiction.
Thus, there is eventually a unique leader. ut

5 Is Ω? the Weakest Oracle for Solving SSLE?

Now, we come to the second important result of this paper. The search for weak-
est oracles, since the weakest failure detector of Chandra and Toueg, has been a
constant quest in distributed computing. The weakest oracle, for solving a problem
elsewhere impossible, represents the minimum supplementary information needed.
As this supplementary information can be provided naturally by the environment,
its determination is of great interest for implementing a solution. Our approach here
is di�erent from the approach of failure detectors, in the sense that the oracles we
consider are in a larger class. Indeed, failure detectors only observe a pattern of
failures, whereas oracles like Ω? are able to react to the output of the protocol. We

12 Jo�roy Beauquier, Peva Blanchard, Janna Burman, and Oksana Denysyuk

would like to emphasize the fact that, for dealing with transient failures (state cor-
ruptions) an oracle must have access to the states of the agents. It is not a choice
that we make, but a necessity. In such a general setting, the issue of the weakest
oracle is reduced to the issue of the equivalence of such an oracle with the problem
itself. In consequence, we have to prove that SSLE allows to implement this oracle.
We answer this issue relatively to di�erent communication topologies.

5.1 An Impossibility Result for Non-Simple Families of Graphs

It turns out that for some graph families, a negative answer (Th. 2) holds. A some-
what similar result, for the case of complete graphs, has been presented in our
previous work [5]. Here we present a more general result that applies to in�nite fam-
ilies of graphs, called here non-simple (like in [4]). A family F is non-simple if there
exists a graph G ∈ F , and two disjoint subgraphs G1, G2 of G such that G1, G2 ∈ F .
Complete and arbitrary graphs of bounded degree are some examples of non-simple
families of graphs. In contrast, notable simple families of graphs include rings, or,
more generally, connected d-regular graphs.

The following theorem states the impossibility of a self-stabilizing implementation
of Ω? using ELE over any non-simple family of graphs. Coupled with the result of
Sec. 4, i.e. Ω? < ELE over connected arbitrary graphs of bounded degree, we have
Ω? � ELE over the same graph family. Similarly, Ω? is not the weakest oracle for
SSLE over complete graphs, and, by the SSLE protocol of [17], we have Ω? � ELE
over complete graphs. The proof of Theorem 2 uses a classical partitioning argument
and appears in the appendix (Sec. B).

Theorem 2. For any non-simple family of graphs F , there is no self-stabilizing
population protocol A implementing Ω? over F using the behaviour ELE (i.e., there
is no composition B = Beh(A)◦ELE ⊆ Ω?). In particular, Ω? � ELE over complete
graphs and over arbitrary connected graphs of bounded degree.

5.2 Ω? is the weakest oracle for SSLE over rings

Now, we show that Ω? can be implemented in a self-stabilizing way given the be-
haviour ELE over oriented rings. Note that this is not about detecting the agent
selected by ELE (which would be trivial). Instead, we de�ne a protocol which uses
the eventual presence of a distinguishable agent (guaranteed by ELE), hereafter
called the master, to detect the presence or absence of leaders in the input trace.
This implementation is given by the RingDetector protocol presented below (see Al-
gorithm 2). This result is straightforward to extend to non-oriented rings thanks to
the self-stabilizing ring orientation protocol presented in [4]. The meaning of this re-
sult, coupled with the result of Sec. 4, is that Ω? 'rings ELE , when self-stabilization
is concerned; i.e., Ω? is the weakest oracle for solving SSLE over rings.

Implementing Ω? by the RingDetector protocol using ELE (Alg. 2)
The input variables (read-only) at each agent x are: the master bit masterx (values

On the Power of Ω? for SSLE in Population Protocols 13

in {0, 1}) that keeps the output of ELE ; and the leader bit leaderx (values in {0, 1}),
which represents the input of Ω?. The working variables are: the probe �eld probex
(with values: ⊥ - no probe, or 0 - white probe, or 1 - black probe); the token �eld
(with values: ⊥ - no token, or 0 - white token, or 1 - black token); the �ag bit flagx
(with values: 0 - cleared, 1 - raised); and the output bit (values in {0, 1}), which
represents the corresponding output of Ω?.

Each time an agent has its leader bit set to 1, it raises its �ag (and the �ag of the
other agent in the interaction) � line 5. A token moves clockwise, and its purpose is
to detect a leader (actually, a raised �ag) and to report it to the master (lines 18
�26). A probe moves counter-clockwise, and its purpose is to report to the master
the lack of tokens (lines 7 � 13). The master loads a white probe each time it is
the responder of an interaction (line 2). When a probe meets a token, the probe
becomes black (line 10). When two probes meet, they merge into a black probe if
one of them was black, and into a white probe otherwise (line 12). The master loads
a token colored with its �ag only when it receives a white probe (line 17). Each time
a token meets an agent with its �ag raised, the token becomes black (line 21) and
the �ag is cleared (line 25). Two meeting tokens merge into a black token if one of
them is black, and into a white token otherwise (line 23). When the master receives
a token, it whitens the token, and it outputs 0 if the token is white, and 1 otherwise
(lines 28 �31). In any interaction, the responder copies the output of the initiator,
unless the responder is the master (line 33).

Correctness
We use the same notations SE and IRCE as in the previous section. By the def-

inition of ELE , a unique agent eventually becomes the master permanently. We
focus on the corresponding su�x of the execution (SE is included in this su�x).
Furthermore, we denote by C(x).token (resp. C(x).probe, etc.) the value of the vari-
able token (probe, etc.) in the con�guration C at agent x. Similarly, we denote by
α(x).leader (resp. α(x).master) the value of the variable leader (resp. master) in
the input assignment α at x. The following lemma states that, eventually, a unique
token circulates in the ring.

Lemma 3. In any con�guration C ∈ IRCE, there is exactly one token (white or
black) in C, i.e., there exists a unique agent x such that C(x).token 6= ⊥.

Proof (Sketch). If there are no tokens, some probe sent by the master will return to
the master with the color white (recall that the probes and tokens move in opposite
directions). This causes the master to �re a token. Two colliding tokens merge into
one. This implies that there will always be at least one token. In particular, all the
probes sent by the master will return to the master with the color black; thus no
more tokens are created. Moreover, thanks to the global fairness, if there are several
tokens, they eventually all merge into a unique token. ut

This unique circulating token (from the lemma above) allows to divide the exe-
cution into rounds. We de�ne a round to be a segment of SE that begins with the
token loaded at the master, and ends up right before the token returns to the master.
The following lemma describes the output of the master at the end of each round.

14 Jo�roy Beauquier, Peva Blanchard, Janna Burman, and Oksana Denysyuk

Algorithm 2: Protocol RingDetector - initiator x, responder y

1 (if the master is the responder, it creates
a white probe)

2 if mastery = 1 then probey ← 0
3

4 (raise �ags if needed)
5 if leaderx ∨ leadery then

flagx ← flagy ← 1
6

7 (move probe from y to x)
8 if probey 6= ⊥ then

9 (the probe becomes black when
meeting a token)

10 if tokenx 6= ⊥ then probex ← 1
11 otherwise, keeps the same color or

merges)
12 else if probex ∈ {⊥, 0} then

probex ← probey
13 probey ← ⊥
14 end

15

16 (if the master receives a white probe, it
loads a token)

17 if masterx = 1 and probex = 0 then

tokenx ← flagx
18 (move token from x to y)
19 if tokenx 6= ⊥ then

20 (the token becomes black when meeting
a �ag)

21 if flagy = 1 then tokeny ← 1
22 (otherwise, keeps the same color or

merges)
23 else if tokeny ∈ {⊥, 0} then

tokeny ← tokenx

24 (the �ag is cleared)
25 flagy ← 0
26 tokenx ← ⊥
27 end

28 (if the master receives a token, it changes
its output and whitens the token)

29 if mastery = 1 and tokeny 6= ⊥ then

30 outy ← tokeny

31 tokeny ← 0

32 (a non-master responder copies the output
of the initiator)

33 if mastery = 0 then outy ← outx

Lemma 4. Consider a round R in SE. We denote by (C0, α0) . . . (Cr, αr) the corre-
sponding sequence of con�gurations and input assignments. Case (a) If there are no
leaders during R, i.e., for every 0 ≤ i ≤ r, and every agent x, we have αi(x).leader =
0, then after the last action of the round, all the agents have their �ags cleared (set
to zero). Case (b) If there are no leaders during R, and if all the agents have their
�ags cleared at the beginning of the round, then after the last action of the round,
the master outputs 0 and all the agents have their �ags cleared. Case (c) If there is
at least one leader in each assignment during R, i.e., for every 0 ≤ i ≤ r, there is
some agent xi such that αi(xi).leader = 1, then after the last action of the round,
the master outputs 1.

Proof (Sketch). We only prove here the case (c). Full proof details are presented in
the appendix, Sec. B. Assume that there is a leader in each input assignment. Let µ
be an agent that holds a leader in assignment α0, i.e., α0(µ).leader = 1. During the
round, there must be some i, such that µ = vi is the responder and the initiator ui
holds the token. If µ holds a leader in assignment αi, then after the transition, the
token must have turned black. If µ does not hold a leader in assignment αi, since µ did
hold a leader in assignment α0, there must be some j < i such that αj(µ).leader = 1
and αj+1(µ).leader = 0. Now, since the input trace is compatible with the schedule,
µ must be the initiator uj or the responder vj in the transition (Cj , αj) → Cj+1.
Hence, µ must raise its �ag, i.e., we have Cj+1(µ).f lag = 1 (j + 1 ≤ i). Recall that

On the Power of Ω? for SSLE in Population Protocols 15

there is a unique token, so the �ag cannot be cleared during the remaining actions
until i. Hence, at i, the token turns black when the token moves from the initiator
ui to the responder vi = µ. In all cases, the master receives a black token at the end
of the round, and thus outputs 1. ut

Theorem 3. The protocol RingDetector is a self-stabilizing implementation of Ω?
using ELE (i.e., ELE < Ω?) over oriented rings. Moreover, Ω? 'rings ELE (by
[17]), and thus Ω? is the weakest oracle for solving ELE over rings.

Proof (Sketch). See the appendix, Sec. B, Th. D, for full details.We divide the execu-
tion in rounds as de�ned above. If there are no leader forever, then Lemma 4 ensures
that after a �nite number of rounds, the master permanently outputs 0. If there is
a leader in each input assignment, then Lemma 4 ensures that after a �nite number
of rounds, the master permanently outputs 1. In both cases, the propagation of the
master's output ensures that the output trace of the protocol satis�es the oracle Ω?
conditions (see Sec. 3.2 for its de�nition). ut

References

1. D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in
networks of passively mobile �nite-state sensors. Distributed Computing, 18(4):235�
253, 2006.

2. D. Angluin, J. Aspnes, and D. Eisenstat. Fast computation by population protocols
with a leader. Distributed Computing, 21(3):183�199, 2008.

3. D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. The computational power of
population protocols. Distributed Computing, 20(4):279�304, 2007.

4. D. Angluin, J. Aspnes, M. J. Fischer, and H. Jiang. Self-stabilizing population proto-
cols. ACM Trans. Auton. Adapt. Syst., 3(4), 2008.

5. J. Beauquier, P. Blanchard, and J. Burman. Self-stabilizing leader election in popula-
tion protocols over arbitrary communication graphs. In OPODIS, pages 38�52, 2013.

6. J. Beauquier, P. Blanchard, J. Burman, and S. Kutten. The weakest oracle for sym-
metric consensus in population protocols. In ALGOSENSORS, pages 41�56, 2015.

7. J. Beauquier and J. Burman. Self-stabilizing synchronization in mobile sensor networks
with covering. In DCOSS, volume 6131 of Lecture Notes in Computer Science, pages
362�378. Springer, 2010.

8. J. Beauquier, J. Burman, J. Clement, and S. Kutten. On utilizing speed in networks
of mobile agents. In PODC, pages 305�314. ACM, 2010.

9. F. Bonnet and M. Raynal. Anonymous asynchronous systems: The case of failure
detectors. In DISC, pages 206�220, 2010.

10. S. Cai, T. Izumi, and K. Wada. How to prove impossibility under global fairness:
On space complexity of self-stabilizing leader election on a population protocol model.
Theory Comput. Syst., 50(3):433�445, 2012.

11. D. Canepa and M. G. Potop-Butucaru. Self-stabilizing tiny interaction protocols. In
WRAS, pages 10:1�10:6, 2010.

12. T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving
consensus. J. ACM, 43(4):685�722, 1996.

13. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed sys-
tems. J. ACM, 43(2):225�267, 1996.

16 Jo�roy Beauquier, Peva Blanchard, Janna Burman, and Oksana Denysyuk

14. B. Charron-Bost, M. Hutle, and J. Widder. In search of lost time. Inf. Process. Lett.,
110(21):928�933, 2010.

15. A. Cornejo, N. A. Lynch, and S. Sastry. Asynchronous failure detectors. In PODC,
pages 243�252, 2012.

16. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. of

the ACM, 17(11):643�644, Nov. 1974.
17. M. Fischer and H. Jiang. Self-stabilizing leader election in networks of �nite-state

anonymous agents. In OPODIS, pages 395�409, 2006.
18. M. H. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of consensus with one

faulty process. Journal of the ACM, 32(2):374�382, Apr. 1985.
19. O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Mediated population protocols.

Theor. Comput. Sci., 412(22):2434�2450, 2011.
20. R. Mizoguchi, H. Ono, S. Kijima, and M. Yamashita. On space complexity of self-

stabilizing leader election in mediated population protocol. Distributed Computing,
25(6):451�460, 2012.

Appendix

A ELE using Ω? over Weakly Connected Graphs with

Bounded Degree

A.1 Solution over strongly connected graphs

Consider a strongly connected graph G of degree (in and out degree together) less
than or equal to d. For the sake of clarity, in any execution we consider, we as-
sume that the protocol 2HC permanently outputs a correct 2-hop coloring from the
beginning (variables cx, for every agent x).

We use the following notations in the sequel. Given an execution E, SE denotes
the maximum (in�nite) su�x of E such that each couple (C,α) (C being a con�g-
uration, and α an input assignment) in SE occurs in�nitely often. IRCE denotes
the (�nite) set of con�gurations occurring in SE , i.e., the set of con�gurations that
occur in�nitely often in E.

Lemma A If C ∈ IRCE has a protected leader, then every con�guration in IRCE
has a protected leader.

Proof. Consider a couple (C,α) that occurs in SE , C being a con�guration (in IRCE)
and α an input assignment. The assumption on the protocol 2HC states that α yields
a correct 2-hop coloring. Consider a con�guration C ′ that follows the occurrence of
(C,α) in SE . In particular, (C,α)→ C ′. We note (x, y) be the pair of edges involved
(initiator x, responder y).

When a leader is created, it is already protected by itself since it has a shield
against every of its out-neighbors. We thus focus on transition rule that do not
involve the creation of a leader. Hence, such a transition may kill a leader, or move
or create shields and tokens.

Let λ be a protected leader in γ and π be any loop at λ. Let µ be the protector
of λ in π. If x and y do not appear in the protected zone in π, then after the

On the Power of Ω? for SSLE in Population Protocols 17

transition, the states of the agents in the protected zone have not changed and λ
is still protected in π. Then, assume that x or y appear in the protected zone. Let
z ∈ {x, y} be the agent with lowest index indπ(z). The previous assumption implies
indπ(z) ≤ indπ(µ).

Consider �rst the case indπ(z) < indπ(µ). If z = x, then z cannot receive a token
(from y), i.e., either x has a shield against y or y has no tokens against x. Otherwise,
the path that goes from λ to (the �rst occurrence of) z = x followed by any path
that goes from y to λ yields a loop within which λ is not in protected in C; hence
a contradiction. Hence, if z = x, after the transition, λ is still protected by µ in π.
Now, if z = y, y may only receive a shield, and thus, after the transition, λ is still
protected in π (by µ or y).

Now, assume that indπ(z) = indπ(µ). This implies that z = µ ∈ {x, y}, and that
every agent in the protected zone, except µ, is di�erent from x and y. If µ = y, then
during the transition, µ may only receive a shield (which merges with its shield);
hence, λ is still protected by µ in π after the transition. We now focus on the case
µ = x. First consider the subcase where y is not the agent that follows the �rst
occurrence of µ in π. Then µ cannot receive a token during the transition, otherwise,
the same argument as above shows the existence of a loop at λ within which λ is
not protected in C. After the transition, (the �rst occurrence of) µ still has a shield
against the agent right after it, which proves that λ is still protected in π. Consider
now the subcase where y is the agent that follows the �rst occurrence of µ in π. If y
is not a leader, then after the transition, y becomes the new protector of λ in π. If
y is a leader, then after the transition, λ is no longer protected, but y is protected
since the reception of a shield produces shields for every color. In both cases, after
the transition, there is a protected leader in C ′.

We thus have shown that, in every cases, C ′ contains a protected leader. Given
any con�guration C ′′ ∈ IRCE , there must be a sequence of actions from (C,α)
to (C ′′, α′′) during SE , for some input assignment α′′. Since C has a protected
leader, the previous argument shows that every con�guration in this sequence has
a protected leader, in particular C ′′. Therefore, any con�guration in IRCE has a
protected leader. ut

Lemma B If no con�guration in IRCE has a leader, then all input assignments in
SE equal an input assignment that assigns 0 to every variable Ω?x and yields a 2-hop
coloring. If every con�guration in IRCE has a leader, then all input assignments in
SE equal an input assignment that assigns 1 to every variable Ω?x and yields a 2-hop
coloring.

Proof. This stems from the de�nition of Ω? and the assumption on 2HC. ut

Lemma C Every con�guration in IRCE has at least one leader, and every input
assignment in SE is equal to an input assignment αE that assigns 1 to every variable
Ω?x and yields a 2-hop coloring.

Proof. Assume that some con�guration C in IRCE lacks a leader. On the one hand,
if no con�guration in IRCE has a leader, then by Lemma B, every input assignment

18 Jo�roy Beauquier, Peva Blanchard, Janna Burman, and Oksana Denysyuk

in SE assigns 0 to every Ω?x. Hence, in SE , during every transition, a protected
leader is created. On the other hand, if IRCE contains a con�guration C ′ with a
leader, then there is a sequence of actions from (C,α) to (C ′, α′) for some input
assignments α, α′, since both C and C ′ occur in�nitely often in SE . According to
the protocol, during one of the actions, a protected leader must be created. In both
cases, we have a con�guration C ′′ ∈ IRCE with a protected leader. By Lemma A,
this implies that all con�gurations in IRCE has a protected leader, in particular C;
hence a contradiction. Thus any con�guration in IRCE has a leader. The assumption
on the protocol 2HC and Lemma B yield the last claim. ut

Lemma D All con�gurations in IRCE have the same number of leaders.

Proof. By Lemma C, every input assignment in SE assigns 1 to every variable Ω?x.
Thus no leader is created during SE . Assume there exists two con�gurations C,C ′

in IRCE such that the number l of leaders in C is di�erent from the number l′

of leaders in C ′. Without loss of generality, we can assume l < l′. By de�nition,
there must be a sequence of actions in SE from (C,α) to (C ′, α′) for some input
assignments α, α′. The fact that l < l′ implies that during this sequence a leader is
created; hence a contradiction. ut

Lemma E No con�guration in IRCE contains an unprotected leader.

Proof. Suppose that C ∈ IRCE contains an unprotected leader λ. By Lemma C,
there is an input assignment αE such that (C,αE) occurs in SE and αE assigns 1
to every variable Ω?x. We describe a sequence of actions with the input assignment
αE at each step. Since λ is not protected in C, there exists a path π = x0 . . . xr
from agent x0 = λ to some agent xr such that for every 0 ≤ i < r, agent xi has
no shield against xi+1 and xr either is a leader or has a token against xr−1. If xr
is a leader, any transition where xr is a initiator makes xr creating a token against
xr−1. Then by moving (backward) the token along this path, it is possible to kill the
non-protected leader λ. We reach a con�guration C ′ within which λ is not a leader.
Since no leaders have been created during the sequence, C ′ has fewer leaders than
C. The global fairness ensures that C ′ ∈ IRCE ; this contradicts Lemma D. ut

Theorem A The protocol Ad solves the problem ELE using Ω? over strongly con-
nected graphs with degree less than or equal to d.

Proof. By Lemma D and E, we know that any con�guration in IRCE has the same
number l of protected leaders and no unprotected leaders; and also that all input
assignments are equal to some αE that gives a 2-hop coloring and assigns the value 1
to every variable Ω?x. Lemma C ensures that l ≥ 1. Assume, by contradiction, that
l ≥ 2. Let C ∈ IRCE . Let λ1, λ2 be two protected leaders in C. Consider p1 (resp. p2)
the shortest path from λ1 to λ2 (resp. from λ2 to λ1). We de�ne the loop π1 = p1p2 at
λ1 and the loop π2 = p2p1 at λ2. We note µ1 (resp. µ2) the protector λ1 (resp. λ2) in
π1 (resp. π2). Necessarily, the �rst occurrence of µ1 (resp. µ2) is in p1 (resp. p2). We
describe a sequence with input assignment αE at every step. The protocol allows to
move the (�rst occurrence of the) protector µ1 right before λ2. Another such action

On the Power of Ω? for SSLE in Population Protocols 19

makes the protector transfer its shield to λ2, thus turning λ1 into a non-protected
leader (λ2 is still a protected leader). Then λ2 can �re a token that kills λ1. Since,
no leader is created during the sequence, we reach a con�guration C ′ with less than
l leaders. The global fairness ensures that C ′ ∈ IRCE . This contradicts Lemma D.
Therefore, all con�gurations in IRCE have a unique leader. Since the leaders cannot
move, there is a permanent leader. ut

A.2 From Strongly to Weakly Connected Graphs

Now we show that the results above can be extended to the more general family of
weakly connected graphs with bounded degree. We actually exhibit a slightly more
general transformation.

First, we give some speci�c de�nitions. Given an edge e = (x, y) of a graph G, we
denote by ē = (y, x) the opposite edge (not necessarily an edge of G). The symmetric
closure of a graph G, is the graph Gsym with the same set of vertices obtained from
G by adding the opposite edges. Consider a family F of graphs closed by symmetric
closure, G ∈ F ⇒ Gsym ∈ F , and let B be a behaviour over F . We say that B
is undirected when, for any graph G ∈ F , for any schedule S = e1e2 . . . on G,
(S, Tout) ∈ B(G,S, Tin) if and only if (S′, Tout) ∈ B(Gsym, S

′, Tin) for any schedule
S′ = e′1e

′
2 . . . on Gsym such that e′i ∈ {ei, ēi}. Intuitively, a behaviour is undirected

if the legal output histories do not depend on the orientation of the edges of G.

Theorem B Consider a graph family F0, and let F be the family of graphs G such
that Gsym ∈ F0. The family F is closed by symmetric closure. Let B,O be undirected
behaviours over F such that there exists a population protocol A implementing B
using O over the family F0. Then there exists a population protocol A′ (given in the
proof) implementing B using O over the family F .

Proof. We give a constructive proof. We show how to transform A into a population
protocol A′. Given A, we de�ne below a (possibly) non-deterministic protocol AND.
It can be transformed into a deterministic one using the transformer proposed in [4],
provided that the behaviour B is an elastic behaviour (see [4] for more details).
AND has the same state space, inputs and outputs as A, and the following

transition rules. The rule (p, x)(q, y) → (p′, q′) is a rule of AND if and only if
(p, x)(q, y) → (p′, q′) is a rule of A or (q, y)(p, x) → (q′, p′) is a rule of A. For
instance, if A has a unique rule (p, x)(q, y) → (p′, q′), then AND has two rules,
(p, x)(q, y) → (p′, q′) and (q, y)(p, x) → (q′, p′). In this example AND is determinis-
tic but it would not be the case if A had also a rule (q, y)(p, x)→ (q′′, p′′).

Intuitively, AND, executing over a graph G ∈ F , simulates A over the symmetric
closure Gsym ∈ F0. Alternatively, it is as if AND simulated a scheduler, over a non
directed graph induced by G, which could choose at every interaction which agent
is the initiator, and which is the responder.

We claim that, if E = (C0, α0, σ0)(C1, α1, σ1) . . . is a globally fair execution of
AND on G, then there is a sequence of actions σ′i, i ∈ N, such that the sequence
E′ = (C0, α0, σ

′
0)(C1, α1, σ

′
1) . . . is a globally fair execution of A on Gsym. Hence,

since A solves B over Gsym using the oracle O, the protocol AND solves B over

20 Jo�roy Beauquier, Peva Blanchard, Janna Burman, and Oksana Denysyuk

G using the same oracle O. The corresponding sequence of actions σ′i is de�ned as
follows. If σi = (ui, vi, (q, y)(p, x) → (q′, p′)) but (q, y)(p, x) → (p′, q′) is not a rule
of A, then de�ne σ′i = (vi, ui, (p, x)(q, y)→ (p′, q′)). If (q, y)(p, x)→ (q′, p′) is a rule
of A, then de�ne σ′i = σi.

Note that the fact that B and O are undirected ensures that the input history of
E ′ on Gsym is a legal output history of O on Gsym, and the output history associated
with E ′ is a legal history of B. ut

Taking F0 to be the family of strongly connected graphs (in and out) degree
bounded by 2d, F becomes the family of weakly connected graphs with (in and out)
degree bounded by d. The previous theorem yields the following corollary:

Corollary 1. The protocol A2d can be transformed in a protocol A′d which solves
ELE using Ω? over the family of weakly connected graphs with (in and out) degree
bounded by d.

B Is Ω? the Weakest for Solving SSLE?

Theorem C For any non-simple family of graphs F , there is no self-stabilizing
population protocol A implementing Ω? over F using the behaviour ELE (i.e., there
is no composition B = Beh(A) ◦ ELE ⊆ Ω?).

Proof. We prove the result by contradiction using a classical partitioning argument.
Assume such a protocol A and consider a graph G from a given non-simple family
F , such that there are two disjoint subgraphs of G, G1 and G2 that are also in F .
Every execution E of A has an input trace (T, Tin), where T is an output trace of
ELE and Tin represents the input trace of Ω?. Given a schedule S on G, (S, Tout) ∈
B(S, T, Tin) such that Tout is an output trace of A (corresponding to the one of Ω?)
induced by S.

By the de�nition of ELE , each T eventually permanently assigns 1 to a unique
agent λ and 0 to every other; we denote by β this assignment. W.l.o.g., assume that
λ ∈ G1. We choose the trace Tin to be the constant trace αα . . . where α assigns 1
to some agent µ ∈ G2, and 0 to every other.

By the assumption on A, the output trace Tout has a su�x equal to the constant
trace assigning 1 to every agent. Thus, for every couple (C, γ) in SE , γ = (β, α) and
the output associated to C assigns 1 to every agent. If we restrict (C, γ) to the graph
G1, we obtain a con�guration and input assignment (C1, γ1). The agent λ is still
the unique agent to be assigned 1 by β1, and α1 assigns 0 to every agents in G1.
Since the protocol must be self-stabilizing, and since G1 ∈ F , there is a sequence of
actions, involving all the agents of G1 and having the input assignment γ1 during the
sequence. This leads to a con�guration C ′1 that outputs 0 at at least one agent in
G1. This involves that there is a sequence of execution (C, γ)(C1, γ)(C2, γ) . . . (C ′, γ)
such that C ′ outputs 1 at the agents of G2 and 0 at some agent in G1. The global
fairness ensures that C ′ occurs in SE ; hence a contradiction. ut

On the Power of Ω? for SSLE in Population Protocols 21

Now, we prove that RingDetector is a self-stabilizing implementation of Ω? using
ELE . We use the same notations SE and IRCE as in the previous section. In addition,
the input trace T = α0α1 . . . of the execution E is assumed to provide a unique
master, i.e., there exists a unique agent λ in E such that αi(λ).master = 1 for all i.
By the de�nition of ELE and RingDetector, such an input trace exists in an in�nite
su�x of every E of RingDetector. For the correctness proof, we focus only on such
su�xes, for every execution.

Lemma F In any con�guration C ∈ IRCE, there is exactly one token (white or
black) in C, i.e., there exists a unique agent x such that C(x).token 6= ⊥.

Proof. Consider a con�guration C ∈ IRCE . We �rst prove that C contains at least
one token. On the contrary, assume that, for every agent x, C(x).token = ⊥. The
following scenario will produce a token. First, let the master λ interacting as a
responder to produce a white probe at λ. Then, move (counter-clockwise) all the
other probes, if any, to the master. Then move the white probe at λ so as to visit all
the agents and return to λ again. Since there are no tokens in the graph, the white
probe will not turn black. Then, the white probe arriving at λ will make λ produce
a token. This scenario does not depend on the possibly present leaders. Hence, we
have shown that there exists a con�guration C ′ with at least one token such that
C
∗−→ C ′, whatever the input trace is during this sequence. By global fairness, we

know that C ′ belongs to IRCE . But, the rules of the protocol are such that, once
there is at least one token in the graph, there is always at least one token in the
graph in any subsequent con�guration. Thus C cannot occur in�nitely often; hence
a contradiction. Hence C has at least one token.

Assume now that C has at least two tokens. Since two meeting tokens merge into
one token, there is a con�guration C ′ with exactly one token such that C

∗−→ C ′,
whatever the input trace is. By global fairness, C ′ belongs to IRCE . Since C also
occurs in�nitely often in the execution, and since the only way to create a token
is by having the master receive a white probe, this means that the master receives
in�nitely many white probes during SE . But once there is a token in the graph, since
the tokens move clockwise and the probes counter-clockwise, any probe arriving at
the master must be black; hence a contradiction. Therefore, C has exactly one token.

ut

Thanks to the previous lemma, we know that during SE a unique token circulates
clockwise. We de�ne a round to be a segment of SE that begins with the token loaded
at the master, and ends up right before the token returns to the master.

Lemma G Consider a round R in SE. We denote by (C0, α0) . . . (Cr, αr) the corre-
sponding sequence of con�gurations and input assignments. Case (a) If there are no
leaders during R, i.e., for every 0 ≤ i ≤ r, and every agent x, we have αi(x).leader =
0, then after the last action of the round, all the agents have their �ags cleared (set
to zero). Case (b) If there are no leaders during R, and if all the agents have their
�ags cleared at the beginning of the round, then after the last action of the round,
the master outputs 0 and all the agents have their �ags cleared. Case (c) If there is

22 Jo�roy Beauquier, Peva Blanchard, Janna Burman, and Oksana Denysyuk

at least one leader in each assignment during R, i.e., for every 0 ≤ i ≤ r, there is
some agent xi such that αi(xi).leader = 1, then after the last action of the round,
the master outputs 1.

Proof. Case (a). Assume there are no leaders in the round. Since the token moves
clockwise from the master to the master, and since a token clears any �ag it encoun-
ters, after the last action in the round, the token must have cleared all the possible
raised �ags in the ring.

Case (b). Assume that there are no leaders in the round, and that all the �ags are
clear at the beginning. During the �rst action, the master holds the token and colors
it in white (the master holds no leader). Since there are no leaders in the round, in
every con�guration within the round, all the �ags are cleared. Hence, when moving
clockwise from the master to the master, the token meets no raised �ags and stays
white. At the end of the round, the master receives a white token and outputs 0.

Case (c). Assume that there is a leader in each input assignment. Let µ be an
agent that holds a leader in assignment α0, i.e., α0(µ).leader = 1. During the round,
there must be some i, such that µ = vi is the responder and the initiator ui holds
the token. If µ holds a leader in assignment αi, then after the transition, the token
must have turned black. If µ does not hold a leader in assignment αi, since µ did
hold a leader in assignment α0, there must be some j < i such that αj(µ).leader = 1
and αj+1(µ).leader = 0. Now, since the input trace is compatible with the schedule,
µ must be the initiator uj or the responder vj in the transition (Cj , αj) → Cj+1.
Hence, µ must raise its �ag, i.e., we have Cj+1(µ).f lag = 1 (j + 1 ≤ i). Recall that
there is a unique token, so the �ag cannot be cleared during the remaining actions
until i. Hence, at i, the token turns black when the token moves from the initiator
ui to the responder vi = µ. In all cases, the master receives a black token at the end
of the round, and thus outputs 1. ut

Theorem D The protocol RingDetector is a self-stabilizing implementation of Ω?
using ELE over oriented rings.

Proof. Consider a globally fair execution E and focus on the su�x SE . For the
sake of simplicity, we assume that there is a unique master from the beginning. By
Lemma F, we know that in SE there is a unique token moving clockwise. Without
loss of generality, we assume that SE begins with the token being hold by the master.
We then write SE = R1R2 . . . where each Ri is a round.

Consider �rst the case where the input trace T = α0α1 . . . in SE permanently
assigns no leaders everywhere, i.e., for all i, for every agent x, αi(x).leader = 0. By
Lemma G, we know that at the end of R1, all the �ags are cleared. Hence, at the
end of R2, the master outputs 0 and all the �ags are cleared. By iteration, at the
end of each round Ri, i ≥ 2, the master outputs 0. Since the master updates its
output only when it receives the token, and since this happens exactly at the end
of a round, we know that in the su�x R2R3 . . . , the master permanently outputs
0. The fact that the responder always copies the output of the initiator (unless the
responder is the master) implies that there is a su�x during which all the agents
permanently output 0.

On the Power of Ω? for SSLE in Population Protocols 23

Assume now that the input trace is such that there is at least one leader in each
input assignment. By Lemma G, at the end of each round Ri, the master outputs 1.
The same argument as above shows that there is a su�x of execution during which
all the agents permanently output 1.

Note that, in the remaining cases of input traces in SE , that is when there are
some input assignments with a leader and some other without, nothing has to be
proven, because then, the output of Ω? is arbitrary (see de�nition in Sec. 3.2). ut

Remark 1. Note that as leaders can appear and then disappear completely, one re-
quire a kind of recurring procedure verifying if leaders have reappeared. The perma-
nent master guaranteed by ELE plays the role of an arbiter initiating this recurring
procedure by sending the exploring tokens. Tokens look for on �ags and switch
them o�, to be prepared for the next exploration tour. One may think that there
is a simpler solution using no probes. That is, a solution, where, e.g., master sends
the tokens repeatedly after some bounded number of interactions it participates in,
otherwise exploring token may never exist or be created. However, such a solution
without probes might be incorrect. To see this, consider an input trace where there
is one leader in every input assignment, but this leader moves repeatedly clockwise,
�jumping" from initiator to responder on the oriented ring. By the de�nition of Ω?,
in this scenario, the master should eventually and permanently output 1. However,
it is in�nitely often possible that there are two tokens (generated by the master)
directly following the leader one after the other, during the whole tour, from the
master to the master. In this case, the �rst token arriving at the master is black,
but the following token is white. This is because the �rst token has cleared every
�ag raised by the leader. The repetition of this scenario causes an oscillation of the
master's output between 0 and 1.

