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Abstract

This paper considers the fundamental problem of self-stabilizing leader election (SSLE) in the
model of population protocols. In this model an unknown number of asynchronous, anonymous and
�nite state mobile agents interact in pairs. SSLE was shown to be impossible in this model without
additional assumptions. This impossibility can be circumvented for instance by augmenting the
system with an oracle, like the eventual leader detector Ω? of Fischer and Jiang, who presented a
uniform protocol solving SSLE with the help of Ω? on complete communication graphs and rings.
In this paper, we extend their results. Our �rst contribution is a precise framework for dealing with
oracles. This framework is independent of the notion of real time. Such a design choice avoids
some known problems of traditional real time based frameworks. We then formally de�ne Ω? as
well as a stronger oracle Ω$ and a weaker one WΩ?. The comparison between the oracles is based
on the notion of implementation. We prove that SSLE can be implemented with Ω$ over weakly
connected communication graphs, with WΩ? over oriented trees and with Ω? over weakly connected
communication graphs of bounded degree. Finally, we show that Ω? can be implemented using
SSLE over rings, proving their equivalence. All these results allow to establish relations between the
di�erent oracles and SSLE, which we summarize in a �gure.

∗Contact author: LRI, Bât. 650, University of Paris-Sud XI, 91405 Orsay Cedex France. tel: 33 (0)1 69 15 64 32



1 Introduction

The literature on distributed computing includes a number of impossibility results. The impossibility
can be related to the system asynchrony, the presence of failures, their type, or too general initial con-
ditions. For instance, the consensus problem has been shown to be impossible in asynchronous systems
with only one crash fault [14]. An elegant approach for circumventing the impossibility of consensus is
the abstraction known as failure detectors introduced by Chandra and Toueg [9]. In some sense, a failure
detector can be viewed as an oracle, which provides to the system nodes a supplementary information
about failures and allows to solve a given problem. De�ning such oracles raises the fundamental question
of providing the minimum amount of information su�cient to solve the problem. Among the di�erent
failure detectors proposed in this approach to solve consensus in the conventional asynchronous commu-
nication model, one of them, the eventual leader elector Ω, has been proven to be the weakest. Informally,
that means that it supplies a minimal supplementary information necessary to obtain a solution [8].

In this work, we consider a very basic communication model of mobile agents called population pro-

tocols. It has been introduced for large networks of tiny, anonymous and asynchronous mobile agents
communicating in pairs [1]. The network has an unbounded but �nite population of agents, each pos-
sessing only O(1) states, implying that the size of the population is unknown to the agents. With such
minimal assumptions, the impossibility results are not a surprise, especially when failures are possible.
One of them concerns the problem of self-stabilizing leader election (SSLE) [3, 13]. Self-stabilization [12]
is a framework for dealing with transient state-corrupting faults, but can be generally viewed as not al-
lowing presupposed initial con�gurations. In other words, a protocol solves a problem in a self-stabilizing
way if every execution starting from an arbitrary initial con�guration solves the problem.

The eventual leader elector Ω of Chandra and Toueg cannot be used with population protocols,
because Ω assumes that the network nodes have unique identi�ers, unavailable to anonymous agents in
population protocols. Moreover, an agent cannot even determine whether two messages are from the
same sender, or if two successive messages it has sent have the same receiver. These are some reasons
why Fischer and Jiang introduced a new type of oracle, called Ω? [13]. This oracle does not require
unique identi�ers and has additional drastic di�erences. One of the important di�erences is motivated
by the self-stabilizing nature of the SSLE problem considered in [13]. While Ω is designed to circumvent
impossibility related to crash faults, Ω? is designed to deal with state-corrupting faults. Thus, while Ω is
related to a failure pattern and is independent from the protocol using it, Ω? interacts with the protocol,
providing information related to the reached con�gurations. With Ω?, there is some sort of a feedback
loop, the outputs of the oracle in�uence the protocol; and conversely, the protocol in�uences the outputs
of the oracle. Together with that, there are some features in common with Ω. Both Ω and Ω? are
unreliable in the sense that Ω? can make errors, that is, to give false information at some point and at
some agents, and is only required to eventually provide correct answers, exactly like Ω. To demonstrate
the power of Ω?, [13] gives a solution to SSLE using Ω? in complete communication graphs and rings.
Note that in [13] the oracle is de�ned in a rather informal way.

The �rst contribution of this paper is a formal framework adapted to the population protocols for
modeling oracles and obtaining relations between them (Sec. 2.2). In this framework, oracles are
completely independent of the notion of real time, which also allows to establish a precise hierarchy
of oracles. In contrast, the notion of real time (meaningless in asynchronous protocols) raises known
problems (e.g., non self-implementable oracles) when establishing such hierarchy in the framework of the
classical failure detectors (see, e.g., [10, 11]).

In the proposed framework, we give a precise de�nition of Ω? and also propose two new unreliable
oracles: a stronger oracle Ω$, and a weaker WΩ? (Sec. 3.2). Informally, Ω? reports to each agent a guess
about whether or not one or more leaders are present in the system. Ω$ has the additional capacity to
distinguish between the cases of exactly one leader and more than one leader in the system. WΩ? is only
required to report its guesses about leaders ��xed� at some agents (in contrast, Ω? reports its guesses
about a leader even if the agent bearing a leader mark is constantly changing). To demonstrate the
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Figure 1: An arrow Θ1

F
←− Θ2 depicts that Θ1 has a population protocol implementation using Θ2. In

other words, Θ1 is weaker than Θ2 over a family of graphs F (i.e. Θ1 4F Θ2 as de�ned in Sec. 2)
.

relative power of these oracles, we solve SSLE using each of them separately in di�erent communication
topologies. In particular, we prove that SSLE can be implemented with Ω$ over weakly connected
communication graphs (Sec. 4), withWΩ? over oriented trees (Sec. 5) and with Ω? over weakly connected
communication graphs of bounded degree (Sec. 6). Finally, we show that Ω? can be implemented using
SSLE over rings, proving their equivalence (Sec. 7). When the two former results related to Ω$ and
WΩ? are more intuitive and simpler, the two latter ones related to Ω? are less intuitive and much more
intricate. Due to the lack of space, almost all proofs are sketched. All complete proofs appear in the
appendix.

All these paper results allow to establish relations between the di�erent oracles and SSLE, which
we summarize in Fig. 1.

Related Work. Being an important primitive in distributed computing, leader election has been
extensively studied. Below, we mention only the most relevant works to the current paper.

It was shown, e.g. in [2, 5], that fast converging population protocols can be designed using an ini-
tially provided unique leader. Moreover, many self-stabilizing problems on population protocols become
possible given a leader (though together with some additional assumptions, see, e.g., [3, 4]). Never-
theless, SSLE is impossible in population protocols over general connected communication graphs [3].
Together with that, [3] presents a non-uniform solution for SSLE on rings. A uniform algorithm for
rings and complete graphs is proposed in [13], but uses Ω?. Recently, [6] showed that at least n agent
states are necessary and su�cient to solve SSLE over a complete communication graph, where n is the
population size, unknown to agents. For the enhanced model of mediated population protocols [15], the
work of [16] shows that (2/3)n agent states are su�cient to solve SSLE. In [7], versions of SSLE are
considered assuming Ω? together with di�erent types of local fairness conditions, in contrast with the
original population protocols' global fairness that is also assumed in the current paper - see Sec. 2.

2 Model and De�nitions

2.1 Population Protocol

We use the same de�nitions as in [13] with some slight modi�cations. A network is represented by a
directed graph G = (V,E) with n vertices. Each vertex represents a �nite-state sensing device called
an agent, and an edge (u, v) indicates the possibility of a communication between u and v in which u is
the initiator and v is the responder. The orientation of an edge corresponds to this asymmetry in the
communications. In this paper, every network is weakly connected.

A population protocol A(Q, X, δ) consists of a �nite state space Q, a �nite input alphabet X and a
transition function δ : (Q × X)2 → P(Q2) that maps any tuple (q1, x1, q2, x2) to a non-empty (�nite)
subset δ(q1, x1, q2, x2) in Q

2. A (transition) rule of the protocol is a tuple (q1, x1, q2, x2, q
′
1, q

′
2) such that

(q′1, q
′
2) ∈ δ(q1, x1, q2, x2) and is denoted by (q1, x1)(q2, x2) → (q′1, q

′
2). The population protocol A is

deterministic if for every tuple (q1, x1, q2, x2), the set δ(q1, x1, q2, x2) has exactly one element.
A con�guration is a mapping C : V → Q specifying the state of each agent in the network, and an
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input assignment is a mapping α : V → X. A trace T on a graph G(V,E) is an in�nite sequence of
assignments from V to the set Z, i.e., T = α1α2 . . . where αi : V → Z. When Z = X, then each αi is an
input assignment, and we say T is an input trace of the protocol. The trace is constant if α1 = α2 = . . . .
The trace is uniform constant if it is constant and the common assignment assigns the same value to
every node in the network, i.e., α = α1 = α2 = . . . and for every u, v ∈ V , α(u) = α(v).

An action is a pair (e, r) where r is a rule (q1, x1)(q2, x2)→ (q′1, q
′
2) and e = (u, v) an edge of G. Let

C,C ′ be con�gurations, α be an input assignment, and u, v be distinct nodes. We say that σ is enabled
in (C,α) if C(u) = q1, C(v) = q2 and α(u) = x1, α(v) = x2. We say that (C,α) goes to C ′ via σ, denoted
(C,α)

σ
−→ C ′, if σ is enabled in (C,α), C ′(u) = q′1, C

′(v) = q′2 and C ′(w) = C(w) for all w ∈ V − {u, v}.
In other words, C ′ is the con�guration that results from C by applying the transition rule r to the node
pair e. We note (C,α)→ C ′ when (C,α)

σ
−→ C ′ for some action σ.

Given an input trace Tin = α0α1 . . . , we write C
∗
−→ C ′ if there is a sequence of con�gurations

C0C1 . . . Ck such that C = C0, C
′ = Ck and (Ci, αi)→ Ci+1 for all 0 ≤ i < k, in which case we say that

C ′ is reachable from C given the input trace Tin.
A virtual execution is an in�nite sequence of con�gurations, input assignments and actions (C0, α0, σ0)

(C1, α1, σ1) . . . such that for each i, (Ci, αi)
σi−→ Ci+1. An execution is a virtual execution that satis�es

the global fairness condition:
(Global Fairness) a virtual execution (C0, α0, σ0)(C1, α1, σ1) . . . is globally fair when, for every

C,C ′, α such that (C,α) → C ′, if (C,α) = (Ci, αi) for in�nitely many i, then C ′ = Cj for in�nitely
many j.

If E is an execution, we denote by SE the (in�nite) su�x of execution of E such that each couple
(C,α) (C being a con�guration, and α an input assignment) in SE occurs in�nitely often in SE. This
su�x is well-de�ned because the number of couples (C,α) that occurs �nitely often in E is bounded.
Then, we denote by IRCE the set of con�gurations that occur in SE, i.e., the set of con�gurations that
occur in�nitely often in E. IRC stands for In�nitely Recurring Con�gurations.

An output map is a mapping O : Q → Y from the state space to some �nite output alphabet Y . Such
an output map is extended to take a con�guration C and produce an output assignment O(C) de�ned
as O(C)(v) = O(C(v)). The output trace associated to the execution E = (C0, α0, σ0)(C1, α1, σ1) . . . is
given by the sequence Tout = O(C0)O(C1) . . . .

2.2 Run, Behaviour, Oracle and Implementation

The de�nitions of runs, behaviours and oracles that we give below are di�erent from the ones in [13, 3] and
are required to obtain a proper framework (independent of real time) for de�ning oracles and establishing
relations between them. For instance, in this framework, the oracles are self-implementable, in contrast
with the traditional failure detectors' frameworks. The following notion of compatibility of a trace with

a schedule is important the framework, because it involves that the changes in a trace are only caused
by the interactions.

A schedule on a network G(V,E) is a sequence of edges S = e1e2 . . . , i.e., ei ∈ E for all i. Given a
graph G, a trace T = α0α1 . . . on G is said to be compatible with the schedule S = (u0, v0)(u1, v1) . . .
on G if, for every i, for every w ∈ V − {ui, vi}, we have αi(w) = αi+1(w). That is, two consecutive
assignments of a compatible trace can di�er only in the assignment values of the two agents in the
corresponding edge in the schedule. Note that, by the de�nition of population protocols, the output
trace induced by any execution with schedule S of any population protocol on G is necessary compatible
with S.

A run R(X,Y ) with input alphabet X and output alphabet Y on a network G(V,E) is a triple
(Tin, Tout, S) where Tin is a trace with alphabet X on G, Tout is a trace with alphabet Y on G and S a
schedule on G such that Tin and Tout are both compatible with S. A behaviour B is given by a family
D(B) of graphs (the domain of B), an input alphabet X, an output alphabet Y and a function that
maps any graph G in D(B) to a set B(G) of runs with input alphabet X and output alphabet Y .

We de�ne the notion of composition of behaviours. Consider two behaviours B1, B2 with input
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alphabets X1, X2, output alphabets Y1, Y2 and a family F ⊂ D(B1) ∩ D(B2). We denote by TX

a trace with values in X. The parallel composition B = B1||B2 is the behaviour with alphabets
X1 × X2, Y1 × Y2 such that, for every G ∈ F , B(G) is the set of runs ((TX1

, TX2
), (TY1

, TY2
), S)

with (TX1
, TY1

, S) ∈ B1(G) and (TX2
, TY2

, S) ∈ B2(G). If Y1 = U × V and X2 = V × W , the se-

rial composition B = B2 ◦V B1 over V is the behaviour over alphabets X1 ×W , U × Y2. For every
G ∈ F , B(G) is the set of runs ((TX1

, TW ), (TU , TY2
), S) for which there exists a trace TV such that

(TX1
, (TU , TV ), S) ∈ B1 and ((TV , TW ), TY2

, S) ∈ B2. If X1 = U × V and Y1 = U ×W , the self com-

position B = Self(B1/U) on U is the behaviour with alphabet V,W , where, for every G ∈ F , B(G) is
the set of runs ((T in

U , T in
V ), (T out

U , T out
W ), S) ∈ B such that T in

U = T out
U . Given a (possibly in�nite) family

B of behaviours, a composition involving the behaviours B is either a behaviour in the family B, or the
parallel, serial or self composition of compositions involving the behaviours B.

A behaviour B2 implements a behaviour B1 over a family F of graphs when the family F ⊂ D(B1)∩
D(B2), and for every graph G ∈ F , B2(G) ⊂ B1(G). Given a population protocol A with input alphabet
X and output alphabet Y , we de�ne the behaviour BA associated to protocol A as follows. Its domain
is all the graphs, the input alphabet is X, the output alphabet is Y , and, for any graph G, for any run
(Tin, Tout, S) on G, we have (Tin, Tout, S) ∈ BA(G) if and only if there exists an execution of A on G
with input trace Tin and schedule S that induces the output trace Tout.

We say that a behaviour B1 is weaker than a behaviour B2 over F , which we denote by B1 4F

B2, when there exists a composition B involving B2 and population protocol behaviours such that B
implements B1 over F . The two behaviours are equivalent if B1 4F B2 and B2 4F B1. A problem and an
oracle are simply de�ned as behaviours. A population protocol A solves a problem P (resp. implements

an oracle Θ) using the behaviour B over a family F of graphs if there exists a composition involving
B, the behaviour BA associated to A and other population protocol behaviours, that implements the
behaviour P (resp. Θ) over F .

Note that with these de�nitions, any oracle Θ implements itself. Moreover, if there exists a population
protocol that solves the problem P1 using the problem P2, then P1 4F P2.

3 Speci�c Behaviours, Oracles and Tools

3.1 Self-Stabilizing Leader Election Behaviour

The self-stabilizing leader election behaviour SSLE is de�ned as follows. The domain of the behaviour
is all the graphs, the input alphabet is {⊥} (no input), the output alphabet is {0, 1} and a run (⊥, T, S)
belongs to SSLE if and only if T has a constant su�x T ′ = ααα . . . and there exists a node λ such
that α(λ) = 1 and α(u) = 0 for every u 6= λ. In other words, λ is the unique leader. Notice that for
all our protocols, there is an implicit output map that maps a state to 1 if it is a leader state, and to 0
otherwise.

3.2 Oracles Ω? and Ω$

Here, we present and formally de�ne the oracles we use with our protocols. The �rst one is the oracle of
Fischer and Jiang [13]. It has the particularity not to distinguish between the presence of one or more
leaders in a con�guration. This is su�cient for solving SSLE in complete graphs, because two leaders
are always neighbors, and eventually �kill� each other. In rings, a rather elaborated mechanism (together
with the global fairness) allows to cancel supplementary leaders, without knowing their number. The
situation is di�erent in an arbitrary graph (non ring). Indeed, consider the case where leaders are �xed to
nodes. Due to a greater number of paths in the network, it is di�cult for a leader to send an information
to kill other leaders while also being protected against it. The leaders could move to meet and kill each
other, but then no leader could ever be �xed at some node unless it eventually knows it is unique. That
is the reason why we introduce Ω$, which distinguishes between one and more than one leaders.

Ω?: The oracle Ω? is de�ned as follows. The input alphabet is {0, 1} and the output alphabet is
{0, 1}. The domain of Ω? is all the graphs. Given an assignment α, we denote by l(α) the number
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Figure 2: Serial composition Θ ◦ A followed by a self composition.

of vertices that are assigned the value 1 by α. Given a graph G and a run (Tin, Tout, S) on G, we
have (Tin, Tout, S) ∈ Ω?(G) when the following conditions hold. If Tin has a su�x α0α1 . . . such that
∀s, l(αs) = 0, then Tout has a su�x equal to the uniform constant trace 0. If Tin has a su�x α0α1 . . .
such that ∀s, l(αs) ≥ 1, then Tout has a su�x equal to the uniform constant trace 1. Otherwise, any Tout

is legal.

Ω$: The oracle Ω$ is de�ned as follows. The input alphabet is {0, 1} and the output alphabet is
{0, 1, 2}. The domain of Ω$ is all the graphs. Given a graph G and a run (Tin, Tout, S) on G, we
have (Tin, Tout, S) ∈ Ω$(G) when the following conditions hold. If Tin has a su�x α0α1 . . . such that
∀s, l(αs) = 0, then Tout has a su�x equal to the uniform constant trace 0. If Tin has a su�x α0α1 . . .
such that ∀s, l(αs) = 1, then Tout has a su�x equal to the uniform constant trace 1. If Tin has a su�x
α0α1 . . . such that ∀s, l(αs) ≥ 1, then Tout has a su�x with values in {1, 2}. If Tin has a su�x α0α1 . . .
such that ∀s, l(αs) ≥ 2, then Tout has a su�x equal to the uniform constant trace 2. Otherwise, any Tout

is legal.
There are some subtleties in the de�nitions of the previous oracles. Indeed, with Ω?, the condition

for the oracle to give meaningful information is that the number of leaders satis�es some condition at

every step, e.g. l ≥ 1. This implies that this oracle is able to detect �moving� leaders. The oracle below
is weaker in the sense that it gives information about �xed leaders. Given a trace T , we denote by λ(T )
the number of vertices that are permanently assigned the value 1 during T .

WΩ?: The oracle WΩ? is de�ned as follows. The input alphabet is {0, 1} and the output alphabet
is {0, 1}. The domain of WΩ? is all the graphs. Given a graph G and a run (Tin, Tout, S) on G, we
have (Tin, Tout, S) ∈ WΩ?(G) when the following conditions hold. If Tin has a su�x T ′

in such that
λ(T ′

in) = 0, then Tout has a su�x equal to the uniform constant trace 0. If Tin has a su�x T ′
in such that

λ(T ′
in) ≥ 1, then Tout has a su�x equal to the uniform constant trace 1. Otherwise, any Tout is legal. It

is straightforward to check that WΩ? 4 Ω? 4 Ω$ over all the graphs.

3.3 Tools

In Sec. 4 (resp. Sec. 6), we present protocols that implement SSLE using Ω$ (resp. Ω?) over the family
of strongly connected graphs (resp. strongly connected graphs of bounded degree). Actually, in each
case, we present a population protocol, say A, and prove that the behaviour given by the composition
Self(A ◦Θ) (cf. Fig. 2), where Θ is the corresponding oracle, implements SSLE.

Below, we explain how to extend these results to the family of weakly connected graph (resp. weakly
connected graphs of bounded degree). The procedure applies to both protocols. Consider a population
protocol A. First, we de�ne the non-deterministic protocol AND with the same state space and input
alphabet as A, and the following transition rules. The rule (p, x)(q, y) → (p′, q′) is a rule of AND if
and only if (p, x)(q, y) → (p′, q′) is a rule of A or (q, y)(p, x) → (q′, p′) is a rule of A. In other words,
there is a non-deterministic choice that selects which agent is the initiator, and which is the responder,
in a rule of A. Given a weakly connected graph G, the symmetric closure Gsym of G is necessarily
a strongly connected graph (with the same maximal degree). If E = (C0, α0, σ0)(C1, α1, σ1) . . . is a
globally fair execution of AND on G, then there is a sequence1 of actions σ′

i, i ∈ N, such that the
sequence E′ = (C0, α0, σ

′
0)(C1, α1, σ

′
1) . . . is a globally fair execution of A on Gsym. Hence if A solves

SSLE on Gsym using an oracle Θ such that Θ(G) = Θ(Gsym), then AND solves SSLE on G using the

1If σi = (ui, vi, (q, y)(p, x) → (q′, p′)) with (p, x)(q, y) → (p′, q′) a rule of A, then de�ne σ′

i = (vi, ui, (p, x)(q, y) →
(p′, q′)). If (q, y)(p, x)→ (q′, p′) is a rule of A, then de�ne σ′

i = σi.
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oracle Θ. It is then possible to transform AND into a deterministic protocol that implements SSLE
using Θ over G. It can be done, for instance, by using the general deterministic transformer in [3], since
in terms of [3], AND implements an elastic behaviour.

In Sec. 7, we present a protocol RingDetector that implements the oracle Ω? over the family of
oriented rings, thus proving the equivalence of Ω? and SSLE over oriented rings. This result is straight-
forward to extend to non-oriented rings thanks to the self-stabilizing ring orientation protocol presented
in [3]. Finally, as a basic tool for our protocol in graphs of bounded degree, we use the 2-hop coloring
self-stabilizing population protocol, denoted 2HC and presented in [3]. A 2-hop coloring is a coloring
such that all neighbors of the same node have distinct colors.

4 SSLE using Ω$ over Weakly Connected Graphs

In this section, we show that SSLE can be implemented using Ω$ over the family of weakly connected
graphs. According to Sec. 3.3, it is su�cient to prove the result over strongly connected graphs. The
idea of the protocol is simple. A leader moves when it �knows� there are other leaders and does not
move when it �knows� it is the unique leader, this information being provided by the oracle. We de�ne
the protocol A as follows. The input alphabet is {0, 1, 2}, the state space is {•, ◦} where • (resp. ◦)
stands for leader (resp. non leader). The rules are : (1) (◦, 0)(◦, 0) → (•, ◦), (2) (•, 2)(◦, 2) → (◦, •),
and (3) (•, ∗)(•, ∗) → (•, ◦). The symbol ∗ means �any possible value�. In every other cases, the states
are unchanged. Basically, a leader is created whenever the oracle outputs 0 (rule (1)). The leaders
keep moving in the graph while the oracle outputs 2 (rule (2)). When two leaders meet, one of them
disappears (rule (3)).

Theorem 1. The protocol A implements SSLE using Ω$ over strongly connected graphs.

Proof Sketch. See Appendix A, Theorem A for details. Given a globally fair execution E with input
trace Tin (output of Ω$), there is eventually a con�guration with a leader. Otherwise, the trace Tin

would have a uniform constant su�x 0, and rule (1) would create a leader. In addition, once there is a
leader, there is a leader in every subsequent con�guration. Hence, Tin must have a su�x T ′

in with values
in {1, 2}, which prevents leader creation; hence, the number of leaders is eventually constant equal to
c ≥ 1. If c ≥ 2, the input trace would have a uniform constant su�x 2, and two leaders may move (rule
(2)) to meet and one of them would disappear (rule (3)); whence a contradiction. Hence, c = 1 and the
input trace has a uniform constant su�x 1, which permanently �xes the unique leader at some place.

5 SSLE using WΩ? over Oriented Trees

In this section, we show that SSLE can be implemented using the oracle WΩ? over the family of oriented
trees. We assume that the tree is oriented from the root to the leaves. Note that an agent does not
know whether it is a root or a leaf. The idea consists in creating leaders when the oracle outputs 0 and
making them migrating towards the root. When two leaders interact, they �merge�. From some point
on, the root of the tree is a permanent leader. We de�ne the protocol B as follows. The input alphabet is
{0, 1}, the state space is {•, ◦} where • (resp. ◦) stands for leader (resp. non-leader). The rules are: (1)
(∗, 0)(∗, ∗) → (•, ◦), (2) (∗, ∗)(∗, 0) → (◦, •), and (3) (∗, ∗)(•, ∗) → (•, ◦). The proof of the following
theorem is in Appendix B, Theorem B.

Theorem 2. The protocol B implements SSLE using WΩ? over the family of oriented trees.

6 SSLE using Ω? over Weakly Connected Graphs with Bounded De-

gree

In this section, we present a more di�cult result, namely that, for every integer d, the behaviour SSLE
can be implemented using Ω? over the family of weakly connected graphs with in/out-degree bounded
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above by d. According to Sec. 3.3, it is su�cient to prove the result for the family Fd of strongly
connected graphs with in/out-degree bounded above by d.

The di�culty comes from the fact that the information given by the oracle does not allow to distin-
guish between the presence of a single or more leaders. Then a leader must try to kill possible other
leaders, without killing itself. This image comes from Fischer and Jiang, leaders sending bullets for
killing other leaders. Although the protocol of Fischer and Jiang is not simple, the ring topology is of
great help. For arbitrary graphs, managing bullets is much more complicated, and agents must in some
sense keep a trace of them. As the agents are �nite-state, graphs of bounded degree are necessary for
implementing such a management. Our solution uses the 2-hop coloring 2HC self-stabilizing protocol
(Sec. 3.3). We note Colors the corresponding set of colors.

(Protocol). We de�ne the population protocol Cd. The input variables (read-only) at each node x
are: the oracle output Ω?x (values in {0, 1}), the node color cx (values in Colors). The working variables
are: the leader bit leaderx (values {0, 1}), the bullet vector bulletx (vector with values in {0, 1} indexed
by Colors) and the shield vector shieldx (vector with values in {0, 1} indexed by Colors). The protocol
is given in Algorithm 1. The idea of the protocol is the following. An agent may hold several shields
(resp. bullets), each of them waiting to be forwarded to an out-neighbor (resp. in-neighbor) of speci�c
color; this information is encoded in the shield and bullet vectors. The purpose of the bullets is to kill
leaders, whereas the purpose of the shields is to protect them by absorbing bullets. When a leader is
created, it comes with shields for every color, and thus is protected from any bullet that could come
from one of its out-neighbors. To maintain the protection, each time an agent receives a shield from
its in-neighbor, it reloads shields for every color. Dually, any time an agent receives a bullet, it reloads
bullets for every color. In addition, whenever a leader interacts as an initiator, it loads bullets for every
color.

Algorithm 1: Protocol Cd - initiator x, responder y

1 (Create a leader at x, if needed)
2 if Ω?x = 0 then

3 leaderx ← 1
4 ∀c ∈ Colors, bulletx[c]← 1
5 ∀c ∈ Colors, shieldx[c]← 1

6 end

7 (Create a leader at y, if needed)
8 if Ω?y = 0 then

9 leadery ← 1
10 ∀c ∈ Colors, bullety[c]← 1
11 ∀c ∈ Colors, shieldy[c]← 1

12 end

13 (Move bullet from y to x, if any)

14 if bullety[cx] = 1 then

15 if shieldx[cy] = 0 then

16 leaderx ← 0
17 ∀c ∈ Colors, bulletx[c]← 1

18 bullety[cx]← 0

19 end

20 (Move shield from x to y, if any)
21 if shieldx[cy] = 1 then

22 shieldy ← 1
H

+
y

23 bullety[cx]← 0
24 shieldx[cy]← 0

25 end

26 (Charge bullets if x is a leader)
27 if leaderx = 1 then

28 ∀c ∈ Colors, bulletx[c]← 1

(Proofs). For the sake of clarity, in any execution we consider, we assume that the protocol 2HC
permanently outputs a correct 2-hop coloring from the beginning (variables cx). Consider a strongly
connected graph G of degree (both in and out) less than or equal to d.

A path in G is a sequence of nodes π = x0 . . . xr such that (xi, xi+1) is an edge of G. If u is an agent,
we note u ∈ π to say that the agent u appears in the path π and we note indπ(u) the index of the �rst
occurrence of u in π, i.e. the minimum i such that xi = u. If (x, y) is an edge of the graph, we say that x
has a shield against y if shieldx[cy] = 1. Similarly, we say that y has a bullet against x if bullety[cx] = 1.

De�nition 1 (Protected Leader). Consider a node λ and a loop π = x0 . . . xr+1 at λ (a path that starts

and ends at x0 = xr+1 = λ). We say that λ is a leader protected in π when λ is a leader and there

exists i ∈ {0, . . . , r} such that xi has a shield against xi+1 and, if i ≥ 1, is a non-leader that has no bullet
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against xi−1. In addition, for every j ∈ {1, . . . , i− 1}, xj is not a leader, has no shield against xj+1 and

no bullet against xj−1. The agent xi is the protector of λ in π; the path x0 . . . xi is the protected zone
in π. The node λ is a protected leader if it is protected in every loop at λ.

Note that a a leader that receives a shield or that has just been created becomes protected since it loads

shields for every color.

Lemma 1. If C ∈ IRCE has a protected leader, then every con�guration in IRCE has a protected leader.

Proof Sketch. For full details, see Appendix C, Lemma 1. It is su�cient to show that, for any input
assignment α and any con�guration C ′ such that (C,α) → C ′, the con�guration C ′ has a protected
leader. We note (u, v) the pair of agents involved, and λ a protected leader in C. When a leader is
created, it is already protected. Thus, we examine the other cases. Consider a loop π at λ. If u and v
are not in the protected zone, then after the transition, the states of the agents in the protected zone
are not modi�ed; hence λ is still protected in π. Now, assume �rst that the path uv is not in π. If u is
in the protected zone, u may only receive a bullet from v which would threaten λ. However, such a case
implies the existence of a loop (the one that goes from λ to u, then v to λ along any path) in which λ is
not protected. If v is in the protected zone, v may only receive a shield which does not threaten λ. In
both cases, the leader λ is still protected in π. Assume now uv ∈ π. If u is not the protector, then the
same arguments above apply. If u is the protector, it might transfer its shield to v while v is a leader.
In that case, in C ′, λ is not protected, but v is.

Lemma 2. If no con�guration in IRCE has a leader, then all input assignments in SE equal an input

assignment that assigns 0 to every variable Ω?x and yields a 2-hop coloring. If every con�guration in

IRCE has a leader, then all input assignments in SE equal an input assignment that assigns 1 to every

variable Ω?x and yields a 2-hop coloring.

Proof. This stems from the de�nition of Ω?.

The proofs of the following lemmas are given in Appendix C, Lemma C, D and E.

Lemma 3. Every con�guration in IRCE has at least one leader, and every input assignment in SE is

equal to an input assignment αE that assigns 1 to every variable Ω?x and yields a 2-hop coloring.

Lemma 4. All con�gurations in IRCE have the same number of leaders.

Lemma 5. No con�guration in IRCE contains an unprotected leader.

Theorem 3. The protocol Cd solves the problem SSLE using Ω? over strongly connected graphs with

degree less than or equal to d.

Proof Sketch. See Appendix C, Theorem C for full details. Any con�guration in IRCE has the same
number l of (protected) leaders. Assume that l ≥ 2, take two protected leaders λ1, λ2 and consider the
loop π made from the shortest path from λ1 to λ2 followed by the one from λ2 to λ1. By moving the
protector of λ1 behind λ2, and making λ2 �res a bullet, it is possible to kill λ1; whence a contradiction.
Thus, there is a unique leader.

It is important to notice that WΩ? is not su�cient. Indeed, consider a ring and the scenario depicted
in Fig. 3, and assume we use WΩ? instead of Ω?. In this scenario, there are initially only two protected
leaders (1) and (2), and WΩ? outputs 1 everywhere. Then the shield protecting (2) moves behind (1),
(2) becomes unprotected, and (1) �res a bullet that kills the leader (2). Then WΩ? punctually outputs
0 at (2), which creates a new protected leader. Then the shield protecting (1) moves behind (2), (1)
becomes unprotected and (2) �res a bullet that kills the leader (1). Then WΩ? punctually outputs 0 at
(1), which creates a new protected leader. If we repeat this scenario, in any con�guration, there is at
least one leader, but there is no permanent leaders. In that case, we have no control on the output of
the oracle WΩ?. On the contrary, Ω? is forced to eventually permanently output 1 everywhere, which
prevents the in�nite repetition of this scenario.
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Figure 3: Scenario for which WΩ? is not su�cient.

7 SSLE and Ω? are Equivalent over Rings

This equivalence is the second di�cult result of the paper. According to Sec. 3.3, it is su�cient to focus
on oriented rings. In [13], the authors show that SSLE can be implemented using Ω? over oriented
rings. In this section, we show that Ω? can be implemented given SSLE over oriented rings. In other
words, Ω? and SSLE are equivalent over oriented rings. We emphasize that the protocol performing the
implementation is self-stabilizing.

For the sake of clarity, the unique leader provided by SSLE is called the master, whereas the output
of Ω? reports about the leaders. Hence, the goal consists in the master detecting the presence or the
absence of leaders in the network, that is to mimick Ω?. We de�ne the population protocol RingDetector.
The input variables (read-only) at node x are: the master bit masterx (values in {0, 1}, from SSLE),
the leader bit leaderx (values in {0, 1}). The working variables are: the probe �eld probex (⊥, no probe,
0, white probe, 1, black probe), the bullet �eld (⊥, no bullet, 0, white probe, 1, black probe), the �ag

bit flagx (values in {0, 1}) and the output bit (values in {0, 1}). The protocol is given in Algorithm 2.
Each time an agent has its leader bit set to 1, it raises its �ag. The master loads a white probe each

time it is the responder of an interaction. The probes move counter-clockwise, and their purpose is to
detect bullets already present in the network. When a probe meets a bullet, the probe becomes black.
When two probes meet, they merge into a black probe if one of them was black, into a white probe
otherwise. The master loads a bullet colored with its �ag only when it receives a white probe. Bullets
move clockwise. Each time a bullet meets an agent with its �ag raised, the bullet becomes black and the
�ag is cleared. Two meeting bullets merge into a black bullet if one of them is black, and into a white
bullet otherwise. When the master receives a bullet, it outputs 0 if the bullet is white, and 1 otherwise.
In any interaction, the responder copies the output of the initiator, unless the responder is the master.
In the sequel, the input trace T = α0α1 . . . of every execution E is assumed to provide a unique master,
i.e., there exists a unique node λ (that depends on E) such that αi(λ).master = 1 for all i.

Lemma 6. For any execution E, in any con�guration C ∈ IRCE, there is exactly one bullet (white or

black) in C, i.e., there exists a unique node x such that C(x).bullet 6= ⊥.

Proof Sketch. See Appendix D, Lemma F for details. If there are no bullets in the system, then the
master can �re a white probe that will return to the master without meeting any bullet, thus staying
white and making the master �res a bullet. Once there is a bullet, there always is at least one bullet.
Since bullets move clockwise and probes counter-clockwise, the master only receives black probes and
thus permanently stops �ring bullets. By global fairness, all the bullets eventually merge into a single
bullet that never disappears.

We now know that in the su�x SE there is a unique bullet moving clockwise. We divide the su�x
in rounds de�ned as follows. A round begins with an interaction in which the master holds the bullet
and is the initiator; the round ends with the �rst event in which the master is the responder and the
initiator holds the bullet. In other words, a round corresponds to the bullet traveling through the whole
ring before returning to the master.

Lemma 7. Let R be a round in SE. We note (C0, α0) . . . (Cr, αr) the corresponding sequence of con�g-

urations and input assignment. Case (a) If there are no leaders in the round, i.e., for every 0 ≤ i ≤ r,
and every agent x, we have αi(x).leader = 0, then after the last step, all the agents have their �ags

cleared. Case (b) If there are no leaders in the round, and if all the agents have their �ags cleared at the
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Algorithm 2: Protocol RingDetector - initiator x, responder y

1 (if the master is the responder, create a white probe)
2 if mastery = 1 then probey ← 0
3

4 (raise �ags if needed)
5 if leaderx = 1 then flagx ← 1
6

7 if leadery = 1 then flagy ← 1
8

9 (move probe from y to x)
10 if probey 6= ⊥ then

11 (the probe becomes black when meeting a bullet)
12 if bulletx 6= ⊥ then probex ← 1
13

14 (and keeps the same color otherwise)
15 else probex ← probey
16

17 probey ← ⊥

18 end

19 (if the master has received a white probe, it loads a bullet)
20 if masterx = 1 and probex = 0 then bulletx ← flagx
21

22 (move bullet from x to y)
23 if bulletx 6= ⊥ then

24 (the bullet becomes black when meeting a �ag)
25 if flagy = 1 then bullety ← 1
26

27 (and keeps the same color otherwise)
28 else bullety ← bulletx
29

30 (the �ag is cleared)
31 flagy ← 0
32 bulletx ← ⊥

33 end

34 (if the master has received a bullet, it changes its output
and whiten the bullet)

35 if mastery = 1 and bullety 6= ⊥ then

36 outy ← bullety
37 bullety ← 0

38 (for non-masters, the responder copies the output of the
initator)

39 if mastery = 0 then outy ← outx
40

beginning of the round, then after the last step of the round, the master outputs 0 and all the agents have

their �ags cleared. Case (c) If there is at least one leader at each step, i.e., for every 0 ≤ i ≤ r there is

some agent xi such that αi(xi).leader = 1, then after the last step of the round, the master outputs 1.

Proof Sketch. We only describe the case (c) as the proof relies on the compatibility of the input trace
with the schedule. For full details, see Appendix D, Lemma 7. Assume that there is a leader at each
step. Let µ be an agent that holds a leader in assignment α0. During the round, there must be some
step i, such that µ = vi is the responder and the initiator ui holds the bullet. If µ holds a leader in
assignment αi, then after the transition, the bullet must have turned black. If µ does not hold a leader
in assignment αi, since µ did hold a leader in assignment α0, there must be some step j < i such that
αj(µ).leader = 1 and αj+1(µ).leader = 0. Now, since the input trace is compatible with the schedule, µ
must be the initiator uj or the responder vj in the transition (Cj , αj) → Cj+1. Hence, µ must raise its
�ag, i.e., we have Cj+1(µ).f lag = 1 (j + 1 ≤ i). Recall that there is a unique bullet, so the �ag cannot
be cleared during the remaining steps until i. Hence, at step i, the bullet turns black when the bullet
moves from the initiator ui to the responder vi = µ.

Theorem 4. The protocol RingDetector is a self-stabilizing implementation of Ω? using SSLE over

oriented rings.

Proof Sketch. See Appendix D, Theorem D for full details. Consider a globally fair execution E and
focus on the su�x SE. For the sake of simplicity, we assume that there is a unique master from the
beginning. We divide the execution in rounds as de�ned above. If there are no leader forever, then
Lemma 7 ensures that after a �nite number of rounds, the master permanently outputs 0. If there is a
leader at each step, then Lemma 7 ensures that after a �nite number of rounds, the master permanently
outputs 1. In both cases, the propagation of the master's output ensures that the output trace of the
protocol satis�es the oracle Ω? conditions.
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Appendix

A SSLE using Ω$ over Weakly Connected Graphs

Theorem A. The protocol A implements SSLE using Ω$ over strongly connected graphs.

Proof. Consider a strongly connected graph G and consider a globally fair execution E of the protocol.
Assume that every con�guration C in IRCE lacks a leader. The de�nition of Ω$ implies that every input
assignment that occurs in SE assigns 0 to every agent. But, by rule (1), C can reach a con�guration
C ′ with a leader, and the global fairness ensures that C ′ ∈ IRCE ; whence a contradiction. Thus, there
exists a con�guration C ∈ IRCE that has a leader. The rule (3) (the only rule to kill a leader) implies
that, for any input assignment α and for any con�guration C ′ such that (C,α) → C ′, C ′ has a leader.
Now, consider any C ′′ ∈ IRCE . By de�nition of SE, there must be a sequence of steps from (C,α) to
(C ′′, α′′) during SE, and the previous argument shows that every con�guration during this sequence has
a leader; in particular C ′′.

Thus, every con�guration in IRCE has at least one leader. The de�nition of Ω$ implies that any
input assignment in SE does not assign 0 to any agent. Therefore, no leaders are created during SE.
If there were two con�gurations in IRCE with di�erent number of leaders, then there would be a step
in SE during which a leader is created; this is impossible. Hence, every con�guration in IRCE has the
same number c of leaders. If c ≥ 2, then the de�nition of the oracle implies that every input assignment
in SE assigns 2 to every one. Since the graph is strongly connected, from any con�guration C ∈ IRCE

with c ≥ 2 leaders, it is possible (via rule (2)) to move the two leaders to two neighbor nodes and to kill
one of them (via rule (3)), thus reaching a con�guration C ′ ∈ IRCE with less than c leaders; whence
a contradiction. Hence, c = 1, i.e. there is a unique leader in every con�guration in IRCE . Then the
de�nition of the oracle implies that every input assignment assigns 1 everywhere. Thus, during SE, the
three rules of the protocol are disabled, and the unique leader is permanently located at some node.

B SSLE using WΩ? over Oriented Trees

Theorem B. The protocol B implements SSLE using WΩ? over the family of oriented trees.

Proof. Consider a globally fair execution. Let SC = C0C1 . . . be the sequence of con�gurations and Tin

the input trace of B. If every con�guration contains no leader, then the de�nition of the oracle implies
that Tin has a su�x equal to the uniform constant trace 0. But then, the �rst two rules of the protocol
B are enabled, and the global fairness ensures that a con�guration with at least one leader is reached.

Note that the rules are such that no leaders are killed, except when two meeting leaders merge.
This implies that once there is at least one leader, there is always at least one leader in the network.
Furthermore, since the leaders keep migrating towards the root (via the last rule), at some point the root
becomes a leader and stays so forever. In other words, the sequence SC has a su�x within which there
is �xed permanent leader located at the root of the tree. Then, the de�nition of WΩ? implies that Tin

has a su�x equal to the uniform constant trace 1. From that point on, no new leaders are ever created.
The remaining leaders keep migrating towards the root, and eventually there is permanently a unique
leader located at the root.

C SSLE using Ω? over Weakly Connected Graphs with Bounded De-

gree

Lemma A. If C ∈ IRCE has a protected leader, then every con�guration in IRCE has a protected

leader.
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Proof. Consider a couple (C,α) that occurs in SE, C being a con�guration (in IRCE) and α an input
assignment. The assumption on the protocol 2HC states that α yields a correct 2-hop coloring. Consider
a con�guration C ′ that follows the occurrence of (C,α) in SE. In particular, (C,α) → C ′. We note
(x, y) be the pair of edges involved (initiator x, responder y).

When a leader is created, it is already protected by itself since it has a shield against every of its
out-neighbors. We thus focus on transition rule that do not involve the creation of a leader. Hence, such
a transition may kill a leader, or move or create shields and bullets.

Let λ be a protected leader in γ and π be any loop at λ. Let µ be the protector of λ in π. If x
and y do not appear in the protected zone in π, then after the transition, the states of the agents in the
protected zone have not changed and λ is still protected in π. Then, assume that x or y appear in the
protected zone. Let z ∈ {x, y} be the agent with lowest index indπ(z). The previous assumption implies
indπ(z) ≤ indπ(µ).

Consider �rst the case indπ(z) < indπ(µ). If z = x, then z cannot receive a bullet (from y), i.e.,
either x has a shield against y or y has no bullets against x. Otherwise, the path that goes from λ to
(the �rst occurrence of) z = x followed by any path that goes from y to λ yields a loop within which λ
is not in protected in C; whence a contradiction. Hence, if z = x, after the transition, λ is still protected
by µ in π. Now, if z = y, y may only receive a shield, and thus, after the transition, λ is still protected
in π (by µ or y).

Now, assume that indπ(z) = indπ(µ). This implies that z = µ ∈ {x, y}, and that every agent in the
protected zone, except µ, is di�erent from x and y. If µ = y, then during the transition, µ may only
receive a shield (which merges with its shield); hence, λ is still protected by µ in π after the transition.
We now focus on the case µ = x. First consider the subcase where y is not the agent that follows the
�rst occurrence of µ in π. Then µ cannot receive a bullet during the transition, otherwise, the same
argument as above shows the existence of a loop at λ within which λ is not protected in C. After the
transition, (the �rst occurrence of) µ still has a shield against the agent right after it, which proves that
λ is still protected in π. Consider now the subcase where y is the agent that follows the �rst occurrence
of µ in π. If y is not a leader, then after the transition, y becomes the new protector of λ in π. If y is
a leader, then after the transition, λ is no longer protected, but y is protected since the reception of a
shield produces shields for every color. In both cases, after the transition, there is a protected leader in
C ′.

We thus have shown that, in every cases, C ′ contains a protected leader. Given any con�guration
C ′′ ∈ IRCE , there must be a sequence of steps from (C,α) to (C ′′, α′′) during SE, for some input
assignment α′′. Since C has a protected leader, the previous argument shows that every con�guration
in this sequence has a protected leader, in particular C ′′. Therefore, any con�guration in IRCE has a
protected leader.

Lemma B. If no con�guration in IRCE has a leader, then all input assignments in SE equal an input

assignment that assigns 0 to every variable Ω?x and yields a 2-hop coloring. If every con�guration in

IRCE has a leader, then all input assignments in SE equal an input assignment that assigns 1 to every

variable Ω?x and yields a 2-hop coloring.

Proof. This stems from the de�nition of Ω? and the assumption on 2HC.

Lemma C. Every con�guration in IRCE has at least one leader, and every input assignment in SE is

equal to an input assignment αE that assigns 1 to every variable Ω?x and yields a 2-hop coloring.

Proof. Assume that some con�guration C in IRCE lacks a leader. On the one hand, if no con�guration
in IRCE has a leader, then by Lemma B, every input assignment in SE assigns 0 to every Ω?x. Hence,
in SE, during every transition, a protected leader is created. On the other hand, if IRCE contains a
con�guration C ′ with a leader, then there is a sequence of steps from (C,α) to (C ′, α′) for some input
assignments α, α′, since both C and C ′ occur in�nitely often in SE. According to the protocol, during
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one of the steps, a protected leader must be created. In both cases, we have a con�guration C ′′ ∈ IRCE

with a protected leader. By Lemma A, this implies that all con�gurations in IRCE has a protected
leader, in particular C; whence a contradiction. Thus any con�guration in IRCE has a leader. The
assumption on the protocol 2HC and Lemma B yield the last claim.

Lemma D. All con�gurations in IRCE have the same number of leaders.

Proof. By Lemma C, every input assignment in SE assigns 1 to every variable Ω?x. Thus no leader is
created during SE. Assume there exists two con�gurations C,C ′ in IRCE such that the number l of
leaders in C is di�erent from the number l′ of leaders in C ′. Without loss of generality, we can assume
l < l′. By de�nition, there must be a sequence of steps in SE from (C,α) to (C ′, α′) for some input
assignments α, α′. The fact that l < l′ implies that during this sequence a leader is created; whence a
contradiction.

Lemma E. No con�guration in IRCE contains an unprotected leader.

Proof. Suppose that C ∈ IRCE contains an unprotected leader λ. By Lemma C, there is an input
assignment αE such that (C,αE) occurs in SE and αE assigns 1 to every variable Ω?x. We describe a
sequence of steps with the input assignment αE at each step. Since λ is not protected in C, there exists
a path π = x0 . . . xr from agent x0 = λ to some agent xr such that for every 0 ≤ i < r, agent xi has no
shield against xi+1 and xr either is a leader or has a bullet against xr−1. If xr is a leader, any transition
where xr is a initiator makes xr creating a bullet against xr−1. Then by moving (backward) the bullet
along this path, it is possible to kill the non-protected leader λ. We reach a con�guration C ′ within
which λ is not a leader. Since no leaders have been created during the sequence, C ′ has fewer leaders
than C. The global fairness ensures that C ′ ∈ IRCE ; this contradicts Lemma D.

Theorem C. The protocol Cd solves the problem SSLE using Ω? over strongly connected graphs with

degree less than or equal to d.

Proof. By Lemma D and E, we know that any con�guration in IRCE has the same number l of protected
leaders and no unprotected leaders; and also that all input assignments are equal to some αE that gives
a 2-hop coloring and assigns the value 1 to every variable Ω?x. Lemma C ensures that l ≥ 1. Assume, by
contradiction, that l ≥ 2. Let C ∈ IRCE . Let λ1, λ2 be two protected leaders in C. Consider p1 (resp.
p2) the shortest path from λ1 to λ2 (resp. from λ2 to λ1). We de�ne the loop π1 = p1p2 at λ1 and the
loop π2 = p2p1 at λ2. We note µ1 (resp. µ2) the protector λ1 (resp. λ2) in π1 (resp. π2). Necessarily,
the �rst occurrence of µ1 (resp. µ2) is in p1 (resp. p2). We describe a sequence with input assignment
αE at every step. The protocol allows to move the (�rst occurrence of the) protector µ1 right before λ2.
Another such step makes the protector transfer its shield to λ2, thus turning λ1 into a non-protected
leader (λ2 is still a protected leader). Then λ2 can �re a bullet that kills λ1. Since, no leader is created
during the sequence, we reach a con�guration C ′ with less than l leaders. The global fairness ensures
that C ′ ∈ IRCE . This contradicts Lemma D. Therefore, all con�gurations in IRCE have a unique
leader. Since the leaders cannot move, there is a permanent leader.

D SSLE and Ω? are Equivalent over Rings

Lemma F. For any execution E, in any con�guration C ∈ IRCE, there is exactly one bullet (white or

black) in C, i.e., there exists a unique node x such that C(x).bullet 6= ⊥.

Proof. Consider a con�guration C ∈ IRCE . We �rst prove that C contains at least one bullet. On
the contrary, assume that, for every node x, C(x).bullet = ⊥. The following scenario will produce a
bullet. First, let the master λ interacting as a responder to produce a white probe at λ. Then, move
(counter-clockwise) all the other probes, if any, to the master. Then move the white probe at λ so as to
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visit all the nodes and return to λ again. Since there are no bullets in the network, the white probe will
not turn black. Then, the white probe arriving at λ will make λ produce a bullet. This scenario does not
depend on the possibly present leaders. Hence, we have shown that there exists a con�guration C ′ with
at least one bullet such that C

∗
−→ C ′, whatever the input trace is during this sequence. By the global

fairness, we know that C ′ belongs to IRCE . But, the rules of the protocol are such that, once there is
at least one bullet in the network, there is always at least one bullet in the network in any subsequent
con�guration. Thus C cannot occur in�nitely often; whence a contradiction. Hence C has at least one
bullet.

Assume now that C has at least two bullets. Since two meeting bullets merge into one bullet, there
is a con�guration C ′ with exactly one bullet such that C

∗
−→ C ′, whatever the input trace is. By global

fairness, C ′ belongs to IRCE . Since C also occurs in�nitely often in the execution, and since the only
way to create a bullet is by having the master receive a white probe, this means that the master receives
in�nitely many white probes during SE. But once there is a bullet in the network, since the bullets move
clockwise and the probes counter-clockwise, any probe arriving at the master must be black; whence a
contradiction. Therefore, C has exactly one bullet.

Lemma G. Let R be a round in SE. We note (C0, α0) . . . (Cr, αr) the corresponding sequence of con�g-

urations and input assignment. Case (a) If there are no leaders in the round, i.e., for every 0 ≤ i ≤ r,
and every agent x, we have αi(x).leader = 0, then after the last step of the round, all the agents have

their �ags cleared. Case (b) If there are no leaders in the round, and if all the agents have their �ags

cleared at the beginning of the round, then after the last step of the round, the master outputs 0 and all

the agents have their �ags cleared. Case (c) If there is at least one leader at each step, i.e., for every

0 ≤ i ≤ r there is some agent xi such that αi(xi).leader = 1, then after the last step of the round, the

master outputs 1.

Proof. Case (a). Assume there are no leaders in the round. Since the bullet moves clockwise from the
master to the master, and since a bullet clears any �ag it encounters, after the last step of the round,
the bullet must have cleared all the possible raised �ags in the ring. Case (b). Assume that there are no
leaders in the round, and that all the �ags are clear at the beginning. During the �rst step, the master
holds the bullet and colors it in white (the master holds no leader). Since there are no leaders in the
round, in every con�guration within the round, all the �ags are cleared. Hence, when moving clockwise
from the master to the master, the bullet meets no raised �ags and stays white. At the end of the round,
the master receives a white bullet and outputs 0. Case (c). Assume that there is a leader at each step.
Let µ be an agent that holds a leader in assignment α0, i.e., α0(µ).leader = 1. During the round, there
must be some step i, such that µ = vi is the responder and the initiator ui holds the bullet. If µ holds a
leader in assignment αi, then after the transition, the bullet must have turned black. If µ does not hold
a leader in assignment αi, since µ did hold a leader in assignment α0, there must be some step j < i
such that αj(µ).leader = 1 and αj+1(µ).leader = 0. Now, since the input trace is compatible with the
schedule, µ must be the initiator uj or the responder vj in the transition (Cj , αj) → Cj+1. Hence, µ
must raise its �ag, i.e., we have Cj+1(µ).f lag = 1 (j+1 ≤ i). Recall that there is a unique bullet, so the
�ag cannot be cleared during the remaining steps until i. Hence, at step i, the bullet turns black when
the bullet moves from the initiator ui to the responder vi = µ. In all cases, the master receives a black
bullet at the end of the round, and thus outputs 1.

Theorem D. The protocol RingDetector is a self-stabilizing implementation of Ω? using SSLE over

oriented rings.

Proof. Consider a globally fair execution E and focus on the su�x SE. For the sake of simplicity, we
assume that there is a unique master from the beginning. By Lemma 6, we know that in SE there is a
unique bullet moving clockwise. Without loss of generality, we assume that SE begins with the bullet
being hold by the master. We then write SE = R1R2 . . . where each Ri is a round.
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Consider �rst the case where the input trace T = α0α1 . . . in SE permanently assigns no leaders
everywhere, i.e., for all i, for every agent x, αi(x).leader = 0. By Lemma 7, we know that at the end of
R1, all the �ags are cleared. Hence, at the end of R2, the master outputs 0 and all the �ags are cleared.
By iteration, at the end of each round Ri, i ≥ 2, the master outputs 0. Since the master updates its
output only when it receives the bullet, and since this happens exactly at the end of a round, we know
that in the su�x R2R3 . . . , the master permanently outputs 0. The fact that the responder always copies
the output of the initiator (unless the responder is the master) implies that there is a su�x during which
all the agents permanently output 0.

Assume now that the input trace is such that there is at least one leader at every step. By Lemma 7,
at the end of each R1, the master outputs 1. The same argument as above shows that there is a su�x
of execution during which all the agents permanently output 1.
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