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Abstract

The interest of this article is to develop a general and systematic robust

control methodology for active vibration control of flexible structures. For

this purpose, first phase and gain control policies are proposed to impose

qualitative frequency-dependent requirements on the controller to consider a

complete set of control objectives. Then the proposed control methodology

is developed by employing phase and gain control policies in the dynam-

ic output feedback H∞ control: according to the set of control objectives,
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phase and gain control policies incorporate necessary weighting functions

and determine them in a rational and systematic way; on the other hand,

with the appropriate weighting functions efficient H∞ control algorithms can

automatically realize phase and gain control policies and generate a satis-

factory H∞ controller. The proposed control methodology can be used for

both SISO and MIMO systems with collocated or non-collocated sensors

and actuators. In this article, it is validated on a non-collocated piezoelec-

tric cantilever beam. Both numerical simulations and experimental results

demonstrate the effectiveness of the proposed control methodology.

Keywords

Phase and gain control policies, H∞ control, non-collocated systems,

parametric and dynamic uncertainties

1. Introduction

More advanced technologies and materials in industries lead to the im-

plementation of lightweight components for miniaturization and efficiency.

Due to the lightweight components, the structures become more flexible and

more susceptible to vibrations, which may cause unpleasant noises, unwanted

stresses, malfunctions and even failures. As a result, the flexible structures

have naturally become suitable candidates for active vibration control and

piezoelectric transducers have been widely used for this purpose with various

control designs, e.g. PID control (Khot et al., 2011), velocity feedback con-

trol (Aoki et al., 2008), positive position feedback control (PPF) (Qiu et al.,

2007), acceleration feedback control (AFC) (Qiu et al., 2009), independent

modal control (Jemai et al., 1999), linear quadratic regulator (LQR) (Bhat-
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tacharya et al., 2002), fuzzy control (Qu et al., 2004), adaptive control (Ma

and Ghasemi-Nejhad, 2005), µ synthesis (Li et al., 2003) andH∞ control (Ior-

ga et al., 2008).

In spite of the large number of control designs for active vibration con-

trol, a general methodology which allows us to systematically design a robust

controller that satisfies a complete set of control objectives has to be pro-

posed. The set of control objectives include the vibration reduction of every

controlled resonant mode with corresponding a prior determined level, the

constraints on the control energy, the reduction of effects of the measurement

noise and the stability robustness to parametric and dynamics uncertainties.

Besides, as these control objectives usually have conflicting requirements on

the controller, the control design must achieve a trade-off among them in a

rational and systematic way. In this article, this problem is investigated.

It is demonstrated that, compared to PID, LQR and H2 control, the

H∞ control can provide better robustness properties in the presence of para-

metric and dynamic uncertainties (Crassidis et al., 2000; Zhang et al., 2001).

It can be applied to both the single-input-single-output (SISO) systems and

the multiple-input-multiple-output (MIMO) systems. The H∞ control allows

defining the design specifications in the frequency domain. Furthermore, the

state and dynamic output feedback H∞ control designs can be accomplished

efficiently using polynomial-time algorithms and provide a stabilizing con-

troller with a reasonable order (Doyle et al., 1989; Gahinet and Apkarian,

1994). Due to these features, the H∞ control is receiving intense interest in

the control literature and has been successfully applied to a wide variety of

practical problems (Jabbari et al., 1995). However despite these promising
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features, practical use of H∞ based active vibration control remains limited

mainly due to its drawbacks such as how to incorporate necessary weighting

functions and determine them. In the following, we have an extensive review

of the H∞ control designs for robust active vibration control:

• The mixed sensitivity design is most usually adopted in H∞ control,

e.g. Sadri et al. (1999); Kar et al. (2000a); Seto and Kar (2000); Liu

et al. (2004); Douat et al. (2011). However, this H∞ control structure

may necessarily lead to the pole-zero cancellation between the designed

H∞ controller and the plant. This pole-zero cancellation should be

avoided for lightly damped flexible structures, especially in the pres-

ence of parametric uncertainties (Sefton and Glover, 1990; Scorletti and

Fromion, 2009).

• The definition of the specification of vibration reduction is critical in

H∞ control. A frequency-dependent weighting function W (s) or a

matching model M(s) can be used to this end (Forrai et al., 2001;

Rao et al., 2007). However, it is not explained clearly how to choose

W (s) or M(s) and if several resonant modes have to be controlled,

W (s) and M(s) could be very complicated and have a high order. This

results in a high-order H∞ controller, which requires extensive online

computations imposing limitations on the sample rate for real-time im-

plementation and precluding observation and control of high frequency

resonant modes.

In addition to the vibration reduction performance, the H∞ control

should also impose constraints on the control energy and reduce the
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effects of the measurement noise. But these control objectives are of-

ten neglected, e.g. Seto and Kar (2000); Kar et al. (2000b); Forrai

et al. (2001); Xie et al. (2004); Liu et al. (2004). Sometimes, constant

weighting functions are used for this purpose, e.g. Zhang et al. (2001);

Huo et al. (2008). However, as they are frequency-independent and

cannot represent suitable requirements on the controller over various

frequency ranges, the measurement noise may have significant adverse

effects on the control performances and the closed-loop system may

even not work properly in real-time implementation due to the control

saturation problem.

• To consider a set of control objectives, necessary weighting functions

have to be incorporated in H∞ control and determined appropriate-

ly. The selection of weighting functions is critical in H∞ control and

even regarded to be the main drawback of H∞ control by Zhang et al.

(2001). As claimed in Crassidis et al. (2000), the selection of weight-

ing functions cannot be explicitly related to the control objectives in

a straightforward manner and trial and error iterations are required to

determine the weighting functions. Inappropriate weighting function-

s may neglect some control objectives and fail to have a satisfactory

H∞ controller.

• To consider the stability robustness to parametric and dynamic un-

certainties, a norm bounded additive or multiplicative perturbation is

widely used in H∞ control. They can represent neglected high fre-

quency dynamics related to the spillover instability, e.g. Yaman et al.
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(2002); Xie et al. (2004); Kar et al. (2000b); Font et al. (1994); Car-

rere et al. (1997); Caracciolo et al. (2005), and also include all possible

uncertain models due to parametric uncertainties, e.g. Crassidis et al.

(2000); Forrai et al. (2001); Chang et al. (2002); Filardi et al. (2003);

Xie et al. (2004). Based on the unstructured uncertainty, the small

gain theorem (Desoer and Vidyasagar, 1975) is then applied to ensure

the closed-loop stability.

It is notable that, due to the presence of parametric uncertainties, the

employed unstructured uncertainty inevitably introduces considerable

conservatism (Morris et al., 1992). To reduce this conservatism, mixed

H2/H∞ control together with pole placement is used to guarantee the

stability robustness to parametric uncertainties (Hong et al., 2006).

But the regulated variables in H2/H∞ control are not clearly specified

and there may exist considerable conservatism in the multi-objective

state feedback synthesis. Assuming matched form of parametric un-

certainties, the singular value decomposition is proposed to consider

parametric uncertainties such that the phase margin keeps larger than

60◦ for all possible models (Wang et al., 2001; Wang, 2003). However,

the matching condition could be violated (Stalford, 1987) and the de-

sired phase or gain margin is no longer guaranteed when the Kalman

filter is used for the state estimation (Doyle, 1978). Sometimes, only a

dynamic uncertainty is explicitly considered in H∞ control and para-

metric uncertainties are considered with the µ analysis to verify the

robustness properties with the designed controller, e.g. Yaman et al.

(2001, 2002); Iorga et al. (2009). Collocated sensors and actuators are
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also used in H∞ to have prominent stability robustness, e.g. Bai and

Grigoriadis (2005); Demetriou et al. (2009). In few cases, neither dy-

namic nor parametric uncertainty is explicitly considered, e.g. Filardi

et al. (2003); Chen et al. (2010).

Besides the H∞ control designs, to reduce the conservatism in the p-

resence of parametric uncertainties or several dynamic uncertainties, Doyle

(1982) proposed the concept of structured singular value (µ) and employed

the structured uncertainty ∆ to investigate structural characteristics of all

uncertainties. Based on ∆, µ synthesis is developed to design a robust sta-

bling controller such that the robustness properties of the closed-loop system

are ensured with respect to the defined ∆ (Doyle, 1985; Fan et al., 1991).

The motivation of µ synthesis is attractive, unfortunately, there is no direct

method to synthesize such µ robust controllers. Normally, µ synthesis in-

volves the use of H∞ optimization for the controller synthesis and µ analysis

for the robustness properties verification with the designed controller, for

instance, the widely used DK-iteration (Doyle et al., 1991). But even for a

given controller, the accurate µ computation is in general NP-hard1 (Braatz

et al., 1994; Blondel and Tsitsiklis, 2000). Therefore, lower and upper bounds

of µ are usually calculated to approximate its accurate value with frequency

gridding method (Young and Dolye, 1990; Young et al., 1992). This method

requires a sufficiently fine frequency gridding to have reliable results. In the

case of lightly damped flexible structures, the critical frequency could be ne-

1given any algorithm to compute µ, there will be problems for which the algorithm

cannot find the answer in polynomial time.
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glected and the robustness properties are thus overestimated (Freudenberg

and Morton, 1992). In addition to the problem introduced by µ analysis,

DK-iteration fails to generate a µ upper bound optimal controller due to

its inherent non-convexity and only provides a µ upper bound sub-optimal

controller, which largely depends on the selection of initial parameters. The

order of this controller increases in every DK-iteration and tends to be very

large. The µ synthesis is often difficult to be formulate directly (Skogestad

and Postlethwaite, 2005). As a result, from a practical point of view, µ syn-

thesis (DK-iteration) is not suitable for active vibration control of flexible

strictures.

To avoid the drawbacks of usual H∞ control and µ synthesis for robust

active vibration control of flexible structures, a general and systematic ro-

bust control methodology is developed in this article. For this purpose, a

positive frequency-dependent function is used to determine the controlled

resonant frequencies and define the specification of vibration reduction. To

consider the complete set of control objectives, phase and gain control poli-

cies are proposed to impose qualitative frequency-dependent requirements on

the controller:

• When the specification of vibration reduction is not satisfied, the phase

control policy requires the gain of the controller large enough for effec-

tive vibration reduction. Meanwhile, it enforces the phase requirement

on the controller such that around the controlled resonant frequencies

the open-loop transfer function stays in the right half plane on Nyquist

plot. This phase property provides adequate stability robustness to

parametric uncertainties. The phase requirement is in contrast with
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the passivity theorem (Khalil, 1996) and the negative-imaginary ap-

proach (Lanzon and Petersen, 2008) which impose more strict phase

requirements on the plant and the controller and can only be applied

to collocated systems.

• When the specification of vibration reduction is satisfied, the gain con-

trol policy requires the gain of the controller as small as possible to

limit the control energy and reduce the effects of the measurement

noise. Based on the small gain theorem, it also provides a certain level

of stability robustness to a generalized dynamic uncertainty including

neglected high frequency dynamics and other dynamics when the phase

control policy is not used. As no parametric uncertainty is considered

with the small gain terrorem, the associated conservatism is reduced.

Phase and gain control policies are then used in the dynamic output feedback

H∞ control to incorporate necessary weighting functions and determine them

in a rational and systematic way. On the other hand, with the appropriate

weighting functions efficient H∞ control algorithms can automatically realize

phase and gain control policies and generate a satisfactory H∞ controller to

make a trade-off among various control objectives. The proposed control

methodology is developed by well employing phase and gain control policies

in the H∞ control. It can be used for both SISO and MIMO systems with

collocated or non-collocated sensors and actuators.

The remaining sections of this article are arranged as follows. In Section 2,

phase and gain control policies are proposed to consider a complete set of

control objectives. In Section 3, phase and gain control policies are used

to explain classical AFC and employed in the dynamic output feedback H∞
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control to develop a general and systematic robust control methodology. In

Section 4, the proposed control methodology is validated on a non-collocated

piezoelectric cantilever beam with numerical simulations and experimental

results. Conclusions are summarized in Section 5.

2. Controller design

2.1. Problem statement

One of the most significant characteristics of flexible structures is their

highly resonant modes due to inherently small dissipation of kinetic and

strain energy, which is reflected by a relatively small structural damping.

Such flexible structures may experience considerable vibrations when they

are excited around the resonant frequencies. To obtain effective vibration

reduction, it is desirable to design a controller for the resonance reduction,

that is, the controller should effectively reduce the frequency response mag-

nitudes around the controlled resonant frequencies and have limited effects

elsewhere.

K

u

q

v

N
p

Figure 1: The most general feedback control structure
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To determine the controlled resonant frequencies and quantitatively de-

fine the specification of vibration reduction, a positive frequency-dependent

function U(ω) and the most general feedback control structure of Figure 1

are introduced, where N(s) is the general plant, K(s) the stable controller

to be designed, u the control signal, v the input signal to K(s), p = [d, n]
′

the external signals including the disturbance signal d and the measurement

noise n, and q = [y, u]
′

the regulated signals to be minimized including the

system output y and the control energy u. By partitioning N(s) according

to the size of signals, the system is described as





q(s)

v(s)



 = N(s)





p(s)

u(s)



 =





Nqp(s) Nqu(s)

Nvp(s) Nvu(s)









p(s)

u(s)



 (1)

u(s) = K(s)v(s) (2)

where Nqp(s) represents the open-loop transfer function matrix from p to

q. The closed-loop transfer function matrix from p to q is given by the

linear fractional transformation: q = Fl(N,K)(s)p, where Fl(N,K)(s) =

Nqp(s) +Nqu(s)K(s)(I −Nvu(s)K(s))−1Nvp(s). Denote T (s) = Fl(N,K)(s),

the closed-loop transfer function from d to y is represented by Tyd(s) and the

specification of vibration reduction can be defined as

|Tyd(jω)| ≤ U(ω), ∀ ω ∈ R (3)

where R denotes the fields of real numbers. For the SISO systems, this

specification can be illustrated in Figure 2, where the solid curve is the open-

loop transfer function from d to y, Nyd(jω). Obviously, for this particular

case, the first two resonant frequencies are the controlled ones.

11



10
2

10
3

−80

−60

−40

−20

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

U(ω)

Figure 2: A specification of vibration reduction for flexible structures

In practice, in addition to the specification of vibration reduction, several

other control objectives have to be considered simultaneously, e.g. the closed-

loop stability, the moderate control energy, the effects of the measurement

noise and the stability robustness to parametric and dynamic uncertainties.

In the control design, the complete set of control objectives can be translat-

ed into the requirements on corresponding transfer function matrices. The

typical vibration control structure of Figure 3 is introduced for the SISO

systems, where Gd(s) and Gp(s) represent disturbance and plant dynamical

models respectively (Pota et al., 1999). This is a specific case of the most

general control structure in that the regulated system output y is measured

and directly fed back to K(s).

Based on the control structure of Figure 3, the closed-loop stability can

be investigated with the Nyquist stability criterion in terms of the open-

loop transfer function L(jω) = K(jω)Gp(jω). The modulus margin Mm

represents the smallest distance from L(jω) to the critical point −1 + j0 on

12



Nyquist plot (Bourlès and Kwan, 2010),

Mm = inf
ω
|1 + L(jω)| = 1

sup
ω

1
|1+L(jω)|

=
1

sup
ω

|S(jω)| , ∀ω ∈ R (4)

where S(jω) = (1 + L(jω))−1 is the sensitivity function of the closed-loop

system. Based on the Nyquist stability criterion, for the stability robust-

ness, the larger Mm, the better. In addition, M−1
m is the maximum peak of

the sensitivity function and is closely related to the gain and phase margin-

s (Skogestad and Postlethwaite, 2005). The beneficial effects of K(s) on the

vibration reduction is represented by |Tyd(jω)| = |Gd(jω)S(jω)| and the as-

sociated control energy is represented by |Tud(jω)| = |Gd(jω)K(jω)S(jω)|.
The effects of the measurement noise on the control energy and the sys-

tem output are respectively represented by |Tun(jω)| = |K(jω)S(jω)| and
|Tyn(jω)| = |1 − S(jω)| = |T (jω)| termed as the complimentary sensitivi-

ty function. Hence, these control objectives are equivalent to reducing the

magnitudes of related closed-loop transfer functions.

K

d

v

u

n

y

Figure 3: A typical feedback control structure for active vibration control
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2.2. Phase and gain control policies

To design a controller K(jω) satisfying above mentioned control ob-

jectives, it is desirable to translate the control objectives into frequency-

dependent requirements on K(jω). The relationships between the control

objectives and the closed-loop transfer functions are used to this end, e-

specially, when |L(jω)| ≫ 1 and |L(jω)| ≪ 1, these closed-loop transfer

functions can be simplified with respect to K(jω) as summarized in Table 1.

This simplification allows the investigation of the relationships between the

control objectives and |K(jω)| .

|L(jω)| ≫ 1 ≪ 1

|Tyd(jω)| ≈
∣

∣

∣

Gd(jω)
L(jω)

∣

∣

∣
≈ |Gd(jω)|

|Tyn(jω)| ≈ 1 ≈ |L(jω)|
|Tud(jω)| ≈

∣

∣

∣

Gd(jω)
Gp(jω)

∣

∣

∣
≈ |K(jω)Gd(jω)|

|Tun(jω)| ≈
∣

∣

∣

1
Gp(jω)

∣

∣

∣
≈ |K(jω)|

Table 1: Relationships between closed-loop transfer functions and the controller

For efficient vibration reduction, |Tyd(jω)| is focused and Table 1 implies

that at frequencies where |Gd(jω)| > U(ω), i.e. the specification of vibration

reduction is not satisfied, |K(jω)| is required to be large enough, for example,

|L(jω)| ≫ 1 and |K(jω)| ≥ |Gd(jω)|
|Gp(jω)U(ω)| (5)

On the other hand, at frequencies where |Gd(jω)| ≤ U(ω), i.e. the speci-

fication of vibration reduction is satisfied, no control energy is needed and

the ideal controller should be |K(jω)| = 0. For moderate control energy,

|Tud(jω)| has to be limited, however, when |L(jω)| ≫ 1 the control energy is
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nearly independent on K(jω) and thus it cannot be limited by any K(jω).

In contrast, when |L(jω)| ≪ 1 the control energy can be limited by making

|K(jω)| as small as possible. In addition, when |L(jω)| ≪ 1 the effects of

the measurement noise |Tyn(jω)| and |Tun(jω)| can also be reduced with s-

mall |K(jω)|. In conclusion, |K(jω)| is required to be large enough around

the controlled resonant frequencies and beyond these frequencies |K(jω)|
has to be as small as possible. Above analysis provide available and quite

qualitative frequency-dependent requirements on |K(jω)|. Subsequently, the
stability robustness to parametric and dynamic uncertainties is considered

and the phase requirement on K(jω) is enforced.

2.2.1. The phase control policy

The frequency responses of flexible structures are mainly dominated by

the behavior around their resonant frequencies. As shown in Figure 4, these

frequency responses seem to be circular to some extent on Nyquist plot.

The effects of parametric uncertainties on L(jω) can also be illustrated on

Nyquist plot: when the ith damping ratio ζi is decreasing or the ith gain

Ri is increasing, the modulus of the ith ’circle’ becomes larger; when the

ith resonant frequency ωi is decreasing, the modulus of the ith ’circle’ be-

comes larger and the orientation of the ith ’circle’ changes. Due to these

parametric uncertainties, not only the closed-loop stability but also the sta-

bility robustness has to be investigated. Implied by the Nyquist stabili-

ty criterion, when L(jω) is stable and stays in the left half plane (LHP)

on Nyquist plot, the effects of parametric uncertainties are critical to the

closed-loop stability, particularly, around the controlled resonant frequencies

where |L(jω)| has to be large enough for effective vibration reduction and
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Figure 4: The effects of parametric uncertainties on L(jω)

thus L(jω) may well encircle the critical point −1 + j0. To solve this prob-

lem, the phase control policy is proposed: around the controlled resonant

frequencies, |K(jω)| has to be large enough to satisfy the specification of

vibration reduction, meanwhile, the stability robustness to parametric un-

certainties is guaranteed by enforcing the phase requirement on K(jω) such

that ∠L(jω) = [∠K(jω) + ∠Gp(jω)] ∈ [−90◦,+90◦], that is, around the

controlled resonant frequencies L(jω) stays in the right half plane (RHP) on
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Nyquist plot,

ℜ(L(jω)) ≥ 0, ω ∈ [ωci − δωci
, ωci + δωci

], δωci
> 0 (6)

where ℜ(L(jω)) represents the real part of L(jω) and ωci is the i
th controlled

resonant frequency. The Equation (6) guarantees that L(jω) cannot inter-

sect the negative real axis on Nyquist plot around ωci even there exist a

certain level of parametric uncertainties. Necessarily, L(jω) cannot encircle

the critical point −1+j0 around ωci and thus adequate stability robustness to

parametric uncertainties is achieved. This phase requirement on L(jω) can

be regarded as a generalization of the direct velocity feedback control (Balas,

1979), which requires L(jω) to stay in RHP at any frequency,

ℜ(L(jω)) ≥ 0, ∀ω ∈ R.

For the SISO systems, the passivity theorem (Khalil, 1996) and the

negative-imaginary (NI) approach (Lanzon and Petersen, 2008) can also be

interpreted by the phase requirement on L(jω). Compared to the phase con-

trol policy, more strict phase requirements on Gp(jω) andK(jω) are enforced

by these methods to guarantee the closed-loop stability, for example,

ℜ(Gp(jω)) ≥ 0 and ℜ(K(jω)) > 0, ∀ω ∈ R, the passivity theorem

ℑ(Gp(jω)) ≤ 0 and ℑ(K(jω)) < 0, ∀ω ∈ R, the NI approach

where ℑ(Gp(jω)) represents the imaginary part of Gp(jω). From a prac-

tical point of view, it is not necessary and difficult to satisfy these phase

requirements for all frequencies, for instance, ℜ(Gp(jω)) ≥ 0, ∀ω ∈ R or

ℑ(Gp(jω)) ≤ 0, ∀ω ∈ R can be frequently destroyed by neglected high fre-

quency dynamics or time delays (Rohrs et al., 1985; Griggs et al., 2007).
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Furthermore, these phase requirements cannot be satisfied in the case of

non-collocated sensors and actuators, which is often unavoidable due to in-

stallation convenience or is even recommendable for high degrees of observ-

ability and controllability (Bayon de Noyer and Hanagud, 1998b; Kim and

Oh, 2013). In such case, the passivity theorem and the negative-imaginary

approach cannot be used. As a result, the uncertainties and non-collocated

systems pose challenging problems for the control designs which are proposed

to have unconditional closed-loop stability with these methods, e.g. Balas

(1979); Sim and Lee (1993); Pota et al. (2002); Aphale et al. (2007); Bhikka-

ji et al. (2012); Song et al. (2012). In contrast, the phase control policy has

no phase requirement on Gp(jω) and the phase requirement on K(jω) has to

be satisfied only around ωci. This allows the application of the phase control

policy to both collocated and non-collocated systems to consider not only the

stability robustness to parametric uncertainties and but also the specification

of vibration reduction.

2.2.2. The gain control policy

As above discussed, when the specification of vibration reduction is sat-

isfied, i.e. |Gd(jω)| ≤ U(ω), the ideal case is |K(jω)| = 0. However, this

is practically impossible and thus the stability robustness to the dynamic

uncertainty on Gp(jω) has to be investigated. Usually, a norm bounded ad-

ditive or multiplicative perturbation can be used to represent the dynamic

uncertainty,

additive perturbation:

Gp(jω) = Gp0(jω) + ∆a(jω), |∆a(jω)| ≤ |Wa(jω)|, ∀ω ∈ R (7)
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multiplicative perturbation:

Gp(jω) = (1 + ∆m(jω))Gp0(jω), |∆m(jω)| ≤ |Wm(jω)|, ∀ω ∈ R (8)

where Gp0(jω) and Gp(jω) are the nominal and perturbed plant dynamical

models; Wa(jω) and Wm(jω) are norm bounded transfer functions used as

upper bounds on the magnitudes of the additive and multiplicative dynamic

uncertainties respectively. From the small gain theorem, the necessary and

sufficient conditions for the stability robustness to the additive and multi-

plicative dynamic uncertainties are

additive perturbation:

|Tun(jω)| = |K(jω)S0(jω)| <
1

|Wa(jω)|
≤ 1

|∆a(jω)|
, ∀ω ∈ R (9)

multiplicative perturbation:

|Tyn(jω)| = |T0(jω)| <
1

|Wm(jω)|
≤ 1

|∆m(jω)|
, ∀ω ∈ R (10)

where S0(jω) = (1 +K(jω)Gp0(jω))
−1 and T0(jω) = K(jω)Gp0(jω)S0(jω).

The smaller |Tun(jω)| and |Tyn(jω)| are, the larger |Wa(jω)| and |Wm(jω)|
can be, that is, the closed-loop system can tolerate a larger dynamic un-

certainty. From Table 1, when |L(jω)| ≪ 1, |Tun(jω)| ≈ |K(jω)| and

|Tyn(jω)| ≈ |L(jω)|. Hence, above conditions can be reflected by the re-

quirements on |K(jω)|,
additive perturbation:

|K(jω)| < 1

|Wa(jω)|
, ∀ω ∈ R (11)

multiplicative perturbation:

|K(jω)| < 1

|Gp0(jω)Wm(jω)|
, ∀ω ∈ R (12)
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Based on above analysis, the gain control policy is proposed: at the

frequencies where the specification of vibration reduction is satisfied, |K(jω)|
has to be as small as possible to limit the control energy and reduce the

effects of the measurement noise. Based on the small gain theorem, the

gain control policy also provides a certain level of stability robustness to a

generalized dynamic uncertainty including usual neglected high frequency

dynamics and other dynamics when the phase control policy is not used, e.g.

the low and middle frequency dynamics in Barrault et al. (2007) and Barrault

et al. (2008). In addition, as only the dynamic uncertainty is considered with

the small gain theorem, the associated conservatism could be reduced.

The proposed phase and gain control policies impose frequency-dependent

requirements on |K(jω)| and ∠K(jω) to consider a complete set of control

objectives in the presence of parametric and dynamic uncertainties. It is

notable that phase and gain control policies are quite qualitative, for instance,

the δωci
in Equation (6) is not explicitly specified and related formulation

derivations are not rigorous. As it is impossible to change |K(jω)| or ∠K(jω)

dramatically over a very small frequency range, there always exist transition

frequency ranges forK(jω) to switch from one control policy to the other one.

The transition frequency ranges are most critical to control design especially

when the resonant modes are closely spaced and the phase control policy

has to be used over middle frequency ranges. As a result, to make full use

of phase and gain control policies, great attention should be paid to their

realization and the trade-off among various control objectives. Although for

several specific SISO cases, phase and gain control policies could be realized

by some classical control methods such as AFC and so on, it is desirable to
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have a more rational and systematic way to realize them for more general

cases. The dynamic output feedback H∞ control is a competitive solution to

this problem due to its inherent characteristics.

3. Application of phase and gain control policies

3.1. Explanation of acceleration feedback control

The basic idea of acceleration feedback control (AFC) is to pass the ac-

celeration signal through some second order compensators with suitable pa-

rameters and generate a force feedback proportional to the output of the

controller (Bayon de Noyer and Hanagud, 1998b). If n resonant modes of a

flexible structure G(s) have to be controlled simultaneously, the AFC con-

troller KAFC(s) has to include n compensators in parallel

G(s) =
n

∑

i=1

Ris
2

s2 + 2ζsiωsis+ ω2
si

(13)

KAFC(s) =

n
∑

i=1

γiω
2
ci

s2 + 2ζciωcis+ ω2
ci

(14)

where ωsi, ζsi and Ri are the natural frequency, the damping ratio and the

gain of ith controlled resonant mode of the flexible structure; ωci, ζci and γi

are corresponding parameters of KAFC(s). The principle structure of AFC

is shown in Figure 5, where each compensator is just tuned to a controlled

resonant mode. This control structure is a specific case of the general control

structures since the regulated system output y can be measured and directly

fed back to the controller. In addition, the disturbance d and the plant input

u are assumed to be exerted at the same position. The structure of KAFC(s)

is fixed and the focus of AFC is to determine the parameters of KAFC(s) for

every controlled resonant mode.
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Figure 5: The principle of AFC for n controlled resonant modes

According to the phase control policy, ωci ≈ ωsi and appropriate ζci, γi

are used to ensure |KAFC(jω)| large enough around ωsi. In this case, L(jω)

can be approximated as

L(jω) = G(jω)KAFC(jω) ≈
γiRi

4ζciζsi
, ω ∈ [ωsi − δωsi

, ωsi + δωsi
] (15)

This implies that, around ωsi, γiRi > 0 ensures ℜ(L(jω)) > 0 and |L(jω)|
is proportional to γi/ζci. Therefore, the selection of ζci and γi has significant

effects on the vibration reduction performance. Due to the fixed structure of

KAFC(jω), the gain control policy can only be used after ωsn whereKAFC(jω)

begins to roll off.

Above design method of KAFC(s) with phase and gain control policies

are consistent with the methods in literature, e.g. the critically damped

method (Goh and Yan, 1996), the cross-over point method (Bayon de Noyer

and Hanagud, 1998b) and the H2 optimized method Bayon de Noyer and
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Hanagud (1998a). All of these methods require ωci = ωsi and γiRi > 0.

3.2. Proposed control methodology

As classical control cannot ensure that the designed controllers are op-

timal with respect to a set of control objectives simultaneously, in this ar-

ticle, a general and systematic robust control methodology is developed by

employing phase and gain control policies in the dynamic output feedback

H∞ control. As shown in the H∞ control framework of Figure 6, according

to the control objectives, the augmented plant P (s) is built by incorporating

necessary weighting functions Wi into the typical feedback control structure.

The weighting functions account for the relative magnitude of signals, their

frequency dependence and relative importance. Two exogenous input sig-

nals w = [w1, w2]
′

and three regulated signals z = [z1, z2, z3]
′

are employed,

where d = Wdw1, n = Wnw2, z1 = Wyy, z2 = Wuu and z3 = Wvv. By

partitioning P (s) according to the size of signals, the system is described as





z(s)

v(s)



 = P (s)





w(s)

u(s)



 =





Pzw(s) Pzu(s)

Pvw(s) Pvu(s)









w(s)

u(s)



 (16)

u(s) = K(s)v(s) (17)

where

Pzw(s) =











Wd(s)Gd(s)Wy(s) 0

0 0

−Wd(s)Gd(s)Wv(s) Wn(s)Wv(s)











, Pzu(s) =











Gp(s)Wy(s)

Wu(s)

−Gp(s)Wv(s)











Pvw(s) =
[

−Wd(s)Gd(s) Wn(s)
]

, Pvu(s) =
[

−Gp(s)
]
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Figure 6: H∞ control framework

The standard H∞ control problem is to achieve a stabilizing controller

K(jω) which minimizes the H∞ norm of the augmented closed-loop transfer

function matrix Fl(P,K)(jω) defined as

‖Fl(P,K)(jω)‖∞ = max
ω

σ̄(Fl(P,K)(jω)), ∀ω ∈ R

where Fl(P,K)(jω) = Pzw(jω)+Pzu(jω)K(jω)(I−Pvu(jω)K(jω))−1Pvw(jω).

Let γmin be the minimum value of ‖Fl(P,K)(jω)‖∞ over all stabilizing con-

trollers. The H∞ sub-optimal control problem is: given a γ > γmin, find

all stabilizing controllers such that ‖Fl(P,K)(jω)‖∞ ≤ γ. This optimiza-

tion can be solved efficiently and by reducing γ iteratively an optimal so-

lution is achieved (Doyle et al., 1989). With appropriate weighting func-

tions, γ = 1 can be used and a complete set of control objectives are

transformed to the constrains on corresponding weighted closed-loop trans-

fer functions, e.g. ‖Tz1w1
(jω)‖∞ ≤ 1 represents the specification of vibration

reduction. Due to the property of H∞ norm, ‖Fl(P,K)(jω)‖∞ ≤ 1 ensures

‖Tzjwi
(jω)‖∞ ≤ 1, that is, these control objectives are satisfied simultane-

ously with the designed H∞ controller.
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As known, in H∞ control the selection of weighting functions is quite

important to achieve a satisfactory K(jω). Fortunately, according to a set of

control objectives, phase and gain control policies can incorporate necessary

weighting functions in H∞ control and determine them in a rational and

systematic way:

• To define the specification of vibration reduction, Wd(jω) and Wy(jω)

should be used and satisfy

|Wd(jω)Wy(jω)U(ω)| ≥ 1, ∀ω ∈ R. (18)

then ‖Tz1w1
(jω)‖∞ = ‖Wd(jω)Gd(jω)S(jω)Wy(jω)‖∞ ≤ 1 ensures

|Tyd(jω)| = |Gd(jω)S(jω)| ≤ U(ω), ∀ω ∈ R. Depending on the shape

of U(ω), sometimes complicated Wd(jω) and Wy(jω) may be required

and thus decomposed H∞ control structure is recommendable in such

cases.

• To impose the requirements on K(jω) according to phase and gain

control policies, |K(jω)S(jω)| can be investigated since it is a good

indicator of |K(jω)| when |L(jω)| ≪ 1 as shown in Table 1. When the

phase control policy is used, |K(jω)| has to be large enough for effec-

tive vibration reduction. From the Equation (5), Wn(jω) and Wu(jω)

should be used and satisfy

|Wn(jω)Wu(jω)Gd(jω)| < |Gp(jω)U(jω)|, ∀ω/ |Gd(jω)| > U(ω) (19)

The phase requirement on K(jω) can be automatically fulfilled by the

H∞ control algorithm with a stable stabilizing K(jω). This provides

adequate stability robustness to parametric uncertainties. When the
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gain control policy is used, |K(jω)| has to be as small as possible to

have moderate control energy and reduce the effects of the measurement

noise. Besides, the gain control policy has to provide a certain level of

stability robustness to a dynamic uncertainty. For this purpose, with

the additive dynamic uncertainty ∆a(jω), Wn(jω) and Wu(jω) should

be used and satisfy

|Wn(jω)Wu(jω)| > |Wa(jω)|, ∀ω ∈ R (20)

then ‖Tz2w2
(jω)‖∞ = ‖Wn(jω)K(jω)S(jω)Wu(jω)‖∞ ≤ 1 ensures the

stability robustness to ∆a(jω) based on Equation (9); with the multi-

plicative dynamic uncertainty ∆m(jω), Wn(jω) and Wy(jω) should be

used and satisfy

|Wn(jω)Wy(jω)| > |Wm(jω)|, ∀ω ∈ R (21)

then ‖Tz1w2
(jω)‖∞ = ‖Wn(jω)T (jω)Wy(jω)‖∞ ≤ 1 ensures the stabil-

ity robustness to ∆m(jω) based on Equation (10).

• To have a modulus margin Mm > λ ∈ (0, 1), Wn(jω) and Wv(jω)

should be used and satisfy

|Wn(jω)Wv(jω)| > λ, ∀ω ∈ R (22)

This can be derived from Equation (4) and the constrain on |S(jω)|

‖Tz3w2
(jω)‖∞ = ‖Wn(jω)S(jω)Wv(jω)‖∞ ≤ 1

For instance λ = 0.5 implies that sup
ω

|S(jω)| must be less than 2 and

thus it is required |Wn(jω)Wv(jω)| > 0.5, ∀ω ∈ R.

26



As shown above, according to the set of control objectives, phase and gain

control policies can be used in H∞ control to incorporate necessary weight-

ing functions and determine them in a rational and systematic way. On the

other hand, with the appropriate weighting functions efficient H∞ control

algorithms can automatically realize phase and gain control policies and gen-

erate a satisfactory H∞ controller to make a trade-off among various control

objectives. Although the phase control policy is interpreted with the SISO

systems, a nice point is that the H∞ control can be also used for the con-

trol design of MIMO systems. As a result, a general and systematic robust

control methodology for active vibration control of flexible structures is de-

veloped by well employing phase and gain control policies in the dynamic

feedback output feedback H∞ control. It can be used for both SISO and

MIMO systems with collocated or non-collocated sensors and actuators.

4. Numerical simulation & experimental results

4.1. System modeling

To illustrate the effectiveness of the proposed control methodology, ac-

tive vibration control of a non-collocated piezoelectric cantilever beam is

investigated as shown in Figure 7, where a piezoelectric actuator is mounted

near the fixed end and an accelerometer near the free end. Based on modal

analysis approach (Meirovitch, 1986) and the modeling of piezoelectric ac-

tuators (Moheimani and Fleming, 2006), applying Laplace transformation

and assuming zero initial conditions, the plant dynamical model Gp(s) rep-

resenting the dynamics from the voltage applied on the piezoelectric actuator
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Va(xa, s) to the beam acceleration Ÿ (x, s) is

Gp(s) =
Ÿ (x, s)

Va(xa, s)
=

∞
∑

i=1

Ris
2

s2 + 2ζiωis+ ω2
i

(23)

Similarly, the disturbance dynamical model Gd(s) representing the dynamics

from the disturbance d(xd, s) to the beam acceleration Ÿ (x, s) is

Gd(s) =
Ÿ (x, s)

d(xd, s)
=

∞
∑

j=1

Rjs
2

s2 + 2ζjωjs+ ω2
j

(24)

where Ri/j , ζi/j, ωi/j are modal parameters to be identified.

accelerometeractuator

x
y

x 1

x 2

x
d

 M  a

 V a  x a,( )s

 d  x
 d,( )s

Figure 7: The piezoelectric cantilever beam

The experimental set-up for the parameter identification is illustrated in

Figure 8, where the dSPACE generates and acquires the input signal x(t),

pseudo random binary sequence (PRBS), and acquire the output signal y(t)

from the accelerometer. Experimental frequency responses are estimated by

Txy(ω), being the quotient of the cross power spectral density of x(t) and

y(t), Sxy(ω), and the power spectral density of x(t), Sxx(ω) (Bendat and

Piersol, 1980),

Txy(ω) =
Sxy(ω)

Sxx(ω)
, ω ∈ {ω1, ω2, . . . , ωM} (25)

where M is the number of estimated frequency points. For Gp(s), PRBS

is sent to the piezoelectric actuator with no input to the shaker. Similarly,
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PRBS is sent to the shaker for Gd(s) and the signal to the piezoelectric actua-

tor is set zero. To avoid aliasing problem, the sampling frequency of dSPACE

is set at 10 kHz. The Hanning window and twenty averages are employed to

have reliable experimental frequency responses as shown in Figure 9.

accelerometeractuator

 

shaker

Actuator Amp Shaker Amp Sensor Amp

dSPACE

D/A
A/D

D/A  

PRBS

Low-pass Filter

 y(t)

x(t)

Figure 8: Experimental set-up for parameter identification

With Txy(ω), Gd(s) and Gp(s) can be estimated as a ratio of two poly-

nomials in the Laplace variable s based on Equation (23) and (24) with

the user-defined number of poles and zeros. The best curve fitting is per-

formed to determine the values of poles, zeros and gains with a least squares

method (Schoukens and Pintelon, 1991),

min
P

M
∑

k=1

ϕ(ω(k))|Txy(ω(k))−G(ω(k))|2, k ∈ {1, 2, . . . ,M} (26)

where P represents all the modal parameters ofG(jω) to identify and ϕ(ω(k))

is a frequency-dependent weighting function to emphasize the importance

over corresponding frequencies. Above parameter identification procedure
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Figure 9: Identified and experimental Gd(s) and Gp(s)

can be realized in Matlab with a graphical user interface. This helps us

to obviously observe the contribution of every resonant mode to the whole

dynamics. The dynamics of the shaker, the piezoelectric actuator, the ac-

celerometer, the filters and other hardwares are all incorporated into the

identified Gd(s) and Gp(s):

Gd(s) =
−1.2× 10−2s2

s2 + 65.8s+ 1.6× 105
+

1.4× 10−2s2

s2 + 172.9s+ 1.4× 106
+

−2.1× 10−3s2

s2 + 505.3s+ 2.0× 107

Gp(s) =
−3.6× 10−4s2

s2 + 65.6s+ 1.6× 105
+

−2.8× 10−4s2

s2 + 153.0s+ 1.5× 106
+

3.3× 10−3s2

s2 + 609.1s+ 1.7× 107
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As illustrated in Figure 9, the identified frequency responses of Gd(s) and

Gp(s) are in good agreement with the experimental ones over the frequency

range of interest. It is notable that either from analytical or finite elemen-

t method (Moheimani and Fleming, 2006; Piefort, 2001) different transfer

functions associated with the same structure should have identical poles, but

due to the errors in the system identification, the poles of identified Gd(s)

and Gp(s) are not exactly the same. Based on the specification of vibration

reduction as illustrated in Figure 2, the phase control policy has to be applied

to the first two resonant modes and the gain control policy to the others.

4.2. Design of AFC

With the cross-over point method (Bayon de Noyer and Hanagud, 1998b),

the parameters of KAFC(s) are determined as ωci = ωsi, ζci = 2ζfi − ζsi

and γi = (ζci−ζsi)2

Ri
. The ζfi is a user-defined final damping ratio of the

ith controlled resonant mode and the final frequency ωfi =
√
ωsiωci = ωsi.

Based on above identified Gp(s), with ζf1 = 0.3 and ζf2 = 0.2, KAFC1(s)

and KAFC2(s) are designed for the first resonant mode and the first two

respectively,

KAFC1(s) =
−8.4× 107

s2 + 410.8s+ 1.6× 105

KAFC2(s) =
−8.4× 107

s2 + 410.8s+ 1.6× 105
+

−4.1× 108

s2 + 831.9s+ 1.5× 106

The numerical simulations with KAFC1(s), KAFC2(s) and the identified mod-

els are illustrated in Figure 10. As required by the phase control policy

around the controlled resonant frequencies ωci, |KAFC1(jω)| and |KAFC2(jω)|
are large enough for effective vibration control and L(jω) stays in RHP to

have the stability robustness to parametric uncertainties. On the other hand,

as required by the gain control policy, KAFC1(jω) and KAFC2(jω) roll off af-
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ter ωc1 and ωc2 respectively to have a certain level of stability robustness to

the dynamic uncertainty.

 

W d

W n

W v

W u

W y2

W y1

K

P

Figure 11: Decomposed H∞ control framework

4.3. Design of proposed control methodology

Considering the fact that Gd(s) and Gp(s) should have the same poles and

motivated by the work in Font et al. (1994), for this particular case, Gp(s) can

be decomposed as Gp(s) = Gp12(s)Gp3(s), where Gp12(s) ≈ Gd1(s) +Gd2(s).

The phase control policy is applied to Gp12(s) and the gain control policy

is applied to other dynamics. Moreover, to simplify Wd(jω) and Wy(jω)

required to reflect the specification of vibration reduction, Gp12(s) is decom-

posed as illustrated in Figure 11. With this decomposition, constant Wd(jω),

Wy1(jω) and Wy2(jω) can be used to represent the specification of vibration

reduction

‖Tz11w1
(jω)‖∞ = ‖Wd(jω)Gp1(jω)S(jω)Wy1(jω)‖∞ ≤ 1

‖Tz12w1
(jω)‖∞ = ‖Wd(jω)Gp2(jω)S(jω)Wy2(jω)‖∞ ≤ 1
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It is notable that Wd(jω), Wy1(jω) and Wy2(jω) can also explicitly prevent

the pole-zero compensation between Gp(jω) and K(jω) at ω1 and ω2 (S-

corletti and Fromion, 2009). These decompositions reduce the order of H∞

controller, being the total order of all involved plants and weighting func-

tions. For the sake of simplicity, Wy(jω) is no longer used in the decomposed

H∞ control framework and thus only the additive dynamic uncertainty is

explicitly considered with Wn(jω) and Wu(jω).

For this particular case, the proposed control methodology generates the

controller K∞(s) using all constant weighting functions and the popular bal-

anced truncation method (Gu et al., 2005) is used to have Kr∞(s) with a

reduced order for easier real-time implementation,

K∞(s) =
1268.4(s− 4.3× 105)(s2 − 67.8s+ 2.5× 105)(s2 + 609.1s+ 1.9× 107)

(s2 + 408.9s+ 3.2× 105)(s2 + 950.4s+ 9.0× 105)(s2 + 4167s+ 1.6× 107)

Kr∞(s) =
45134(s− 1.1× 104)(s2 − 70.2s+ 2.5× 105)

(s2 + 354.5s+ 2.0× 105)(s2 + 682s+ 8.7× 106)

The numerical simulations with K∞(s), Kr∞(s) and the identified models

are illustrated in Figure 10. As required by the phase control policy around

ωc1 and ωc2, |K∞(jω)| and |Kr∞(jω)| are large enough for effective vibration

control and L(jω) stays in RHP to have the stability robustness to parametric

uncertainties. On the other hand, as required by the gain control policy,

K∞(jω) and Kr∞(jω) roll off after ωc2 to have a certain level of stability

robustness to the dynamic uncertainty.

4.4. Comparisons between AFC and proposed control methodology

From the numerical simulations, it is shown that for this particular case

both AFC and the proposed control methodology achieve the vibration re-

duction of their controlled resonant modes. However, the specification of

vibration reduction is not directly considered by AFC. It is reflected by the
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Figure 12: Phase and gain control policies with H∞ control: ωci represents the ith con-

trolled resonant frequency

user-defined damping ratios such as ζf1 = 0.3 and ζf2 = 0.2. The parametric

uncertainties could have considerable detrimental effects on the practically

obtained damping rations. Besides, when the controlled resonant modes are

closely spaced, it is not easy to determine the parameters of KAFC(jω) and

a large amount of time and energy could be required to meet the specifi-

cation of vibration reduction. Sometimes, even a lot of efforts are put into
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the parameter selection, no satisfactory KAFC(jω) is obtained. This may

lead to the question: with respect to the specification of vibration reduc-

tion, whether there exists a satisfactory KAFC(jω) or not. Fortunately, the

proposed control methodology has no such question and a trade-off among

various control objectives can be achieved by tuning the weighting functions.

In real-time implementation, due to the physical limitations, it is nec-

essary to enforce a upper bound on Umax = max
t

|u(t)|, ∀t ∈ R to avoid

the controller saturation and exceeding the actuator operated voltage. It is

normally difficult to enforce the constraint on Umax directly in H∞ control,

however, from a practical point of view, Umax can be limited by restricting

|K(jω)| in the frequency domain. Due to the fixed structure of KAFC(jω), it

can only roll off after the last controlled resonant mode even the gain control

policy is indeed required at lower frequencies. This means that AFC has

little flexibility to make a trade-off between the vibration reduction perfor-

mance and the control energy. An unnecessarily large Umax may be produced.

In contrast, the proposed control methodology can provide more flexibility

and explicitly limit |K(jω)| with frequency-dependent weighting functions,

for instance, the controller K ′
∞(jω) is obtained with a first order low-pass

Wu(jω),

K ′

∞
(s) =

2.78× 105(s− 2431)(s+ 1)(s2 − 228.2s+ 2.8× 105)

(s+ 963.8)(s2 + 607.4s+ 1.23× 105)(s2 + 413.6s+ 6.23× 105)
×

(s2 + 609.1s+ 1.92× 107)

(s2 + 3280s+ 1.91× 107)

As shown in Figure 13, compared to K∞(jω) obtained with all constant

weighting functions, |K ′
∞(jω)| ≈ |K∞(jω)| around the controlled resonant

frequencies for effective vibration reduction and |K ′
∞(jω)| ≪ |K∞(jω)| at
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low frequencies. Numerical simulations demonstrate that K ′
∞(jω) produces

a smaller Umax than K∞(jω) or KAFC2(jω) does.

Above analysis imply that the proposed control methodology may be

not the best choice for some specific SISO cases. Sometimes, other simpler

control designs such as AFC can also satisfy the control objectives. But the

proposed control methodology is more general and more systematic. It can

be used for both SISO and MIMO systems to consider a complete set of

control objectives and provide enough flexibility to make a trade-off among

them.
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4.5. Experimental implementation

The experimental set-up for real-time implementation is depicted in Fig-

ure 14. The designed continuous controllers are discretized using bilinear

transform and compiled to obtain the digital controller codes to upload

dSPACE digital control unit with necessary Matlab/Simulink and ControlD-
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esk. The analog-to-digital (A/D) and digital-to-analog (D/A) converters are

included in dSPACE hardware. The sampling frequency of dSPACE is set

at 10 kHz, which is high enough to avoid the aliasing problem. The vibra-

tion signal measured by the accelerometer is first through a low-pass filter

and then enters the A/D converter. A high-voltage amplifier, capable of

driving highly capacitive loads, is used to supply necessary voltage to the

piezoelectric actuator. Disturbance signal PRBS with suitable magnitude is

generated by dSPACE and sent to a shaker to excite the beam. The offset of

the measurement noise is acquired and compensated by adding an external

signal with Simulink. It is notable that all amplifies have to keep the same

amplification factor as used in the system identification process.

accelerometeractuator

 

shaker

Actuator Amp Shaker Amp

dSPACE

 

K

Low-pass Filter

Sensor Amp

A/DD/A PRBSD/A

Figure 14: Experimental set-up for active vibration control

Not surprisingly, the output of |KAFC2(s)| is saturated. As shown in Fig-

ure 15, KAFC1(s), K∞(s) and Kr∞(s) achieve 8 dB reduction for the first

resonant mode. K∞(s) and Kr∞(s) also achieve 11 dB reduction for the sec-

38



ond one. The spillover instability due to neglected high frequency dynamics

is avoided. Compared to the numerical results calculated with the identified

Gd(s) and Gp(s), the experimental vibration reduction performances are bet-

ter. To best of our understanding, this performance discrepancy is mainly

due to the errors in the system identification, which result in parametric un-

certainties onGd(s) andGp(s), e.g. the poles of the identified Gd(s) andGp(s)

are not the same and the realistic |Gp(s)| is indeed larger than the identified

one. To have good agreements between numerical and experimental results,

more accurate system modeling is desirable. The experimental results also

demonstrate that, when the phase control policy is used, the variation in

|L(s)| due to parametric uncertainties does not destabilize the system but

has considerable effects on the vibration reduction performances. In addition,

when the gain control policy is used, |L(s)| should be small enough, otherwise

the disturbance signal may be amplified. This problem is most critical over

transition frequency ranges, for instance, with K∞(s) and Kr∞(s) this ampli-

fication occurs between the second and third resonant frequencies. As shown

in Figure 13, |KAFC1(s)| ≪ |K∞(s)| over the transition frequency range and

this disturbance amplification is avoided with KAFC1(s). Therefore, to avoid

the disturbance amplification, more accurate system modeling is beneficial

and the controller has to roll off quickly enough over the transition frequen-

cy ranges. With the proposed control methodology, this roll-off requirement

on the controller can be reflected by corresponding weighting functions such

as Wn(s) and Wu(s) of Figure 6. It is also notable that a trade-off among

various control objectives must be considered in the selection of weighting

functions.
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5. Conclusions

The main contribution of this article is to propose a general and sys-

tematic robust control methodology for active vibration control of flexible

structures. To achieve this goal, first we have an extensive review of the

H∞ based active vibration control of flexible structures, with the focus on

the pole-zero cancellation, the considered control objectives, the selection of

weighting functions and the stability robustness to parametric and dynamic

uncertainties. The limitations of µ synthesis are also pointed out from a

practical point of view. Then phase and gain control policies are proposed

to impose qualitative frequency-dependent requirements on the controller to

consider a complete set of control objectives. By well employing phase and

gain control policies in the dynamic output feedback H∞ control, a general

and systematic robust control methodology is developed: phase and gain con-

trol policies incorporate necessary weighting functions and determine them

in a rational and systematic way; on the other hand, with the appropriate
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weighting functions efficient H∞ control algorithms can automatically real-

ize phase and gain control policies and generate a satisfactory H∞ controller.

The proposed control methodology makes full use of phase and gain control

policies and the H∞ control. It can be used for both SISO and MIMO sys-

tems with collocated or non-collocated sensors and actuators. In this article,

this control methodology is validated on a non-collocated SISO piezoelec-

tric cantilever beam. Both numerical simulations and experimental results

demonstrate the effectiveness of the proposed control methodology.

Since the proposed control methodology is general and systematic, it can

be applied to more complicated and practical structures, e.g. the suspension

systems (Zhong et al., 2010) where several sensors and actuators can be used.

To quantitatively verify the robustness properties of the closed-loop system

with the designed H∞ controller, deterministic and probabilistic robustness

analysis can be employed (Zhang et al., 2013). In the following research,

with the finite dimensional LMI optimization (Dinh et al., 2005) the pro-

posed control methodology can be extended to linear parameter-varying and

nonlinear systems.
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