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The interest of this article is to develop a general and systematic robust control methodology for active vibration control of flexible structures. For this purpose, first phase and gain control policies are proposed to impose qualitative frequency-dependent requirements on the controller to consider a complete set of control objectives. Then the proposed control methodology is developed by employing phase and gain control policies in the dynamic output feedback H ∞ control: according to the set of control objectives,

Introduction

More advanced technologies and materials in industries lead to the implementation of lightweight components for miniaturization and efficiency.

Due to the lightweight components, the structures become more flexible and more susceptible to vibrations, which may cause unpleasant noises, unwanted stresses, malfunctions and even failures. As a result, the flexible structures have naturally become suitable candidates for active vibration control and piezoelectric transducers have been widely used for this purpose with various control designs, e.g. PID control [START_REF] Khot | Active vibration control of cantilever beam by using PID based output feedback controller[END_REF], velocity feedback control [START_REF] Aoki | Modelling of a piezoceramic patch actuator for velocity feedback control[END_REF], positive position feedback control (PPF) [START_REF] Qiu | Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate[END_REF], acceleration feedback control (AFC) [START_REF] Qiu | Active vibration control of a flexible beam using a non-collocated acceleration sensor and piezoelectric patch actuator[END_REF], independent modal control [START_REF] Jemai | An assembled plate active control damping set-up: optimization and control[END_REF], linear quadratic regulator (LQR) (Bhat-tacharya et al., 2002), fuzzy control [START_REF] Qu | Active control of vibration using a fuzzy control method[END_REF], adaptive control [START_REF] Ma | Adaptive simultaneous precision positioning and vibration control of intelligent composite structures[END_REF], µ synthesis [START_REF] Li | Robust control of a vibrating plate using µ-synthesis approach[END_REF] and H ∞ control [START_REF] Iorga | A review of H ∞ robust control of piezoelectric smart structures[END_REF].

In spite of the large number of control designs for active vibration control, a general methodology which allows us to systematically design a robust controller that satisfies a complete set of control objectives has to be proposed. The set of control objectives include the vibration reduction of every controlled resonant mode with corresponding a prior determined level, the constraints on the control energy, the reduction of effects of the measurement noise and the stability robustness to parametric and dynamics uncertainties.

Besides, as these control objectives usually have conflicting requirements on the controller, the control design must achieve a trade-off among them in a rational and systematic way. In this article, this problem is investigated.

It is demonstrated that, compared to PID, LQR and H 2 control, the H ∞ control can provide better robustness properties in the presence of parametric and dynamic uncertainties [START_REF] Crassidis | H ∞ control of active constrained layer damping[END_REF][START_REF] Zhang | Robust H ∞ vibration control for flexible linkage mechanism systems with piezoelectric sensors and actuators[END_REF].

It can be applied to both the single-input-single-output (SISO) systems and the multiple-input-multiple-output (MIMO) systems. The H ∞ control allows defining the design specifications in the frequency domain. Furthermore, the state and dynamic output feedback H ∞ control designs can be accomplished efficiently using polynomial-time algorithms and provide a stabilizing controller with a reasonable order [START_REF] Doyle | State-space solutions to standard H 2 and H ∞ control problems[END_REF][START_REF] Gahinet | A linear matrix inequality approach to H ∞ control[END_REF]. Due to these features, the H ∞ control is receiving intense interest in the control literature and has been successfully applied to a wide variety of practical problems [START_REF] Jabbari | H ∞ control for seismic-excited buildings with acceleration feedback[END_REF]. However despite these promising features, practical use of H ∞ based active vibration control remains limited mainly due to its drawbacks such as how to incorporate necessary weighting functions and determine them. In the following, we have an extensive review of the H ∞ control designs for robust active vibration control:

• The mixed sensitivity design is most usually adopted in H ∞ control, e.g. [START_REF] Sadri | Robust strategies for active vibration control of plate-like structures: theory and experiment[END_REF]; Kar et al. (2000a); [START_REF] Seto | A comparative study on H ∞ based vibration controller of a flexible structure system[END_REF]; [START_REF] Liu | Robust control of plate vibration via active constrained layer damping[END_REF]; [START_REF] Douat | H ∞ control applied to the vibration minimization of the parallel robot par2[END_REF]. However, this H ∞ control structure may necessarily lead to the pole-zero cancellation between the designed H ∞ controller and the plant. This pole-zero cancellation should be avoided for lightly damped flexible structures, especially in the presence of parametric uncertainties [START_REF] Sefton | Pole/zero cancellations in the general H ∞ problem with reference to a two block design[END_REF][START_REF] Scorletti | Automatique fréquentielle avancée[END_REF].

• The definition of the specification of vibration reduction is critical in H ∞ control. A frequency-dependent weighting function W (s) or a matching model M(s) can be used to this end [START_REF] Forrai | Gray box identification of flexible structures: application to robust active vibration suppression control[END_REF][START_REF] Rao | Experimental demonstration of H ∞ control based active vibration suppression in composite fin-tip of aircraft using optimally placed piezoelectric patch actuators[END_REF]. However, it is not explained clearly how to choose W (s) or M(s) and if several resonant modes have to be controlled, W (s) and M(s) could be very complicated and have a high order. This results in a high-order H ∞ controller, which requires extensive online computations imposing limitations on the sample rate for real-time implementation and precluding observation and control of high frequency resonant modes.

In addition to the vibration reduction performance, the H ∞ control should also impose constraints on the control energy and reduce the effects of the measurement noise. But these control objectives are often neglected, e.g. [START_REF] Seto | A comparative study on H ∞ based vibration controller of a flexible structure system[END_REF]; Kar et al. (2000b) ;[START_REF] Forrai | Gray box identification of flexible structures: application to robust active vibration suppression control[END_REF]; [START_REF] Xie | H ∞ robust vibration control of a thin plate covered with a controllable constrained damping layer[END_REF]; [START_REF] Liu | Robust control of plate vibration via active constrained layer damping[END_REF]. Sometimes, constant weighting functions are used for this purpose, e.g. [START_REF] Zhang | Robust H ∞ vibration control for flexible linkage mechanism systems with piezoelectric sensors and actuators[END_REF]; [START_REF] Huo | H ∞ robust control design of active structural vibration suppression using an active mass damper[END_REF]. However, as they are frequency-independent and cannot represent suitable requirements on the controller over various frequency ranges, the measurement noise may have significant adverse effects on the control performances and the closed-loop system may even not work properly in real-time implementation due to the control saturation problem.

• To consider a set of control objectives, necessary weighting functions have to be incorporated in H ∞ control and determined appropriately. The selection of weighting functions is critical in H ∞ control and even regarded to be the main drawback of H ∞ control by [START_REF] Zhang | Robust H ∞ vibration control for flexible linkage mechanism systems with piezoelectric sensors and actuators[END_REF]. As claimed in [START_REF] Crassidis | H ∞ control of active constrained layer damping[END_REF], the selection of weighting functions cannot be explicitly related to the control objectives in a straightforward manner and trial and error iterations are required to determine the weighting functions. Inappropriate weighting functions may neglect some control objectives and fail to have a satisfactory

H ∞ controller.
• To consider the stability robustness to parametric and dynamic uncertainties, a norm bounded additive or multiplicative perturbation is widely used in H ∞ control. They can represent neglected high frequency dynamics related to the spillover instability, e.g. [START_REF] Yaman | Active vibration control of a smart plate[END_REF]; [START_REF] Xie | H ∞ robust vibration control of a thin plate covered with a controllable constrained damping layer[END_REF]; Kar et al. (2000b); [START_REF] Font | H ∞ control of a magnetic bearing[END_REF][START_REF] Carrere | Commande fréquentielle robusteapplication aux paliers magnétiques[END_REF]; [START_REF] Caracciolo | Robust mixednorm position and vibration control of flexible link mechanisms[END_REF], and also include all possible uncertain models due to parametric uncertainties, e.g. [START_REF] Crassidis | H ∞ control of active constrained layer damping[END_REF]; [START_REF] Forrai | Gray box identification of flexible structures: application to robust active vibration suppression control[END_REF]; [START_REF] Chang | Design of robust vibration controller for a smart panel using finite element model[END_REF]; [START_REF] Filardi | Robust H ∞ control of a DVD drive under parametric uncertainties[END_REF]; [START_REF] Xie | H ∞ robust vibration control of a thin plate covered with a controllable constrained damping layer[END_REF]. Based on the unstructured uncertainty, the small gain theorem [START_REF] Desoer | Feedback Systems: Input-Output Properties[END_REF] is then applied to ensure the closed-loop stability.

It is notable that, due to the presence of parametric uncertainties, the employed unstructured uncertainty inevitably introduces considerable conservatism [START_REF] Morris | Synthesizing robust mode shapes with µ and implicit model following[END_REF]. To reduce this conservatism, mixed H 2 /H ∞ control together with pole placement is used to guarantee the stability robustness to parametric uncertainties [START_REF] Hong | Vibration control of beams using multiobjective state-feedback control[END_REF].

But the regulated variables in H 2 /H ∞ control are not clearly specified and there may exist considerable conservatism in the multi-objective state feedback synthesis. Assuming matched form of parametric uncertainties, the singular value decomposition is proposed to consider parametric uncertainties such that the phase margin keeps larger than 60 • for all possible models [START_REF] Wang | Robust control for structural systems with parametric and unstructured uncertainties[END_REF][START_REF] Wang | Robust active control for uncertain structural systems with acceleration sensors[END_REF]. However, the matching condition could be violated [START_REF] Stalford | Robust control of uncertain systems in the absence of matching conditions: Scalar input[END_REF] and the desired phase or gain margin is no longer guaranteed when the Kalman filter is used for the state estimation [START_REF] Doyle | Guaranteed margins for LQG regulators[END_REF]. Sometimes, only a dynamic uncertainty is explicitly considered in H ∞ control and parametric uncertainties are considered with the µ analysis to verify the robustness properties with the designed controller, e.g. [START_REF] Yaman | Active vibration control of a smart beam[END_REF][START_REF] Yaman | Active vibration control of a smart plate[END_REF]; [START_REF] Iorga | H ∞ control with µ-analysis of a piezoelectric actuated plate[END_REF]. Collocated sensors and actuators are also used in H ∞ to have prominent stability robustness, e.g. [START_REF] Bai | H ∞ collocated control of structural systems: An analytical bound approach[END_REF]; [START_REF] Demetriou | Collocated H ∞ control of a cantilevered beam using an analytical upper-bound approach[END_REF]. In few cases, neither dynamic nor parametric uncertainty is explicitly considered, e.g. [START_REF] Filardi | Robust H ∞ control of a DVD drive under parametric uncertainties[END_REF]; [START_REF] Chen | Finite frequency H ∞ control for building under earthquake excitation[END_REF].

Besides the H ∞ control designs, to reduce the conservatism in the presence of parametric uncertainties or several dynamic uncertainties, [START_REF] Doyle | Analysis of feedback systems with structured uncertainties[END_REF] proposed the concept of structured singular value (µ) and employed the structured uncertainty ∆ to investigate structural characteristics of all uncertainties. Based on ∆, µ synthesis is developed to design a robust stabling controller such that the robustness properties of the closed-loop system are ensured with respect to the defined ∆ [START_REF] Doyle | Structured uncertainty in control system design[END_REF][START_REF] Fan | Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics[END_REF].

The motivation of µ synthesis is attractive, unfortunately, there is no direct method to synthesize such µ robust controllers. Normally, µ synthesis involves the use of H ∞ optimization for the controller synthesis and µ analysis for the robustness properties verification with the designed controller, for instance, the widely used DK-iteration [START_REF] Doyle | Review of LFTs, LMI's, and µ[END_REF]. But even for a given controller, the accurate µ computation is in general NP-hard1 [START_REF] Braatz | Computational complexity of µ calculation[END_REF][START_REF] Blondel | A survey of computational complexity results in systems and control[END_REF]. Therefore, lower and upper bounds of µ are usually calculated to approximate its accurate value with frequency gridding method [START_REF] Young | Computation of µ with real and complex uncertainties[END_REF][START_REF] Young | Practical computation of the mixed µ problem[END_REF]. This method requires a sufficiently fine frequency gridding to have reliable results. In the case of lightly damped flexible structures, the critical frequency could be ne-glected and the robustness properties are thus overestimated [START_REF] Freudenberg | Robust control of a booster vehicle using H ∞ and SSV techniques[END_REF]. In addition to the problem introduced by µ analysis, DK-iteration fails to generate a µ upper bound optimal controller due to its inherent non-convexity and only provides a µ upper bound sub-optimal controller, which largely depends on the selection of initial parameters. The order of this controller increases in every DK-iteration and tends to be very large. The µ synthesis is often difficult to be formulate directly [START_REF] Skogestad | Multivariable Feedback Control-Analysis and Design[END_REF]. As a result, from a practical point of view, µ synthesis (DK-iteration) is not suitable for active vibration control of flexible strictures.

To avoid the drawbacks of usual H ∞ control and µ synthesis for robust active vibration control of flexible structures, a general and systematic robust control methodology is developed in this article. For this purpose, a positive frequency-dependent function is used to determine the controlled resonant frequencies and define the specification of vibration reduction. To consider the complete set of control objectives, phase and gain control policies are proposed to impose qualitative frequency-dependent requirements on the controller:

• When the specification of vibration reduction is not satisfied, the phase control policy requires the gain of the controller large enough for effective vibration reduction. Meanwhile, it enforces the phase requirement on the controller such that around the controlled resonant frequencies the open-loop transfer function stays in the right half plane on Nyquist plot. This phase property provides adequate stability robustness to parametric uncertainties. The phase requirement is in contrast with the passivity theorem [START_REF] Khalil | Nonlinear Systems, 2nd Edition[END_REF] and the negative-imaginary approach [START_REF] Lanzon | Stability robustness of a feedback interconnection of systems with negative imaginary frequency response[END_REF] which impose more strict phase requirements on the plant and the controller and can only be applied to collocated systems.

• When the specification of vibration reduction is satisfied, the gain control policy requires the gain of the controller as small as possible to limit the control energy and reduce the effects of the measurement noise. Based on the small gain theorem, it also provides a certain level of stability robustness to a generalized dynamic uncertainty including neglected high frequency dynamics and other dynamics when the phase control policy is not used. As no parametric uncertainty is considered with the small gain terrorem, the associated conservatism is reduced.

Phase and gain control policies are then used in the dynamic output feedback H ∞ control to incorporate necessary weighting functions and determine them in a rational and systematic way. On the other hand, with the appropriate weighting functions efficient H ∞ control algorithms can automatically realize phase and gain control policies and generate a satisfactory H ∞ controller to make a trade-off among various control objectives. The proposed control methodology is developed by well employing phase and gain control policies in the H ∞ control. It can be used for both SISO and MIMO systems with collocated or non-collocated sensors and actuators.

The remaining sections of this article are arranged as follows. In Section 2, phase and gain control policies are proposed to consider a complete set of control objectives. In Section 3, phase and gain control policies are used to explain classical AFC and employed in the dynamic output feedback H ∞ control to develop a general and systematic robust control methodology. In Section 4, the proposed control methodology is validated on a non-collocated piezoelectric cantilever beam with numerical simulations and experimental results. Conclusions are summarized in Section 5.

Controller design

Problem statement

One of the most significant characteristics of flexible structures is their highly resonant modes due to inherently small dissipation of kinetic and strain energy, which is reflected by a relatively small structural damping.

Such flexible structures may experience considerable vibrations when they are excited around the resonant frequencies. To obtain effective vibration reduction, it is desirable to design a controller for the resonance reduction, that is, the controller should effectively reduce the frequency response magnitudes around the controlled resonant frequencies and have limited effects ′ the regulated signals to be minimized including the system output y and the control energy u. By partitioning N(s) according to the size of signals, the system is described as

  q(s) v(s)   = N(s)   p(s) u(s)   =   N qp (s) N qu (s) N vp (s) N vu (s)     p(s) u(s)   (1) u(s) = K(s)v(s) (2) 
where N qp (s) represents the open-loop transfer function matrix from p to q. The closed-loop transfer function matrix from p to q is given by the linear fractional transformation:

q = F l (N, K)(s)p, where F l (N, K)(s) = N qp (s) + N qu (s)K(s)(I -N vu (s)K(s)) -1 N vp (s). Denote T (s) = F l (N, K)(s),
the closed-loop transfer function from d to y is represented by T yd (s) and the specification of vibration reduction can be defined as

|T yd (jω)| ≤ U(ω), ∀ ω ∈ R (3)
where R denotes the fields of real numbers. For the SISO systems, this specification can be illustrated in Figure 2, where the solid curve is the openloop transfer function from d to y, N yd (jω). Obviously, for this particular case, the first two resonant frequencies are the controlled ones. In practice, in addition to the specification of vibration reduction, several other control objectives have to be considered simultaneously, e.g. the closedloop stability, the moderate control energy, the effects of the measurement noise and the stability robustness to parametric and dynamic uncertainties.

In the control design, the complete set of control objectives can be translated into the requirements on corresponding transfer function matrices. The typical vibration control structure of Figure 3 is introduced for the SISO systems, where G d (s) and G p (s) represent disturbance and plant dynamical models respectively [START_REF] Pota | Resonant controllers for flexible structures[END_REF]. This is a specific case of the most general control structure in that the regulated system output y is measured and directly fed back to K(s).

Based on the control structure of Figure 3 Nyquist plot [START_REF] Bourlès | Linear Systems[END_REF],

M m = inf ω |1 + L(jω)| = 1 sup ω 1 |1+L(jω)| = 1 sup ω |S(jω)| , ∀ω ∈ R (4)
where S(jω) = (1 + L(jω)) -1 is the sensitivity function of the closed-loop system. Based on the Nyquist stability criterion, for the stability robustness, the larger M m , the better. In addition, M -1 m is the maximum peak of the sensitivity function and is closely related to the gain and phase margins [START_REF] Skogestad | Multivariable Feedback Control-Analysis and Design[END_REF]. The beneficial effects of K(s) on the 

Phase and gain control policies

To design a controller K(jω) satisfying above mentioned control objectives, it is desirable to translate the control objectives into frequencydependent requirements on K(jω). The relationships between the control objectives and the closed-loop transfer functions are used to this end, especially, when |L(jω)| ≫ 1 and |L(jω)| ≪ 1, these closed-loop transfer functions can be simplified with respect to K(jω) as summarized in Table 1.

This simplification allows the investigation of the relationships between the control objectives and |K(jω)| . has to be as small as possible. Above analysis provide available and quite qualitative frequency-dependent requirements on |K(jω)|. Subsequently, the stability robustness to parametric and dynamic uncertainties is considered and the phase requirement on K(jω) is enforced.

|L(jω)| ≫ 1 ≪ 1 |T yd (jω)| ≈ G d (jω) L(jω) ≈ |G d (jω)| |T yn (jω)| ≈ 1 ≈ |L(jω)| |T ud (jω)| ≈ G d (jω) Gp(jω) ≈ |K(jω)G d (jω)| |T un (jω)| ≈ 1 Gp(jω) ≈ |K(jω)|

The phase control policy

The frequency responses of flexible structures are mainly dominated by the behavior around their resonant frequencies. As shown in Figure 4, these frequency responses seem to be circular to some extent on Nyquist plot.

The effects of parametric uncertainties on L(jω) can also be illustrated on Nyquist plot: when the i th damping ratio ζ i is decreasing or the i th gain R i is increasing, the modulus of the i th 'circle' becomes larger; when the i th resonant frequency ω i is decreasing, the modulus of the i th 'circle' becomes larger and the orientation of the i th 'circle' changes. Due to these parametric uncertainties, not only the closed-loop stability but also the sta- 

ℜ(L(jω)) ≥ 0, ω ∈ [ω ci -δ ω ci , ω ci + δ ω ci ], δ ω ci > 0 (6)
where ℜ(L(jω)) represents the real part of L(jω) and ω ci is the i th controlled resonant frequency. The Equation ( 6) guarantees that L(jω) cannot intersect the negative real axis on Nyquist plot around ω ci even there exist a certain level of parametric uncertainties. Necessarily, L(jω) cannot encircle the critical point -1+j0 around ω ci and thus adequate stability robustness to parametric uncertainties is achieved. This phase requirement on L(jω) can be regarded as a generalization of the direct velocity feedback control [START_REF] Balas | Direct velocity feedback control of large space structures[END_REF], which requires L(jω) to stay in RHP at any frequency,

ℜ(L(jω)) ≥ 0, ∀ω ∈ R.
For the SISO systems, the passivity theorem [START_REF] Khalil | Nonlinear Systems, 2nd Edition[END_REF] and the negative-imaginary (NI) approach [START_REF] Lanzon | Stability robustness of a feedback interconnection of systems with negative imaginary frequency response[END_REF] can also be interpreted by the phase requirement on L(jω). Compared to the phase control policy, more strict phase requirements on G p (jω) and K(jω) are enforced by these methods to guarantee the closed-loop stability, for example, ℜ(G p (jω)) ≥ 0 and ℜ(K(jω)) > 0, ∀ω ∈ R, the passivity theorem

ℑ(G p (jω)) ≤ 0 and ℑ(K(jω)) < 0, ∀ω ∈ R, the NI approach
where ℑ(G p (jω)) represents the imaginary part of G p (jω). From a practical point of view, it is not necessary and difficult to satisfy these phase requirements for all frequencies, for instance, ℜ(G p (jω)) ≥ 0, ∀ω ∈ R or ℑ(G p (jω)) ≤ 0, ∀ω ∈ R can be frequently destroyed by neglected high frequency dynamics or time delays [START_REF] Rohrs | Robustness of continuous-time adaptive control algorithms in the presence of unmodeled dynamics[END_REF][START_REF] Griggs | A "mixed" small gain and passivity theorem in the frequency domain[END_REF].

Furthermore, these phase requirements cannot be satisfied in the case of non-collocated sensors and actuators, which is often unavoidable due to installation convenience or is even recommendable for high degrees of observability and controllability (Bayon de Noyer and Hanagud, 1998b; [START_REF] Kim | A modal filter approach to non-collocated vibration control of structures[END_REF]. In such case, the passivity theorem and the negative-imaginary approach cannot be used. As a result, the uncertainties and non-collocated systems pose challenging problems for the control designs which are proposed to have unconditional closed-loop stability with these methods, e.g. Balas 2012). In contrast, the phase control policy has no phase requirement on G p (jω) and the phase requirement on K(jω) has to be satisfied only around ω ci . This allows the application of the phase control policy to both collocated and non-collocated systems to consider not only the stability robustness to parametric uncertainties and but also the specification of vibration reduction.

The gain control policy

As above discussed, when the specification of vibration reduction is satisfied, i.e. |G d (jω)| ≤ U(ω), the ideal case is |K(jω)| = 0. However, this is practically impossible and thus the stability robustness to the dynamic uncertainty on G p (jω) has to be investigated. Usually, a norm bounded additive or multiplicative perturbation can be used to represent the dynamic uncertainty, additive perturbation:

G p (jω) = G p0 (jω) + ∆ a (jω), |∆ a (jω)| ≤ |W a (jω)|, ∀ω ∈ R (7)
multiplicative perturbation:

G p (jω) = (1 + ∆ m (jω))G p0 (jω), |∆ m (jω)| ≤ |W m (jω)|, ∀ω ∈ R (8)
where G p0 (jω) and G p (jω) are the nominal and perturbed plant dynamical models; W a (jω) and W m (jω) are norm bounded transfer functions used as upper bounds on the magnitudes of the additive and multiplicative dynamic uncertainties respectively. From the small gain theorem, the necessary and sufficient conditions for the stability robustness to the additive and multiplicative dynamic uncertainties are additive perturbation:

|T un (jω)| = |K(jω)S 0 (jω)| < 1 |W a (jω)| ≤ 1 |∆ a (jω)| , ∀ω ∈ R (9)
multiplicative perturbation:

|T yn (jω)| = |T 0 (jω)| < 1 |W m (jω)| ≤ 1 |∆ m (jω)| , ∀ω ∈ R (10) 
where S 0 (jω) = (1 + K(jω)G p0 (jω)) -1 and T 0 (jω) = K(jω)G p0 (jω)S 0 (jω). 

|K(jω)| < 1 |W a (jω)| , ∀ω ∈ R (11)
multiplicative perturbation:

|K(jω)| < 1 |G p0 (jω)W m (jω)| , ∀ω ∈ R (12) 
Based on above analysis, the gain control policy is proposed: at the frequencies where the specification of vibration reduction is satisfied, |K(jω)|

has to be as small as possible to limit the control energy and reduce the effects of the measurement noise. Based on the small gain theorem, the gain control policy also provides a certain level of stability robustness to a generalized dynamic uncertainty including usual neglected high frequency dynamics and other dynamics when the phase control policy is not used, e.g.

the low and middle frequency dynamics in [START_REF] Barrault | High frequency spatial vibration control using H ∞ method[END_REF] and [START_REF] Barrault | High frequency spatial vibration control for complex structures[END_REF]. In addition, as only the dynamic uncertainty is considered with the small gain theorem, the associated conservatism could be reduced.

The proposed phase and gain control policies impose frequency-dependent requirements on |K(jω)| and ∠K(jω) to consider a complete set of control objectives in the presence of parametric and dynamic uncertainties. It is notable that phase and gain control policies are quite qualitative, for instance, the δ ω ci in Equation ( 6) is not explicitly specified and related formulation derivations are not rigorous. As it is impossible to change |K(jω)| or ∠K(jω)

dramatically over a very small frequency range, there always exist transition frequency ranges for K(jω) to switch from one control policy to the other one.

The transition frequency ranges are most critical to control design especially when the resonant modes are closely spaced and the phase control policy has to be used over middle frequency ranges. As a result, to make full use of phase and gain control policies, great attention should be paid to their realization and the trade-off among various control objectives. Although for several specific SISO cases, phase and gain control policies could be realized by some classical control methods such as AFC and so on, it is desirable to have a more rational and systematic way to realize them for more general cases. The dynamic output feedback H ∞ control is a competitive solution to this problem due to its inherent characteristics.

Application of phase and gain control policies

Explanation of acceleration feedback control

The basic idea of acceleration feedback control (AFC) is to pass the acceleration signal through some second order compensators with suitable parameters and generate a force feedback proportional to the output of the controller (Bayon de Noyer and Hanagud, 1998b). If n resonant modes of a flexible structure G(s) have to be controlled simultaneously, the AFC controller K AF C (s) has to include n compensators in parallel

G(s) = n i=1 R i s 2 s 2 + 2ζ si ω si s + ω 2 si (13) K AF C (s) = n i=1 γ i ω 2 ci s 2 + 2ζ ci ω ci s + ω 2 ci (14)
where ω si , ζ si and R i are the natural frequency, the damping ratio and the gain of i th controlled resonant mode of the flexible structure; ω ci , ζ ci and γ i are corresponding parameters of K AF C (s). The principle structure of AFC is shown in Figure 5, where each compensator is just tuned to a controlled resonant mode. This control structure is a specific case of the general control structures since the regulated system output y can be measured and directly fed back to the controller. In addition, the disturbance d and the plant input u are assumed to be exerted at the same position. The structure of K AF C (s) is fixed and the focus of AFC is to determine the parameters of K AF C (s) for every controlled resonant mode. 
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L(jω) = G(jω)K AF C (jω) ≈ γ i R i 4ζ ci ζ si , ω ∈ [ω si -δ ω si , ω si + δ ω si ] (15) 
This implies that, around ω si , γ i R i > 0 ensures ℜ(L(jω)) > 0 and |L(jω)| is proportional to γ i /ζ ci . Therefore, the selection of ζ ci and γ i has significant effects on the vibration reduction performance. Due to the fixed structure of K AF C (jω), the gain control policy can only be used after ω sn where K AF C (jω) begins to roll off.

Above design method of K AF C (s) with phase and gain control policies are consistent with the methods in literature, e.g. the critically damped method [START_REF] Goh | Approximate pole placement for acceleration feedback control of flexible structures[END_REF], the cross-over point method (Bayon de Noyer and Hanagud, 1998b) and the H 2 optimized method Bayon de Noyer and Hanagud (1998a). All of these methods require ω ci = ω si and γ i R i > 0.

Proposed control methodology

As classical control cannot ensure that the designed controllers are optimal with respect to a set of control objectives simultaneously, in this article, a general and systematic robust control methodology is developed by employing phase and gain control policies in the dynamic output feedback 

H ∞ control. As shown in the H ∞ control framework of
u(s) = K(s)v(s) (17) 
where

P zw (s) =      W d (s)G d (s)W y (s) 0 0 0 -W d (s)G d (s)W v (s) W n (s)W v (s)      , P zu (s) =      G p (s)W y (s) W u (s) -G p (s)W v (s)      P vw (s) = -W d (s)G d (s) W n (s) , P vu (s) = -G p (s) W d W n W v W u W y K P Figure 6: H ∞ control framework
The standard H ∞ control problem is to achieve a stabilizing controller K(jω) which minimizes the H ∞ norm of the augmented closed-loop transfer function matrix F l (P, K)(jω) defined as

F l (P, K)(jω) ∞ = max ω σ(F l (P, K)(jω)), ∀ω ∈ R
where F l (P, K)(jω) = P zw (jω)+P zu (jω)K(jω)(I-P vu (jω)K(jω)) -1 P vw (jω).

Let γ min be the minimum value of F l (P, K)(jω) ∞ over all stabilizing controllers. The H ∞ sub-optimal control problem is: given a γ > γ min , find all stabilizing controllers such that F l (P, K)(jω) ∞ ≤ γ. This optimization can be solved efficiently and by reducing γ iteratively an optimal solution is achieved [START_REF] Doyle | State-space solutions to standard H 2 and H ∞ control problems[END_REF]. With appropriate weighting functions, γ = 1 can be used and a complete set of control objectives are transformed to the constrains on corresponding weighted closed-loop transfer functions, e.g. T z 1 w 1 (jω) ∞ ≤ 1 represents the specification of vibration reduction. Due to the property of

H ∞ norm, F l (P, K)(jω) ∞ ≤ 1 ensures T z j w i (jω) ∞ ≤ 1
, that is, these control objectives are satisfied simultaneously with the designed H ∞ controller.

As known, in H ∞ control the selection of weighting functions is quite important to achieve a satisfactory K(jω). Fortunately, according to a set of control objectives, phase and gain control policies can incorporate necessary weighting functions in H ∞ control and determine them in a rational and systematic way:

• To define the specification of vibration reduction, W d (jω) and W y (jω) should be used and satisfy should be used and satisfy

|W d (jω)W y (jω)U(ω)| ≥ 1, ∀ω ∈ R. ( 18 
) then T z 1 w 1 (jω) ∞ = W d (jω)G d (jω)S(jω)W y (jω) ∞ ≤ 1 ensures |T yd (jω)| = |G d (jω)S(jω)| ≤ U(ω), ∀ω ∈ R.
|W n (jω)W u (jω)G d (jω)| < |G p (jω)U(jω)|, ∀ω/ |G d (jω)| > U(ω) (19)
The phase requirement on K(jω) can be automatically fulfilled by the H ∞ control algorithm with a stable stabilizing K(jω). This provides adequate stability robustness to parametric uncertainties. When the gain control policy is used, |K(jω)| has to be as small as possible to have moderate control energy and reduce the effects of the measurement noise. Besides, the gain control policy has to provide a certain level of stability robustness to a dynamic uncertainty. For this purpose, with the additive dynamic uncertainty ∆ a (jω), W n (jω) and W u (jω) should be used and satisfy • To have a modulus margin M m > λ ∈ (0, 1), W n (jω) and W v (jω) should be used and satisfy

|W n (jω)W u (jω)| > |W a (jω)|, ∀ω ∈ R (20) then T z 2 w 2 (jω) ∞ = W n (jω)K(jω)S(jω)W u (jω) ∞ ≤
|W n (jω)W v (jω)| > λ, ∀ω ∈ R (22)
This can be derived from Equation ( 4) and the constrain on |S(jω)|

T z 3 w 2 (jω) ∞ = W n (jω)S(jω)W v (jω) ∞ ≤ 1
For instance λ = 0.5 implies that sup 

Numerical simulation & experimental results

System modeling

To illustrate the effectiveness of the proposed control methodology, active vibration control of a non-collocated piezoelectric cantilever beam is investigated as shown in Figure 7, where a piezoelectric actuator is mounted near the fixed end and an accelerometer near the free end. Based on modal analysis approach [START_REF] Meirovitch | Elements of Vibration Analysis[END_REF] and the modeling of piezoelectric actuators [START_REF] Moheimani | Piezoelectric Transducers for Vibration Control and Damping[END_REF], applying Laplace transformation and assuming zero initial conditions, the plant dynamical model G p (s) representing the dynamics from the voltage applied on the piezoelectric actuator V a (x a , s) to the beam acceleration Ÿ (x, s) is

G p (s) = Ÿ (x, s) V a (x a , s) = ∞ i=1 R i s 2 s 2 + 2ζ i ω i s + ω 2 i (23)
Similarly, the disturbance dynamical model G d (s) representing the dynamics from the disturbance d(x d , s) to the beam acceleration Ÿ (x, s) is

G d (s) = Ÿ (x, s) d(x d , s) = ∞ j=1 R j s 2 s 2 + 2ζ j ω j s + ω 2 j (24)
where R i/j , ζ i/j , ω i/j are modal parameters to be identified.

accelerometer actuator x y x 1 x 2 x d M a V a x a, ( ) s d x d, (
) s The experimental set-up for the parameter identification is illustrated in Figure 8, where the dSPACE generates and acquires the input signal x(t), pseudo random binary sequence (PRBS), and acquire the output signal y(t) from the accelerometer. Experimental frequency responses are estimated by T xy (ω), being the quotient of the cross power spectral density of x(t) and y(t), S xy (ω), and the power spectral density of x(t), S xx (ω) [START_REF] Bendat | Engineering Applications of Correlation and Spectral Analysis[END_REF],

T xy (ω) = S xy (ω) S xx (ω) , ω ∈ {ω 1 , ω 2 , . . . , ω M } ( 25 
)
where M is the number of estimated frequency points. For G p (s), PRBS is sent to the piezoelectric actuator with no input to the shaker. Similarly, PRBS is sent to the shaker for G d (s) and the signal to the piezoelectric actuator is set zero. To avoid aliasing problem, the sampling frequency of dSPACE is set at 10 kHz. The Hanning window and twenty averages are employed to have reliable experimental frequency responses as shown in Figure 9. With T xy (ω), G d (s) and G p (s) can be estimated as a ratio of two polynomials in the Laplace variable s based on Equation ( 23) and ( 24) with the user-defined number of poles and zeros. The best curve fitting is performed to determine the values of poles, zeros and gains with a least squares method [START_REF] Schoukens | Identification of Linear Systems, A Pratical Guide to Accurate Modeling[END_REF],

min P M k=1 ϕ(ω(k))|T xy (ω(k)) -G(ω(k))| 2 , k ∈ {1, 2, . . . , M} (26) 
where P represents all the modal parameters of G(jω) to identify and ϕ(ω(k))

is a frequency-dependent weighting function to emphasize the importance over corresponding frequencies. Above parameter identification procedure can be realized in Matlab with a graphical user interface. This helps us to obviously observe the contribution of every resonant mode to the whole dynamics. The dynamics of the shaker, the piezoelectric actuator, the accelerometer, the filters and other hardwares are all incorporated into the identified G d (s) and G p (s):

G d (s) = -1.2 × 10 -2 s 2 s 2 + 65.8s + 1.6 × 10 5 + 1.4 × 10 -2 s 2 s 2 + 172.9s + 1.4 × 10 6 + -2.1 × 10 -3 s 2 s 2 + 505.3s + 2.0 × 10 7 G p (s) = -3.6 × 10 -4 s 2 s 2 + 65.6s + 1.6 × 10 5 + -2.8 × 10 -4 s 2 s 2 + 153.0s + 1.5 × 10 6 + 3.3 × 10 -3 s 2 s 2 + 609.1s + 1.7 × 10 7
As illustrated in Figure 9, the identified frequency responses of G d (s) and G p (s) are in good agreement with the experimental ones over the frequency range of interest. It is notable that either from analytical or finite element method [START_REF] Moheimani | Piezoelectric Transducers for Vibration Control and Damping[END_REF][START_REF] Piefort | Finite element modelling of piezoelectric active structures[END_REF] different transfer functions associated with the same structure should have identical poles, but due to the errors in the system identification, the poles of identified G d (s) and G p (s) are not exactly the same. Based on the specification of vibration reduction as illustrated in Figure 2, the phase control policy has to be applied to the first two resonant modes and the gain control policy to the others.

Design of AFC

With the cross-over point method (Bayon de Noyer and Hanagud, 1998b), the parameters of K AF C (s) are determined as

ω ci = ω si , ζ ci = 2ζ f i -ζ si and γ i = (ζ ci -ζ si ) 2 R i
. The ζ f i is a user-defined final damping ratio of the i th controlled resonant mode and the final frequency

ω f i = √ ω si ω ci = ω si .
Based on above identified G p (s), with ζ f 1 = 0. 

Design of proposed control methodology

Considering the fact that G d (s) and G p (s) should have the same poles and motivated by the work in [START_REF] Font | H ∞ control of a magnetic bearing[END_REF], for this particular case, G p (s) can be decomposed as G p (s) = G p12 (s)G p3 (s), where G p12 (s) ≈ G d1 (s) + G d2 (s).

The phase control policy is applied to G p12 (s) and the gain control policy is applied to other dynamics. Moreover, to simplify W d (jω) and W y (jω) required to reflect the specification of vibration reduction, G p12 (s) is decomposed as illustrated in Figure 11. With this decomposition, constant W d (jω), W y1 (jω) and W y2 (jω) can be used to represent the specification of vibration reduction

T z 11 w 1 (jω) ∞ = W d (jω)G p1 (jω)S(jω)W y1 (jω) ∞ ≤ 1 T z 12 w 1 (jω) ∞ = W d (jω)G p2 (jω)S(jω)W y2 (jω) ∞ ≤ 1
It is notable that W d (jω), W y1 (jω) and W y2 (jω) can also explicitly prevent the pole-zero compensation between G p (jω) and K(jω) at ω 1 and ω 2 [START_REF] Scorletti | Automatique fréquentielle avancée[END_REF]. These decompositions reduce the order of H ∞ controller, being the total order of all involved plants and weighting functions. For the sake of simplicity, W y (jω) is no longer used in the decomposed H ∞ control framework and thus only the additive dynamic uncertainty is explicitly considered with W n (jω) and W u (jω).

For this particular case, the proposed control methodology generates the controller K ∞ (s) using all constant weighting functions and the popular balanced truncation method [START_REF] Gu | Robust Control Design with MATLAB[END_REF] is used to have K r∞ (s) with a reduced order for easier real-time implementation,

K ∞ (s) =
1268.4(s -4.3 × 10 5 )(s 2 -67.8s + 2.5 × 10 5 )(s 2 + 609.1s + 1.9 × 10 7 ) (s 2 + 408.9s + 3.2 × 10 5 )(s 2 + 950.4s + 9.0 × 10 5 )(s 2 + 4167s + 1.6 × 10 7 ) K r∞ (s) = 45134(s -1.1 × 10 4 )(s 2 -70.2s + 2.5 × 10 5 ) (s 2 + 354.5s + 2.0 × 10 5 )(s 2 + 682s + 8.7 × 10 6 )

The numerical simulations with K ∞ (s), K r∞ (s) and the identified models are illustrated in Figure 10. As required by the phase control policy around ω c1 and ω c2 , |K ∞ (jω)| and |K r∞ (jω)| are large enough for effective vibration control and L(jω) stays in RHP to have the stability robustness to parametric uncertainties. On the other hand, as required by the gain control policy, K ∞ (jω) and K r∞ (jω) roll off after ω c2 to have a certain level of stability robustness to the dynamic uncertainty.

Comparisons between AFC and proposed control methodology

From the numerical simulations, it is shown that for this particular case both AFC and the proposed control methodology achieve the vibration reduction of their controlled resonant modes. However, the specification of vibration reduction is not directly considered by AFC. It is reflected by the can only roll off after the last controlled resonant mode even the gain control policy is indeed required at lower frequencies. This means that AFC has little flexibility to make a trade-off between the vibration reduction performance and the control energy. An unnecessarily large U max may be produced.

In contrast, the proposed control methodology can provide more flexibility and explicitly limit |K(jω)| with frequency-dependent weighting functions, for instance, the controller K ′ ∞ (jω) is obtained with a first order low-pass W u (jω), Above analysis imply that the proposed control methodology may be not the best choice for some specific SISO cases. Sometimes, other simpler control designs such as AFC can also satisfy the control objectives. But the proposed control methodology is more general and more systematic. It can be used for both SISO and MIMO systems to consider a complete set of control objectives and provide enough flexibility to make a trade-off among them. are not the same and the realistic |G p (s)| is indeed larger than the identified one. To have good agreements between numerical and experimental results, more accurate system modeling is desirable. The experimental results also demonstrate that, when the phase control policy is used, the variation in |L(s)| due to parametric uncertainties does not destabilize the system but has considerable effects on the vibration reduction performances. In addition, when the gain control policy is used, |L(s)| should be small enough, otherwise the disturbance signal may be amplified. This problem is most critical over transition frequency ranges, for instance, with K ∞ (s) and K r∞ (s) this amplification occurs between the second and third resonant frequencies. As shown in Figure 13, |K AF C1 (s)| ≪ |K ∞ (s)| over the transition frequency range and this disturbance amplification is avoided with K AF C1 (s). Therefore, to avoid the disturbance amplification, more accurate system modeling is beneficial and the controller has to roll off quickly enough over the transition frequency ranges. With the proposed control methodology, this roll-off requirement on the controller can be reflected by corresponding weighting functions such as W n (s) and W u (s) of Figure 6. It is also notable that a trade-off among various control objectives must be considered in the selection of weighting functions. Since the proposed control methodology is general and systematic, it can be applied to more complicated and practical structures, e.g. the suspension systems [START_REF] Zhong | A dynamic-reliable multiple model adaptive controller for active vehicle suspension under uncertainties[END_REF] where several sensors and actuators can be used.

K ′ ∞ (s) = 2.
To quantitatively verify the robustness properties of the closed-loop system with the designed H ∞ controller, deterministic and probabilistic robustness analysis can be employed [START_REF] Zhang | Robust active vibration control of piezoelectric flexible structures using deterministic and probabilistic analysis[END_REF]. In the following research, with the finite dimensional LMI optimization [START_REF] Dinh | Parameter dependent H ∞ control by finite dimensional LMI optimization: application to trade-off dependent control[END_REF] the proposed control methodology can be extended to linear parameter-varying and nonlinear systems.
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 1 Figure 1: The most general feedback control structure
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 2 Figure 2: A specification of vibration reduction for flexible structures

  , the closed-loop stability can be investigated with the Nyquist stability criterion in terms of the openloop transfer function L(jω) = K(jω)G p (jω). The modulus margin M m represents the smallest distance from L(jω) to the critical point -1 + j0 on
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 3 Figure 3: A typical feedback control structure for active vibration control

  that at frequencies where |G d (jω)| > U(ω), i.e. the specification of vibration reduction is not satisfied, |K(jω)| is required to be large enough, for example, |L(jω)| ≫ 1 and |K(jω)| ≥ |G d (jω)| |G p (jω)U(ω)| (5) On the other hand, at frequencies where |G d (jω)| ≤ U(ω), i.e. the specification of vibration reduction is satisfied, no control energy is needed and the ideal controller should be |K(jω)| = 0. For moderate control energy, |T ud (jω)| has to be limited, however, when |L(jω)| ≫ 1 the control energy is nearly independent on K(jω) and thus it cannot be limited by any K(jω). In contrast, when |L(jω)| ≪ 1 the control energy can be limited by making |K(jω)| as small as possible. In addition, when |L(jω)| ≪ 1 the effects of the measurement noise |T yn (jω)| and |T un (jω)| can also be reduced with small |K(jω)|. In conclusion, |K(jω)| is required to be large enough around the controlled resonant frequencies and beyond these frequencies |K(jω)|
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 4 Figure 4: The effects of parametric uncertainties on L(jω)
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 5 Figure 5: The principle of AFC for n controlled resonant modes

  Figure 6, according to the control objectives, the augmented plant P (s) is built by incorporating necessary weighting functions W i into the typical feedback control structure. The weighting functions account for the relative magnitude of signals, their frequency dependence and relative importance. Two exogenous input signals w = [w 1 , w 2 ]′ and three regulated signalsz = [z 1 , z 2 , z 3 ] ′ are employed, where d = W d w 1 , n = W n w 2 , z 1 = W y y, z 2 = W u u and z 3 = W v v.By partitioning P (s) according to the size of signals, the system is described as

  1 ensures the stability robustness to ∆ a (jω) based on Equation (9); with the multiplicative dynamic uncertainty ∆ m (jω), W n (jω) and W y (jω) should be used and satisfy |W n (jω)W y (jω)| > |W m (jω)|, ∀ω ∈ R (21) then T z 1 w 2 (jω) ∞ = W n (jω)T (jω)W y (jω) ∞ ≤ 1 ensures the stability robustness to ∆ m (jω) based on Equation (10).
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 7 Figure 7: The piezoelectric cantilever beam
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 8 Figure 8: Experimental set-up for parameter identification
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 9 Figure 9: Identified and experimental G d (s) and G p (s)

Figure 10 :

 10 Figure 10: Phase and gain control policies with AFC: ω ci represents the i th controlled resonant frequency
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 11 Figure 11: Decomposed H ∞ control framework
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 12 Figure 12: Phase and gain control policies with H ∞ control: ω ci represents the i th controlled resonant frequency
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 1314 Figure 13: Comparisons between various controllers
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 15 Figure 15: Experimental results of the closed-loop system

Table 1 :

 1 Relationships between closed-loop transfer functions and the controllerFor efficient vibration reduction, |T yd (jω)| is focused and Table1 implies

  As shown above, according to the set of control objectives, phase and gain control policies can be used in H ∞ control to incorporate necessary weighting functions and determine them in a rational and systematic way. On the other hand, with the appropriate weighting functions efficient H ∞ control algorithms can automatically realize phase and gain control policies and generate a satisfactory H ∞ controller to make a trade-off among various control objectives. Although the phase control policy is interpreted with the SISO systems, a nice point is that the H ∞ control can be also used for the con-

	ω	|S(jω)| must be less than 2 and
	thus it is required |W n (jω)W v (jω)| > 0.5, ∀ω ∈ R.

trol design of MIMO systems. As a result, a general and systematic robust control methodology for active vibration control of flexible structures is developed by well employing phase and gain control policies in the dynamic feedback output feedback H ∞ control. It can be used for both SISO and MIMO systems with collocated or non-collocated sensors and actuators.

  78 × 10 5 (s -2431)(s + 1)(s 2 -228.2s + 2.8 × 10 5 ) (s + 963.8)(s 2 + 607.4s + 1.23 × 10 5 )(s 2 + 413.6s + 6.23 × 10 5 ) × max than K ∞ (jω) or K AF C2 (jω) does.

	low frequencies. Numerical simulations demonstrate that K ′ ∞ (jω) produces
	a smaller U
	(s 2 + 609.1s + 1.92 × 10 7 ) (s 2 + 3280s + 1.91 × 10 7 )
	As shown in Figure 13, compared to K ∞ (jω) obtained with all constant
	weighting functions, |K ′ ∞ (jω)| ≈ |K ∞ (jω)| around the controlled resonant frequencies for effective vibration reduction and |K ′ ∞ (jω)| ≪ |K ∞ (jω)| at

given any algorithm to compute µ, there will be problems for which the algorithm cannot find the answer in polynomial time.