N
N

N

HAL

open science

On the Power of Oracle Omega? for Self-Stabilizing
Leader Election in Population Protocols

Joffroy Beauquier, Peva Blanchard, Janna Burman, Oksana Denysyuk

» To cite this version:

Joffroy Beauquier, Peva Blanchard, Janna Burman, Oksana Denysyuk. On the Power of Oracle
Omega? for Self-Stabilizing Leader Election in Population Protocols. 2014. hal-00839759v2

HAL Id: hal-00839759
https://hal.science/hal-00839759v2

Submitted on 22 May 2014 (v2), last revised 25 Sep 2016 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00839759v2
https://hal.archives-ouvertes.fr

On the Power of Oracle §27 for Self-Stabilizing Leader Election
in Population Protocols

[Regular Paper, Eligible for the Best Student Paper Award]

Joffroy Beauquier!, Peva Blanchard*!, Janna Burman', and Oksana Denysyuk**2

! LRI, Université Paris-Sud, Orsay, France, {joffroy.beauquier, peva.blanchard, janna.burman}@lri.fr
2 INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal, oksana.denysyuk@ist.utl.pt

Abstract. This paper considers the fundamental problem of self-stabilizing leader election (SSLE) in the
model of population protocols. In this model an unknown number of asynchronous, anonymous and finite
state mobile agents interact in pairs. SSLE was shown to be impossible in this model without additional
assumptions. This impossibility can be circumvented for instance by augmenting the system with an oracle
(an external module providing supplementary information useful to solve a problem). Thus, Fischer and
Jiang have proposed solutions to SSLE, for complete communication graphs and rings, using an oracle 27,
called the eventual leader detector. In this paper, we extend their results.

First, we show that (27 is powerful enough to allow solving SSLE also over arbitrary communication graphs
of bounded degree. Then, over rings, we show that 2?7 has the minimum necessary “power” (or provides the
minimum supplementary information) to solve SSLE. We prove this by implementing 27 using SSLE. This
result, together with the previous one, provides an equivalence between {27 and SSLE. This equivalence also
means that 27 is the weakest (i.e., “necessary” and sufficient) oracle to solve SSLE over rings. Moreover, we
conjecture that the result over rings can be extended to regular graphs of bounded diameter. On the negative
side, we prove that the equivalence between {27 and SSLE does not hold on all graphs; in particular, it does
not hold on complete graphs and on graphs of bounded degree.

Keywords: networks of mobile agents, population protocols, self-stabilization, leader election, oracles, weakest
oracle

* Ph.D. student; Contact author: LRI, Bat. 650, Université Paris-Sud 11, 91405 Orsay Cedex France
** Ph.D. student

On the Power of 27 for SSLE in Population Protocols 1

1 Introduction

There are fundamental problems in distributed computing that are subject to impossibility results. The impos-
sibility can be related to the system asynchrony, limited resources, the presence of failures, their type, or other
general conditions. For instance, the consensus problem has been shown to be impossible in asynchronous sys-
tems with only one crash fault [18]. An elegant approach for circumventing the impossibility of consensus is the
abstraction known as failure detectors introduced by Chandra and Toueg [13]. A failure detector can be viewed
as an oracle, which provides to the system nodes a supplementary information about failures allowing to solve a
given problem. When designing an oracle, a fundamental issue is to determine the one that provides the minimum
amount of information sufficient to solve the problem. Among the different failure detectors proposed to solve
consensus in the conventional asynchronous communication model, the eventual leader elector {2, has been proven
to be the weakest [12]. Informally, that means that it supplies the minimum supplementary information necessary
to obtain a solution.

In this work, we consider a very basic communication model of mobile agents called population protocols. It has
been introduced for large networks of tiny, anonymous and asynchronous mobile agents communicating in pairs
[1]. The network has an unbounded but finite population of agents, each with only O(1) states, implying that the
size of the population is unknown to the agents. With such minimal assumptions, the impossibility results are
not a surprise. For example, consensus is impossible in such a model even without any crash failure [6]. Another
impossibility concerns a problem called self-stabilizing leader election (SSLE). In this work, we focus on this
fundamental problem that is shown to be impossible in many different cases [4,17,5]. Self-stabilization [16] is a
framework for dealing with transient state-corrupting faults and can be viewed as allowing the system to start
from an arbitrary configuration. In other words, a protocol solves a problem in a self-stabilizing way if every
feasible execution starting from any initial configuration solves the problem.

The eventual leader elector {2 of Chandra and Toueg and other classical failure detectors cannot be used
with population protocols, because they assume that the network nodes have unique identifiers, unavailable to
anonymous agents in population protocols. Many other previous oracles, like those proposed for anonymous
models (e.g., [9]), cannot be used in population protocols either, because of the memory constraints imposed by
the model (see a survey in [6]).

To deal with this issue, Fischer and Jiang introduced a new type of oracle, called the eventual leader detector
[17] and denoted by £27. Instead of electing a leader, like §2, 27 simply reports to each agent an (eventually
correct) estimate about whether or not one or more leaders are present in the network (see Sec. 2 for a formal
definition). This oracle does not require unique identifiers and has additional drastic differences. One of the
important differences is motivated by the self-stabilizing nature of the SSLE problem considered in [17]. While
{2 is designed to circumvent impossibility related to crash faults, 27 is designed to deal with state-corrupting
faults. Thus, while {2 is related to a failure pattern and is independent of the protocol using it, 27 interacts with
the protocol, providing information related to the system configurations reached during the execution. With (27,
there is some sort of feedback loop: the outputs of the oracle influence the protocol; and conversely, the protocol
influences the outputs of the oracle. Yet, there are some features in common with §2. Both {2 and (27 are unreliable
in the sense that {27 can make errors, that is, to give false information at some point and at some agents, and is
only required to eventually provide correct answers, similarly to (2. Finally, such weak guarantees allow both (2
and 27 to be implemented in practice using timeouts and other features often found in real systems (more details
about the implementation of {27 can be found in [17]; about (2, in [13]).

To demonstrate the power of 27, [17] gives a uniform solution to SSLE using 2?7 in complete communication
graphs and rings. Uniform means that the solution is independent of the size of the network and the agents do
not need to know the network size. Our focus here is on uniform solutions too.

Contributions. In this work, we are interested in investigating more about the capabilities and particularities of
£27?. First, we extend the result of [17] for rings to arbitrary connected communication graphs of bounded degree
(by showing that SSLFE admits a solution using {27 over this family of graphs; see Sec. 4). This extension is more
intricate than the solution for rings.

Second, we show that SSLE allows to implement 2?7 on rings (Sec. 5.1). Coupled with our previous result or
with the result of [17], this implies that, 27 is equivalent to SSLE over rings. In our framework, this also means
that 27 is the weakest for solving SSLE over this family of graphs.

Then, in contrast with the previous case, we show that over arbitrary communication graphs of bounded degree,
SSLE is strictly weaker than {27 (see Sec. 5). Intuitively, our results means that, whereas SSLE and (2?7 are not

! This is in contrast to the non-uniform solutions given to SSLE over rings in [4] that does not use oracles.

2 Joffroy Beauquier, Peva Blanchard, Janna Burman, and Oksana Denysyuk

equivalent over certain families of graphs, this difference disappears on rings due to the strong communication
constraints imposed by the ring structure. Finally, we conjecture that the result on rings can be extended and we
sketch this extension for regular graphs (i.e. of constant degree) with bounded diameter (Sec. 6).

For modeling oracles and problems, and obtaining relations between them, we use the formal framework
proposed in [5] and adapted to population protocols (see Sec. 2.2).} In this framework, there is no difference
between an oracle and a problem, so the relations we exhibit can equivalently be viewed as relations between
oracles or between problems. Note that the framework and our results concern an extremely general class of
oracles.

Related Work. Being an important primitive in distributed computing, leader election has been extensively
studied in various other models, however much less in population protocols. Because of model differences, previous
results do not directly extend to the model considered here. For surveys on these previous results in other models,
refer to [4,17]. In the following, we mention only the most relevant works to SSLE in population protocols.

It was shown, e.g. in [2,8], that fast converging population protocols can be designed using an initially provided
unique leader. Moreover, many self-stabilizing problems on population protocols become possible given a leader
(though together with some additional assumptions, see, e.g., [4,7]). Nevertheless, SSLE is impossible in pop-
ulation protocols over general connected communication graphs [4]. Yet, [4] presents a non-uniform solution for
SSLE on rings. A uniform algorithm for rings and complete graphs is proposed in [17], but uses §27. Recently, [10]
showed that at least n agent states are necessary and sufficient to solve SSLE over a complete communication
graph, where n is the population size (unavailable in population protocols). For the enhanced model of mediated
population protocols (M PP) [19], it is shown in [20] that (2/3)n agent states and a single bit memory on every
agent pair are sufficient to solve SSLFE. It is also shown that there is no M PP that solves SSLFE with constant
agent’s state and agent pair’s memory size, for arbitrary n. In [11], versions of SSLE are considered assuming
27 together with different types of local fairness conditions, in contrast with the original population protocols’
global fairness that is also assumed in the current paper (see Sec. 2).

In [5], it is shown that the difficulty in solving SSLE in population protocols indeed comes from the requirement
of self-stabilization, by giving a solution without oracle for arbitrary graphs with a uniform initialization. Then,
again, over arbitrary graphs, [5] proposes a protocol for SSLE. However, this protocol uses an oracle which is a
composition of two copies of 27 (and thus is at least as strong as one copy of 27 used in this paper). Finally, [5]
shows that SSLE and 27 are not equivalent over complete communication graphs.

2 Model and Definitions

2.1 Population Protocol

We use here the same definitions as in [1,4,17] with some slight adaptations. A communication graph is a directed
graph G = (V, &) with n vertices. Each vertex represents a finite-state sensing device called an agent, and an
edge (u,v) indicates the possibility of a communication (interaction) between u and v in which w is the initiator
and v is the responder. The orientation of an edge corresponds to this asymmetry in the communications. In this
paper, every graph is weakly connected.

A population protocol A(Q, X,Y,Out,d) consists of a finite state space Q, a finite input alphabet X, a finite
output alphabet Y, an output function Out : Q@ — Y and a transition function § : (Q x X)? — P(Q?) that
maps any tuple (g1,1,q2,72) to a non-empty (finite) subset 6(q1, 1, g2, z2) in Q2.2 A (transition) rule of the
protocol is a tuple (g1, 1, g2, 7,4}, gb) 5-t. (g},q5) € 8(q1, 71, 42, 2) and is denoted by (g1,21)(q2,72) — (4}, Gb)-
The protocol A is deterministic if for every tuple (q1, 21, g2, z2), the set 6(q1,21, g2, 22) has exactly one element.

A configuration is a mapping C : V — Q specifying the states of the agents in the graph, and an input
assignment is a mapping « : V — X specifying the input values of the agents. An input trace T is an infinite
sequence T' = ajag ... of input assignments. It is constant if a; = as = An input trace can be viewed as the
sequence of input values given to the agents from the outside environment.

We now define agents’ interactions (called here actions) involving the input values. An action is a pair o = (e, r)
where r is a rule (q1,71)(g2, 72) — (q},4¢5) and e = (u,v) is a directed edge of G, representing a meeting of two
interacting agents u and v. Let C,C’ be configurations, a be an input assignment, and u,v be distinct agents.
We say that o is enabled in (C,) if C(u) = ¢1,C(v) = ¢2 and a(u) = z1,a(v) = x5. We say that (C,a) goes

! In [17], where 027 has been introduced, the oracle is defined in a rather informal way.

2 The input alphabet can be viewed as the set of possible values given to the agents from the outside environment, like
sensed values, output values from another protocol or from an oracle. The output alphabet can be viewed as the set of
values that the protocol itself outputs outside. X and Y are both the interface values of the protocol.

On the Power of 27 for SSLE in Population Protocols 3

to C' wvia o, denoted (C,a) % C', if o is enabled in (C,a), C'(u) = ¢,,C'(v) = ¢4 and C'(w) = C(w) for all
w €V — {u,v}. In other words, C’ is the configuration that results from C by applying the transition rule r to
the pair e of two interacting agents. We write (C, a) — €’ when (C,«) < C’ for some action o. Given an input
trace Ty, = apay ..., we write C' = C if there is a sequence of configurations CoC; ...Cy s.t. C = Cy, C' = Cy
and (Cj, ;) = Cy4q for all 0 < i < k, in which case we say that C’ is reachable from C given the input trace Ty,.

A virtual ezecution is a maximal sequence of configurations, input assignments and actions (Coy, ag,09)
(C1,a1,01) ... such that for each i, (C;, a;) 24 Cy4q. Virtual executions represent all the computations of a popu-
lation protocol, but, as in [1,4,17], we consider here only fair executions. A virtual execution (Cy, ag, 09)(C1,@1,01) . ..
is globally fair, and is called ezecution, if, for every C,C’, a s.t. (C,) — C', if (C, @) = (C}, ;) for infinitely many
i, then C" = C} for infinitely many j. This definition together with the finite state space assumption, implies that,
if in an execution there is an infinitely often reachable configuration, then it is infinitely often reached [3]. Global
fairness can be viewed as an attempt to capture the randomization inherent to real systems, without introducing
randomization in the model.

The output function Out : Q@ — Y is extended from states to configurations and produce an output assignment
Out(C) : V = Y defined as Out(C)(v) = Out(C(v)), given a configuration C. The output trace associated to the
execution F = (Cy, ap,00)(Cy,01,01) ... is given by the sequence Tpr = Out(Co)Out(Ch) In the sequel, we
use the word trace for both input and output traces.

2.2 Behaviour, Oracle, Problem and Implementation

The definitions below are adopted from [5] and different from the ones in [4,17]. They are required to obtain
a proper framework for defining oracles and establishing relations between them and/or between problems. In
particular, this framework is real time independent, which in turn provides self-implementable oracles, in contrast
with the traditional failure detectors [14,15]. In short, in this framework, we define a general notion of behaviour,
which is a relation between input and output traces. A problem and an oracle are defined as behaviours. Then, to
compare behaviours, we define a partial order relation using an abstract notion of implementation by a population
protocol using a behaviour.

In the following, a communication graph G is supposed to be fixed and the references to it are implicit, except
when mentioning G is particularly relevant.

A schedule is a sequence of edges (meetings). An input or an output trace T = apay ... is said to be
compatible with the schedule S = (ug,vo)(u1,v1)... if, for every meeting i, for every agent w different from wu;
and v;, a;(w) = a;41(w). That is, any two consecutive assignments of a compatible trace can differ only on the
values of the two meeting (neighoring) agents. Note that the output trace (associated with an execution with a
schedule S) is necessarily compatible with S by definition. For the input traces, we consider only the compatible
ones. Such a compatibility between an input trace and a schedule is required for the protocol to be able to detect
the changes in the input. This and the output trace compatibility, allow, in turn, to obtain a real-time independent
framework and self-implementability mentioned above.

A history H is a couple (S,T) where S is a schedule and T is a trace compatible with S. Depending on the
type of the trace, a history can be either an input or an output history. A behaviour B over a family of graphs F
is a function that, for a graph G € F and a schedule S on G, maps every input history H;, with schedule S to a
set B(H,y,) of output histories with the same schedule S.

Behaviours can be composed. For instance, in the serial composition, an output trace of a behaviour is the
input trace of another one. Consider two behaviours By, By over the same family F of graphs, with input alphabets
X1, X5 (for the input traces), and output alphabets Y7,Y5 (for the output traces). In the following paragraphs,
we denote by T a trace with values in Z. Let .S be a schedule on G € F.

Thus, if Y1 = Xy = Z, the serial composition B = By o By is the behaviour over F, with alphabets X;, Y5
s.t. (8, Ty,) € B(S,Tx,) iff there exists a trace Tz compatible with S, s.t. (S,Tz) € B1(5,Tx,) and (S,Ty,) €
By (S,T7).

The parallel composition B = By ® By is the behaviour over F, with alphabets X x X5, Y1 x Y5 s.t. (S, Ty,, Ty,) €
B(S, TX1 s TXz) iff (S, TYl) € By (S, TXl) and (S, TYz) S BQ(S, TXz)'

If Xy =UxV and Yy = U x W, the self composition B = Sel fy(B1) on U is the behaviour over F, with alphabets
VW, st. (S,Tw) € B(S,Ty) iff there exists a trace Ty compatible with S s.t. (S, Ty, Tw) € B1(S, Ty, Ty).

Given a (possibly infinite) set U of behaviours, a composition of behaviours in U is defined inductively as either
a behaviour in the family U/, or the parallel, serial or self composition of compositions of behaviours in /. The
behaviour Bs is called a sub-behaviour of By if they are defined over the same family of graphs F, and for every
graph G € F, for every history H on G, Bo(G,H) C B1(G, H).

4 Joffroy Beauquier, Peva Blanchard, Janna Burman, and Oksana Denysyuk

Given a population protocol A with input alphabet X and output alphabet Y, we define the behaviour
Beh(A) associated to the protocol A as the behaviour with input alphabet X, output alphabet Y s.t. (S,Ty) €
Beh(A)(S, Tx) iff there exists an execution of A with schedule S, input trace Tx and output trace Ty .

A problem and an oracle are defined as behaviours. A population protocol A implements a behaviour B (resp.
solves a problem B or implements an oracle B) using a behaviour B’ over a graph family F if there exists a
composition B* involving the behaviours B’ and Beh(A), s.t. B* is a sub-behaviour of B.

We say that a behaviour B; is weaker than a behaviour By over a graph family F, denoted by By <r Bo, if
there exists a population protocol that implements B; using By over F. The two behaviours are equivalent over
F, denoted By ~x Bs, if By < Bs and By <r Bj. In the case where B5 is a problem and Bj is an oracle, By is
then the weakest oracle for implementing Bs over F. The reason is that, because B; < Bs, any oracle that can
be used to implement Bs, can be used to implement Bj, and thus, B; is weaker than any such oracle.

Remark 1. Note that, the relation <x depends on a population protocol (involved in its definition) and thus on
its executions. Since our focus is on self-stabilization under global fairness, the relations we establish between
behaviours involve implementations (population protocols) with globally fair executions starting from arbitrary
initial configurations. For the sake of clarity, the dependence on the considered type of executions is implicit in
the notion of implementation.

3 Specific Behaviours

3.1 Eventual Leader Election Behaviour ELE

ELE is defined with the input alphabet {1} (i.e., no input) and the output alphabet {0,1} such that, given a
graph G and a schedule S on G, a history (S,T) € ELE(S) if and only if the output trace T" has a constant suffix
T = aaa... and there exists an agent A such that a(\) =1 and a(u) = 0 for every u # A. In other words, A is
the unique leader. Notice that for all our protocols, there is an implicit output map that maps a state to 1 if it
is a leader state, and to 0 otherwise.

In our framework, the informal problem of Self-Stabilizing Leader Election (SSLE) mentioned in the intro-
duction consists in obtaining a population protocol that solves £L£E using another behaviour (if necessary) and
starting from arbitrary initial configurations.

3.2 Oracle 27

Informally, 27 (introduced in [17]) reports to agents whether or not one or more leaders are present. Thus, it
does not distinguish between the presence of one or more leaders in a configuration (of a protocol composed with
£27). This is sufficient, for example, to solve ELE in complete graphs, because two leaders are always neighbours,
and eventually one of them can be eliminated, resulting finally in a unique remaining leader [17]. On rings, a
rather elaborated mechanism (together with the global fairness) allows to cancel supplementary leaders, without
knowing their number [17].

Formally, 27 is defined as follows. The input and output alphabets are {0,1}. Given an assignment a, we
denote by /(a) the number of agents that are assigned the value 1 by a. Given a graph G and a schedule S on
G, (S,Tout) € 27(S,T;y,) if and only if the following conditions hold for input and output traces T;,, and T,;. If
T;n has a suffix agag ... such that Vi, l(a;) = 0, then T,,; has a suffix during which at each output assignment
at least one agent is assigned 0. If T}, has a suffix agay ... such that Vs,l(«as) > 1, then T,,; has a suffix equal
to the constant trace where each agent is permanently assigned the value 1. Otherwise, any Ty is in £27(S5, T;y,).

4 SSLE using (27 over Graphs with Bounded Degree

In this section, we show that, for any given integer d, the behaviour ELE can be implemented in a self-stabilizing
way using {27 over the family of weakly connected graphs with a degree bounded above by d. Precisely, we present
a population protocol Ay and prove that the behaviour given by the composition Sel f(Beh(Aq) o 27) (see Fig. 1)
is a sub-behaviour of £L£E. For the sake of clarity, we first give a solution over the family of strongly connected
graphs with bounded degree. It is possible to transform this solution into one over weakly connected graphs with
bounded degree (see Theorem 4 in the appendix).

Our protocol is inspired from Fischer and Jiang’s protocol [17] for rings. The main design difficulty comes
from the fact that the information given by the oracle does not allow to distinguish between the presence of a
single or more leaders. Thus, a leader should try to kill possible other leaders, when avoiding a scenario where
all leaders are killed infinitely often. This metaphor comes from [17] — leaders sending bullets for killing other
leaders, and may protect themselves by shields. Although the protocol in [17] is not simple, the ring topology is

On the Power of 27 for SSLE in Population Protocols 5

LQ?H)ZI >

d leader,

Fig. 1. Serial composition Beh(Ag) o 27 followed by a self composition.

of great help. For arbitrary graphs, managing bullets and shields is much more complicated, and agents must in
some sense keep a trace of them. As the agents are finite-state, a bounded degree is needed for implementing such
a management.

As a basic tool for our protocol, we use the 2-hop coloring self-stabilizing population protocol, denoted by
2HC, proposed in [4]. A 2-hop coloring is a coloring such that all neighbours of the same agent have distinct
colors. We denote by Colors the corresponding set (of size O(d)) of possible colors.

4.1 The Protocol A, (Algorithm 1)

The input variables (read-only) of Ay at each agent = are: the oracle output 27, (values in {0,1}); and the agent
color ¢, (values in Colors), which stores the output of 2HC. The working variables are: the leader bit leader,
(values {0,1}); the bullet vector bullet, (vector with values in {0,1} indexed by Colors); and the shield vector
shield, (vector with values in {0,1} indexed by Colors).

The idea of the protocol is the following. An agent may hold several shields (resp. bullets), each of them
waiting to be forwarded to an out-neighbour, from initiator to responder, with associated color, lines 14 — 18
(resp. in-neighbour, from responder to initiator, lines 7 — 12). The information required for implementing this is
encoded in the shield and bullet vectors. The purpose of the bullets is to kill leaders (line 10), whereas the purpose
of the shields is to protect them by absorbing bullets (line 17). A leader is created when the oracle reports that
there are no leaders in the system (lines 2, 3). When a leader is created, it comes with (loads) a shield for every
color (line 5), and thus is protected from any bullet that could come from one of its out-neighbors. To maintain
the protection, each time an agent receives a shield from its in-neighbor, it reloads shields for every color (line 16).
Dually, any time an agent receives a bullet, it reloads bullets for every color (line 11). In addition, whenever a
leader interacts as an initiator, it loads bullets for every color (line 22).

Algorithm 1: Protocol A, - initiator z, responder y

1 (Create a leader at z, if needed) 13 end
2 if 27, =0 then 14 (Move shield from x to y, if any)
3 leadery <+ 1 15 if shield;[cy] =1 then
4 Ve € Colors, bullet,[c] + 1 16 Ve € Colors, shieldy[c] + 1
5 Ve € Colors, shields[c] + 1 17 bullety[cy] < 0
6 end 18 shieldz[cy] < 0
7 (Move bullet from y to z, if any) 19 end
8 if bullety[cz] = 1 then 20 (Load bullets if z is a leader)
9 if shieldg[cy] =0 then 21 if leader; = 1 then
10 leader, < 0 22 Ve € Colors, bulletz[c] + 1
11 Ve € Colors, bulletg[c] + 1
12 bullety[cs) < 0

4.2 Correctness

Consider a strongly connected graph G of degree (in and out degree together) less than or equal to d. For the
sake of clarity, in any execution we consider, we assume that the protocol 2HC permanently outputs a correct
2-hop coloring from the beginning (variables c,, for every agent).

A path in G is a sequence of agents m = zg...x, such that (x;,z;y1) is a directed edge of G. If zy = x,., 7
is a loop at xg. If v is an agent that appears in 7, we denote it by u € 7, and by ind,(u) the index of the first
occurrence of u in 7, i.e. the minimum ¢ such that z; = u. If (z,y) is an edge of G, we say that x has a shield
against y if shield,[c,] = 1. Similarly, we say that y has a bullet against x if bullet,[c,] = 1.

Definition 1 (Protected Leader). Consider a loop m = zg...2r41 at a leader A (= xo = xr41). We say that
X is a leader protected in m if there exists i € {0,...,r} such that x; has a shield against ;11 and, if i > 1, x; is
not a leader and has no bullet against x;_,. In addition, for every j € {1,...,i — 1}, x; is not a leader, has no
shield against x; 11 and no bullet against x;_1. The agent x; is the protector of A in w; the path xq...x; is the
protected zone in 7. The agent X is a protected leader if it is protected in every loop at .

6 Joffroy Beauquier, Peva Blanchard, Janna Burman, and Oksana Denysyuk

Note that a new leader or a leader that receives a shield becomes protected by loading shields for every color.

We use the following notations in the sequel. Given an execution E, Sg denotes the maximum (infinite) suffix
of E such that each couple (C,) (C being a configuration, and « an input assignment) in Sg occurs infinitely
often. TRCg denotes the (finite) set of configurations occurring in Sg, i.e., the set of configurations that occur
infinitely often in F.

Lemma 1. If C' € IRCg has a protected leader, then every configuration in IRC'r has a protected leader.

Proof. Consider a couple (C, @) that occurs in Sg, C being a configuration (in /RCg) and « an input assignment.
Let C’ be a configuration s.t. (C, «) goes to C’ via an action involving a directed edge (x,y). By global fairness,
C’ € IRCE too, and we show that it has a protected leader.

Note that when a leader is created, it is already protected by itself since it has a shield against every of its
out-neighbors (line 5). We thus focus on transition rules that do not involve the creation of a leader. Let A be a
protected leader in C' and 7 be any loop at A. Let p be the protector of A in 7. If and y do not appear in the
protected zone in 7, then after the transition, the states of the agents in the protected zone have not changed and
A is still protected in 7. Then, assume that = or y appear in the protected zone and let z € {z,y} be the agent
with lowest index ind,(z). By the choice of z, ind,(z) < ind,(u).

Consider first the case ind,(z) < ind.(p). If z = z, then z cannot receive a bullet (from y), i.e., either = has
a shield against y or y has no bullets against x. Otherwise, the path that goes from A to (the first occurrence
of) z = z followed by any path that goes from y to A yields a loop within which A is not protected in C; hence
a contradiction. Hence, if z = xz, after the transition, A is still protected by p in 7. Now, if 2 = y, y may only
receive a shield, and thus, after the transition,) is still protected in 7 (by u or y).

Now, assume that ind,(z) = ind,(u). This implies that z = p € {z,y}, and that every agent in the protected
zone, except p, is different from x and y. If p = y, then during the transition, x may only receive a shield (which
merges with its own shield); hence, A is still protected by p in 7 after the transition. The case p = x is more
complicated. First consider the subcase where y is not the agent that follows the first occurrence of i in 7. Then
1 cannot receive a bullet during the transition, otherwise, the same argument as above shows the existence of a
loop at A within which) is not protected in C. After the transition, (the first occurrence of) p has still a shield
against the agent right after it, which proves that A is still protected in 7. Consider now the subcase where y is
the agent that follows the first occurrence of p in 7. If y is not a leader, then after the transition, y becomes the
new protector of A in 7. If y is a leader, then after the transition, X is no longer protected, but y is protected since
the reception of a shield produces shields for every color. In both cases, after the transition, there is a protected
leader in C".

We thus have shown that, in all cases, C’ contains a protected leader. Given any configuration C” € IRCg,
there must be a sequence of actions from (C, «) to (C”, ") during Sg, for some input assignment o”. Since C
has a protected leader, the proof shows that every configuration in this sequence, and in particular C”', has also
a protected leader. Therefore, any configuration C” in I RCE has a protected leader. a

Lemma 2. If no configuration in IRCg has a leader, then in every input assignment in Sg, 27, = 0 for some
agent x. If every configuration in IRC'g has a leader, then in every input assignment in Sg, 27, = 1 for every
agent x.

Proof. This stems from the definition of (27. a
Lemma 3. Every configuration in IRCg has a leader.

Proof. Assume that some configuration C' in I RCE lacks a leader. On the one hand, if no configuration in /RCEg
has a leader, then by Lemma 2, in every input assignment in Sg, 27, = 0 for some agent x. Hence, in Sg,
during a transition involving x, a protected leader is created (lines 2 — 5). On the other hand, if IRCg contains a
configuration C” with a leader, then there is a sequence of actions from (C, «) to (C’, &’) for some input assignments
a, o, since both C and C’ occur infinitely often in Sg. According to the protocol, during some of these actions,
a protected leader must be created. In both cases, there is a configuration C” € IRCg with a protected leader.
By Lemma 1, this implies that every configurations in I RCg, and in particular C, has a protected leader; hence
a contradiction. a

Lemma 4. All configurations in I RCg have the same number of leaders.

On the Power of 27 for SSLE in Population Protocols 7

Proof. By the lemmas 2 and 3, in every input assignment in Sg, 27, = 1 for every agent x. Thus no leader is
created during Sg. Assume that there exists two configurations C,C’ in I RCg such that the number [of leaders
in C is different from the number I’ of leaders in C’. Without loss of generality, we can assume [< I’. By definition
of Sg, there must be a sequence of actions from (C, «) to (C’,a’) for some input assignments «, «’. The fact that
[< I’ implies that during this sequence a leader is created; hence a contradiction. O

Lemma 5. No configuration in IRCg contains an unprotected leader.

Proof. By the lemmas 2 and 3, in every input assignment in Sg, 27, = 1 for every agent z. Assume that
C € IRCE contains an unprotected leader A. Since A is not protected in C, there exists a path m = xg ... x, from
o = A to some agent x, such that for every 0 < i < r, z; has no shield against x;y1, and =z, is either a leader
or has a bullet against x,._;1. If x,. is a leader, then in any transition where it is the initiator, it creates a bullet
against x,_1. Thus, in both cases, there is a bullet that, by moving (backward) along this path to A, can kill this
non-protected leader. Thus, a configuration C’ within which X is not a leader is reachable from C. During the
sequence of actions from C to C’, no leaders are created. Thus, C’ has fewer leaders than C. The global fairness
ensures that ¢/ € IRCg. This contradicts Lemma 4. O

Theorem 1. The protocol Ay solves the problem ELE using 27 (i.e., 27 = ELE) over strongly connected graphs
with degree less than or equal to d.

Proof. By the previous lemmas, every configuration C' € TRCg has I > 1 protected leaders and no unprotected
leaders; and in every input assignment in Sg, 27, = 1 for every agent x. Assume, by contradiction, that { > 2.
Let A1, A2 be two protected leaders in C. Consider a shortest path p; (resp. ps) from A\; to Ay (resp. from As to
A1). Cousider the loop 11 = pipe at A1, and the loop 7o = pop1 at Aa. Denote by uq (resp. ps) the protector
A1 (resp. Ag9) in 7y (resp. m2). By construction, in C, the first occurrence of p; (resp. u9) is in p; (resp. pz). By
definition and according to the protocol, it is possible to move the (first occurrence of the) protector u; to the
position right before Ay. Another movement makes the protector transfer its shield to Ao, thus turning A; into
a non-protected leader (X, is still a protected leader). Then A\ can fire a bullet that kills A;. Since no leader is
created during the described sequence of actions (2?7, = 1 for every agent x), the reached configuration C’ has
[— 1 leaders. As global fairness ensures that ¢’ € IRCg, this contradicts Lemma 4. Therefore, all configurations
in IRCg have a unique leader. Since a leader cannot move, there is a permanent leader.]

5 Is £27 the Weakest Oracle for Solving SSLE?

We answer this question when considering different communication topologies. For rings, the answer is positive.
It is presented in the following sub-section 5.1. In Sec. 6, we give a sketch of how to extend the result on rings to
regular graphs with bounded diameter. For some other topologies, a negative answer (Corollary 1) follows from
Theorem 2 below. Somewhat similar theorem and its proof, for the case of complete graphs, has been presented
in our previous work [5]. Here we present a more general result that applies to infinite families of graphs, called
here non-simple (like in [4]). A family F is non-simple if there is G € F such that two disjoint subgraphs of G are
also in F. Complete and arbitrary graphs of bounded degree are some examples of non-simple families of graphs.
In contrast, notable simple families of graphs include rings, or, more generally, connected regular graphs.

The following theorem 2 proves the impossibility of a self-stabilizing implementation of {27 using ELE over
any non-simple family of graphs (for definitions, see Sec. 2.2 and remark 1). Coupled with the result of Sec. 4,
i.e. 27 = ELE over connected arbitrary graphs of bounded degree, we have that 27 = ELE over the same graph
family, when self-stabilizing implementation is concerned. Thus, by definition, (27 is not the weakest oracle for
SSLE, over connected arbitrary graphs of bounded degree. Similarly, {27 is not the weakest oracle for SSLE over
complete graphs (and 27 = ELE), following the same theorem 2 coupled with the SSLE protocol over complete
graphs given in [17]. This is summarized in Corollary 1 below. The proof of Theorem 2 uses a classical partitioning
argument. Due to the lack of space, it has been moved to the appendix.

Theorem 2. For any non-simple family of graphs F, there is no self-stabilizing population protocol A implement-
ing 27 over F using the behaviour ELE.

Corollary 1. 027 = ELE over complete graphs and over arbitrary connected graphs of bounded degree. Moreover,
27 is not the weakest oracle to solve ELE over these two families, and more generally, over any non-simple family
of graphs.

8 Joffroy Beauquier, Peva Blanchard, Janna Burman, and Oksana Denysyuk

5.1 £27 is the weakest oracle for SSLFE over rings

In this section, we show that (27 can be implemented in a self-stabilizing way given the behaviour £L£E over
oriented rings. This implementation is given by the RingDetector protocol presented below (see Algorithm 2).
These results are straightforward to extend to non-oriented rings thanks to the self-stabilizing ring orientation
protocol presented in [4]. The meaning of this result, coupled with the result of Sec. 4, is that 27 ~,;,. ELE,
when self-stabilization is concerned. This also implies that (27 is the weakest oracle.

Implementing 27 by the RingDetector protocol using ELE (Algorithm 2)

For the sake of clarity, the unique leader provided by £LE is called the master, whereas the output of {27 reports
about the leaders. Hence, the goal consists in the master detecting the presence or the absence of leaders in the
graph, that is to mimic {27.

Let us define the self-stabilizing protocol RingDetector. The input variables (read-only) at each agent z are:
the master bit master, (values in {0,1}) that keeps the output of £LE; and the leader bit leader, (values in
{0,1}), which represents the input of £2?. The working variables are: the probe field probe, (with values: L - no
probe, or 0 - white probe, or 1 - black probe); the token field (with values: L - no token, or 0 - white token, or 1
- black token); the flag bit flag, (with values: 0 - cleared, 1 - raised); and the output bit (values in {0,1}), which
represents the corresponding output of (27.

Each time an agent has its leader bit set to 1, it raises its flag (and the flag of the other agent in the interaction)
— line 5. A token moves clockwise, and its purpose is to detect a leader (actually, a raised flag) and to report it to
the master (lines 18 —26). A probe moves counter-clockwise, and its purpose is to report to the master the lack
of tokens (lines 7 — 13). The master loads a white probe each time it is the responder of an interaction (line 2).
When a probe meets a token, the probe becomes black (line 10). When two probes meet, they merge into a black
probe if one of them was black, and into a white probe otherwise (line 12). The master loads a token colored with
its flag only when it receives a white probe (line 17). Each time a token meets an agent with its flag raised, the
token becomes black (line 21) and the flag is cleared (line 25). Two meeting tokens merge into a black token if
one of them is black, and into a white token otherwise (line 23). When the master receives a token, it whitens
the token, and it outputs 0 if the token is white, and 1 otherwise (lines 28 —31). In any interaction, the responder
copies the output of the initiator, unless the responder is the master (line 33).

Algorithm 2: Protocol RingDetector - initiator x, responder y

1 (if the master is the responder, it creates a white probe) 18 (move token from z to y)
2 if master, = 1 then probe, < 0 19 if token, # L then
3 20 (the token becomes black when meeting a flag)
4 (raise flags if needed) 21 if flag, = 1 then token, « 1
5 if leadery V leadery then flag, < flag, <1 22 (otherwise, keeps the same color or merges)
6 23 else if token, € {L,0} then token, < token,
7 (move probe from y to x) 24 (the flag is cleared)
8 if probe, # 1 then 25 flagy <0
9 (the probe becomes black when meeting a token) 26 tokeng < L
10 if token, # 1 then probe, + 1 27 end
11 otherwise, keeps the same color or merges) 28 (if the master receives a token, it changes its output and
12 else if probe, € {1,0} then probe, + probe, whitens the token)
13 probey L 29 if mastery = 1 and tokeny # 1 then
14 end 30 out, < tokeny
15 31 token, < 0
16 (if the master receives a white probe, it loads a token) 32 (a non-master responder copies the output of the initiator)
17 if master; =1 and probe, = 0 then token, < flags 33 if master, = 0 then out, <+ out,
Correctness
In the following, the input trace 7" = gy ... of every execution F is assumed to provide a unique master,

i.e., there exists a unique agent \ in E such that o;(\).master = 1 for all i.! By the definition of £££ and
RingDetector, such an input trace exists in an infinite suffix of every E of RingDetector. For the correctness
proof, we focus only on such suffixes, for every execution.

The leader bit component in the input trace represents the input of 27. In this trace, leaders can appear or
disappear almost freely, during each meeting. In particular a leader can “jump” from u to v during an interaction

! We precise the notations. o being an assignment (resp. C' a configuration), a.v (resp. C.v) is the projection of o (resp.
C') on the variable v; and a(z).v (resp. C(z).v) is the value of this projection at agent .

On the Power of 27 for SSLE in Population Protocols 9

between v and v. Though, a leader cannot “jump” to a distant (non neighbouring) agent on the ring, by the
compatibility of an input trace with a schedule (see Sec. 2.2). The fact that a leader can “jump” counter-clockwise
from the responder to the initiator introduce some subtleties in RingDetector. Without taking care, such a
“jumping” leader could be undetectable. To ensure its detection, the flag bits of both the responder and the
initiator are raised, even if the leader is detected only at one of the two interacting agents (line 5).

We use below the same notations Sg and I RCEg defined in Sec. 4.

Lemma 6. For any execution E, in any configuration of IRCg, there is a unique agent holding a token (black
or white).

Proof. Consider a configuration C € ITRCg. We first prove that in C' at least one agent holds a token. By
contradiction, assume that, for every agent x, C(xz).token = L. The following scenario will produce a token.
First, the master \ interacts as a responder and produces a white probe at A. Then, all the other probes move
(counter-clockwise) to the master. Then the white probe at A visits all agents and returns to \. Since there are no
tokens in the graph, the white probe does not turn black. Then, the white probe arriving at A produces a token
(line 17). This scenario does not depend on the presence of leaders. Hence, there exists a configuration C’ with
at least one token such that C' = C”, for any input trace. By global fairness, ¢’ € IRC. Together with that, no
rule of the protocol can remove all tokens. In line 26, the token is removed from an initiator x, but is present or
created in the responder y (line 23). No other instruction removes a token. Thus C cannot occur infinitely often;
hence a contradiction. Hence, in C' at least one agent holds a token.

Assume now that C has at least two tokens. Since two meeting tokens merge into one, there is a configuration
C' with exactly one token such that C' = C”, for any input trace. By global fairness, C’ belongs to IRC'g. Since C
also occurs infinitely often in the execution, C’ = C, for any input trace. To reach C, a token should be created. It
can happen only if the master receives a white probe. Thus, the master should receive infinitely many white probes
during Sg. However, once there is a token, since the tokens move clockwise and the probes counter-clockwise, any
probe arriving at the master must be black; hence a contradiction. Therefore, C' has exactly one token. O

Thus, in the suffix Sg, there is a unique token moving clockwise. We divide Sg into rounds, defined as follows.
A round begins with an interaction in which the master holds the token and is the initiator; the round ends with
the first event in which the master is the responder and the initiator holds the token. In other words, a round
corresponds to the token traveling around the whole ring starting and ending at the master.

Lemma 7. Let R be a round in Sg. We denote by (Co, ap) ... (Cr, ;) the sequence of configurations and input
assignments corresponding to R. Case (a) If there are no leaders in R (i.e., for every 0 < i < r, and every agent
x, we have «;(x).leader = 0), then after the last action in R, all the agents have their flags cleared (set to 0).
Case (b) If there are no leaders in R, and if all agents have their flags cleared at the beginning of the round, then
at the end of the round, the master outputs 0 and all agents have their flags cleared. Case (c) If there is at least
one leader at each assignment «; during the round, i.e., for every 0 < i < r there is some agent x; such that
a;i(x;).leader =1, then at the end of the round, the master outputs 1.

Proof. The proofs of cases (a) and (b) are relatively simple. They have been moved to the appendix.

Case (c). Assume that there is a leader at each assignment during the round. Let p be a leader agent in the
assignment «y, i.e., ap(p).leader = 1. During the round, there must be some action ¢, such that u = v; is the
responder, and the initiator u; holds the token. If 1 is a leader in an assignment «;, then after the transition, the
token turns black. If u is not a leader, in assignment «;, since p is a leader in the assignment «g, there must be
some action j < ¢ such that a;(u).leader =1 and a;41(p).leader = 0. Now, since the input trace is compatible
with the schedule, ;1 must be the initiator u; or the responder v; in the transition (C;,a;) — Cj11. Hence, p
must raise a flag in both the responder v; and the initiator u, (line 5), i.e., we have Cj11(u).flag=1 (j+1 < 1).
Recall that there is a unique token, so the flag cannot be cleared during the remaining actions until 7. Hence, at
action 4, the token turns black (line 21) when the token moves from the initiator u; to the responder v; = p. In
all cases, the master receives a black token at the end of the round, and thus outputs 1.]

Theorem 3. The protocol RingDetector is a self-stabilizing implementation of 27 using ELE (i.e., ELE = 27)
over oriented rings.

Proof. Consider a globally fair execution F and focus on the suffix Sg. By Lemma 6, in Sg, there is a unique
token moving clockwise. Let Sp = ... RiRs ... R; ..., where each R; is a round.

10 Joffroy Beauquier, Peva Blanchard, Janna Burman, and Oksana Denysyuk

Consider first the case where the input trace T' = agay ... in Sp permanently assigns no leader everywhere,
i.e., for every i, for every agent x, a;(x).leader = 0. By Lemma 7, at the end of R, all flags are cleared. Hence,
at the end of R, the master outputs 0 and all flags are cleared. By iteration, at the end of each round R;,
1 > 2, the master outputs 0. Since the master updates its output only when it receives the token, and since this
happens exactly at the end of a round, in the suffix Ry Rs ..., the master permanently outputs 0. The fact that
the responder always copies the output of the initiator (unless the responder is the master) implies that there is
a suffix during which all agents permanently output 0.

Assume now that the input trace in Sg is such that there is at least one leader at every input assignment. By
Lemma 7, at the end of each R;, the master outputs 1. The same argument as above shows that there is a suffix
of execution during which all agents permanently output 1.

Note that, in the remaining cases of input traces in Sg, that is when there are input assignments with a leader
and some other without, nothing has to be proven, because then, the output of (27 is arbitrary. O

Remark 2. Note that a simpler solution managing only tokens, sent periodically by the master, and without
managing any probes, would not be correct. To see this, consider an input trace where there is one leader in every
input assignment, but this leader moves repeatedly clockwise, “jumping” from one agent to its successor on the
ring. By the definition of {27, in this scenario, the master should eventually and permanently output 1. However,
it is infinitely often possible that there are two tokens directly following the leader one after the other, during the
whole tour, from the master to the master. In this case, the first token arriving at the master is black, but the
following token is white. This is because the first token has cleared every flag raised by the leader. The repetition
of this scenario causes an oscillation of the output of the master between 0 and 1.

The corollary below follows from theorems 3 and 1, the ring orientation protocol of [4], and the definition of
the weakest oracle.

Corollary 2. 27 ~,,4s ELE, i.e., {27 is the weakest oracle to solve ELE over rings.

6 Perspectives

This work opens many questions about the solvability of SSLFE in population protocols. What are other additional
families of graphs over which SSLE can be solved with the help of 27 7 For example, is 27 still sufficient over
connected arbitrary graphs (non-simple family; cf. Sec. 5) or over connected regular graphs (simple family). If
not, what can be sufficient oracles, and the most interestingly, which of those are necessary?

We sketch below an answer for some of these questions. Specifically, we conjecture that the result on rings can
be extended to other simple families of graphs and we present here a possible extension. Consider the family of
regular graphs (of constant degree) with bounded diameter. We claim that, over this family, {27 is equivalent to
(or is the weakest oracle for solving) SSLE. Note that the protocol given in Sec. 4 is applicable also in this case,
so it remains to show that {27 can be implemented given SSLE. We sketch below the corresponding protocol,
called T'reeDetector.

This protocol uses two other protocols from [4]. One performs a two-hop coloring and, another one builds a
spanning tree, with the master at the root (the latter protocol requires constant degree and bounded diameter).
Protocol T'reeDetector uses the spanning tree structure to detect the leaders in the input. It is necessarily more
complicated than RingDetector, because now, during a meeting, a leader can “jump” all over the graph, and not
only over the edges of a tree, used for traversal (in the ring case, all the edges are used for traversal).

Like in RingDetector the presence of a leader raises a flag. The flag detection is made by waves of tokens
that start at leaves and go upward the tree, to the master. Each agent knows the number of its children and
propagates the wave only after having met all of them (then, if some leaf generates tokens faster than another
leaf, they are blocked somewhere). In particular, the master updates its output only when it has met all its
children. This provides a sort of synchronization mechanism allowing to have something analogous to the rounds
of RingDetector.

A key point is that, during a meeting, if one of the agents is a leader, then a flag is raised in both interacting
agents. Thus, if a leader “jumps” on a distant agent of the tree, two flags are raised. This ensures that a leader is
detected even if it has “jumped” to the tree branch where the last token wave has already passed.

Again, like in RingDetector, tokens start white, and when meeting a raised flag, become black and clear the
flag. If the master receives a black token from one of its neighbours in the tree, it outputs 1 and 0 otherwise.
The technical part of the proof is to show that successive “jumps” of a leader through the graph cannot cause an
oscillation of the output of the master.

On the Power of 27 for SSLE in Population Protocols 11

References

1. D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in networks of passively mobile
finite-state sensors. Distributed Computing, 18(4):235-253, 2006.
2. D. Angluin, J. Aspnes, and D. Eisenstat. Fast computation by population protocols with a leader. Distributed
Computing, 21(3):183-199, 2008.
3. D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. The computational power of population protocols. Distributed
Computing, 20(4):279-304, 2007.
4. D. Angluin, J. Aspnes, M. J. Fischer, and H. Jiang. Self-stabilizing population protocols. ACM Trans. Auton. Adapt.
Syst., 3(4), 2008.
5. J. Beauquier, P. Blanchard, and J. Burman. Self-stabilizing leader election in population protocols over arbitrary
communication graphs. In OPODIS, pages 38-52, 2013.
6. J. Beauquier, P. Blanchard, and J. Burman. A weakest oracle for symmetric consensus in population protocols.
Technical report, INRIA, May 2014. http://hal.archives-ouvertes.fr/hal-00992524.
7. J. Beauquier and J. Burman. Self-stabilizing synchronization in mobile sensor networks with covering. In DCOSS,
volume 6131 of Lecture Notes in Computer Science, pages 362—378. Springer, 2010.
8. J. Beauquier, J. Burman, J. Clement, and S. Kutten. On utilizing speed in networks of mobile agents. In PODC,
pages 305-314. ACM, 2010.
9. F. Bonnet and M. Raynal. Anonymous asynchronous systems: The case of failure detectors. In DISC, pages 206—220,
2010.
10. S. Cai, T. Izumi, and K. Wada. How to prove impossibility under global fairness: On space complexity of self-stabilizing
leader election on a population protocol model. Theory Comput. Syst., 50(3):433-445, 2012.
11. D. Canepa and M. G. Potop-Butucaru. Self-stabilizing tiny interaction protocols. In WRAS, pages 10:1-10:6, 2010.
12. T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consensus. J. ACM, 43(4):685—
722, 1996.
13. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. J. ACM, 43(2):225-267,
1996.
14. B. Charron-Bost, M. Hutle, and J. Widder. In search of lost time. Inf. Process. Lett., 110(21):928-933, 2010.
15. A. Cornejo, N. A. Lynch, and S. Sastry. Asynchronous failure detectors. In PODC;, pages 243-252, 2012.
16. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. of the ACM, 17(11):643-644, Nov.
1974.
17. M. Fischer and H. Jiang. Self-stabilizing leader election in networks of finite-state anonymous agents. In OPODIS,
pages 395-409, 2006.
18. M. H. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of consensus with one faulty process. Journal of the
ACM, 32(2):374-382, Apr. 1985.
19. O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Mediated population protocols. Theor. Comput. Sci., 412(22):2434—
2450, 2011.
20. R. Mizoguchi, H. Ono, S. Kijima, and M. Yamashita. On space complexity of self-stabilizing leader election in mediated
population protocol. Distributed Computing, 25(6):451-460, 2012.

Appendix

Theorem 2. For any non-simple family of graphs F, there is no self-stabilizing population protocol A implement-
ing 27 over F wusing the behaviour ELE (i.e., there is no composition B = ELE o Beh(A) C 27).

Proof. We prove the result by contradiction using a classical partitioning argument. Assume such a protocol A
and consider a graph G from a given non-simple family JF, such that there are two disjoint subgraphs of G, G*
and G? that are also in F. Every execution E of A has an input trace (T, T},), where T is an output trace of ELE
and T;, represents the input trace of §27. Given a schedule S on G, (S, Tyut) € B(S,T,T;y,) such that T, is an
output trace of A (corresponding to the one of £27) induced by S.

By the definition of £LE, each T eventually permanently assigns 1 to a unique agent A and 0 to every other;
we denote by /3 this assignment. W.l.o.g., assume that A € G'. We choose the trace T}, to be the constant trace
aa ... where o assigns 1 to some agent p € G2, and 0 to every other.

By the assumption on A, the output trace T,,; has a suffix equal to the constant trace assigning 1 to every
agent. Thus, for every couple (C,v) in Sg, v = (8, a) and the output associated to C assigns 1 to every agent.
If we restrict (C,) to the graph G*!, we obtain a configuration and input assignment (C',~!). The agent \ is
still the unique agent to be assigned 1 by ', and a! assigns 0 to every agents in G'. Since the protocol must be
self-stabilizing, and since G' € F, there is a sequence of actions, involving all the agents of G' and having the

12 Joffroy Beauquier, Peva Blanchard, Janna Burman, and Oksana Denysyuk

input assignment ' during the sequence. This leads to a configuration C’! that outputs 0 at at least one agent
in G'. This involves that there is a sequence of execution (C,~)(C1,7)(Ca,7)...(C’,7) such that C’ outputs
1 at the agents of G? and 0 at some agent in G'. The global fairness ensures that C’ occurs in Sg; hence a
contradiction. O

Theorem 4. Given any population protocol A implementing a behaviour B over a family of strongly connected
graphs, there is a population protocol A" (given in the proof) implementing B over a family of weakly connected
graphs.

Proof. We give a constructive proof. We show how to transform A into a population protocol A’. Given A, we
define below a (possibly) non-deterministic protocol AVP. It can be transformed into a deterministic one by the
transformer proposed in [4], if ANP implements an elastic behaviour (as ELE in our case).

ANP has the same state space, inputs and outputs as A, and the following transition rules. The rule
(p,z)(q,y) — (p',q') is arule of ANP if and only if (p,z)(q,y) — (p/,¢') is a rule of A or (¢,y)(p,z) — (¢',p) is a
rule of A. For instance, if A has a unique rule (p, z)(g,y) — (»',¢'), then ANP has two rules, (p,z)(q,y) — (',)
and (q,y)(p,z) — (¢',p'). In this example ANP is deterministic but it would not be the case if A had also a rule
(¢,9)(p,x) — (¢",p"). Intuitively, ANP | executing over a weakly connected graph G, simulates A over a strongly
connected graph which is the symmetric closure Gy, of G. Alternatively, it is as if ANVP simulated a scheduler,
over a non directed graph induced by G, which could choose at every interaction which agent is the initiator, and
which is the responder. We now show that A™” implements the same behaviour B as A over a family of weakly
connected graphs.

Given a weakly connected graph G, the symmetric closure Gy, of G is a strongly connected graph. We show
that, if E = (Co, ag,00)(C1,a1,01) ... is a globally fair execution of ANP on G, then there is a sequence of
actions o}, i € N, such that the sequence E' = (Cy, g, 0()(C1,a1,07)... is a globally fair execution of A on
Gsym- Hence, if A solves B over Gy, then ANP solves B over G. The corresponding sequence of actions ol is
defined as follows. If o; = (u;,v;, (¢, ¥)(p,x) = (¢',p")) but (q,y)(p,x) — (p',¢’) is not a rule of A, then define
o; = (vi,ui, (p,) (¢,) = (P, ¢'))- I (¢,9)(p,x) — (¢',p') is a rule of A, then define o} = 0. o

Lemma 7, cases (a) and (b). Let R be a round in Sg. We denote by (Co,ap)...(Cr,) the sequence of
configurations and input assignments corresponding to R. Case (a) If there are no leaders in R (i.e., for every
0 <4 <r, and every agent x, we have «;(x).leader = 0), then after the last action in R, all the agents have
their flags cleared (set to 0). Case (b) If there are no leaders in R, and if all agents have their flags cleared at the
beginning of the round, then at the end of the round, the master outputs 0 and all agents have their flags cleared.

Proof. Case (a). Assume there are no leaders during the round R. Since the token moves clockwise from the
master to the master, and since a token clears any flag it encounters, at the end of the round, the token has
cleared all the possible raised flags in the ring.

Case (b). Assume that there are no leaders during R, and that all the flags are cleared at the beginning.
During the first action in R, the master holds the token and colors it in white. Since there are no leaders in R, in
every configuration within the round, all the flags are cleared. Hence, when moving clockwise from the master to
the master, the token meets no raised flags and stays white. At the end of the round, the master receives a white
token and outputs 0. O

