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ANALYTIC PRECONDITIONERS FOR THE ITERATIVE SOLUTION OF
ELASTIC SCATTERING PROBLEMS

MARION DARBAS AND FREDERIQUE LE LOUER

ABsTrRACT. We construct and analyze a family of well-conditioned boundary integral equations
for the Krylov iterative solution of three-dimensional elastic scattering problems by a bounded
rigid obstacle. We develop a new potential theory using a rewriting of the Somigliana integral
representation formula. From these results, we generalize to linear elasticity the well-known
Brakhage-Werner and Combined Field Integral Equation formulations. We use a suitable ap-
proximation of the Dirichlet-to-Neumann (DtN) map as a regularizing operator in the proposed
boundary integral equations. The construction of the approximate DtN map is inspired by
the On-Surface Radiation Conditions method. We prove that the associated integral equations
are uniquely solvable and possess very interesting spectral properties. Promising numerical
experiments with the elastic sphere are provided.

1. INTRODUCTION

The paper is concerned with the preconditioning of iterative methods for the scattering problem
of time-harmonic elastic waves by a three-dimensional rigid obstacle. In recent years, interest has
grown considerably in developing effective numerical methods for solving these problems due to
the various biomedical or industrial applications such as non-destructive testing of materials and
seismic exploration.

We assume the obstacle be represented by a bounded domain Q= in R3. Let Q% denote the
exterior domain R3\Q~ and n the outer unit normal vector to the boundary I := dQ~. The Lamé
parameters pu and A\ and the density p are positive constants. The propagation of time-harmonic
waves in a three-dimensional isotropic and homogeneous elastic medium is governed by the Navier
equation

(1.1a) div o(u) + pw?u = 0,

where w > 0 is the frequency. Here
1
o(u) = Mdivu)lz 4+ 2ue(u) and e(u) = 5([Vu] + [Vu]T)

denote the stress tensor and the strain tensor respectively. Notice that I3 is the 3-by-3 identity
matrix and [Vu] is the matrix whose the j-th column is the gradient of the j-th component of w.
The scattering problem is formulated as follows : Given an incident wave u"¢ which is assumed
to solve the Navier equation in the absence of any scatterer, find the solution u to the Navier
equation (1.1a) in Q% which satisfies the Dirichlet boundary condition

(1.1b) u=—u" onT.
In addition the field w has to satisfy the Kupradze radiation conditions

) ou, ) ou, _ _
(1.1c) Tlg&r <87‘ - mpup) =0, Tlirglor (67" — msus> =0, r=]|x|,

uniformly in all directions. The field w can be decomposed into a longitudinal field w, with
vanishing curl and a transverse field u,, with vanishing divergence, solutions respectively to

(1.2) Au, + Iii’up =0 and curlcurlu, — x2u, =0,
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with k2 = pw?(A + 2u) " and k2 = puw?p~t.

The main difficulty for simulating such exterior boundary-value problems is related to the
unboundedness of the computational domain Q. The method of boundary integral equations
(BIEs) is one of the principal tools to overcome this concern (see e.g. [9, 26, 31, 30]). This
approach applies the Green’s function formalism to reduce equivalently the governing boundary
value problem to an integral equation on the surface of the scatterer. Its efficiency has been widely
demonstrated for low and middle frequencies using collocation or boundary element methods (see
e.g. |9, 10]). However, solving the exterior Navier problem in the high-frequency regime remains a
very challenging problem for a few reasons. The discretization of boundary integral formulations
leads to fully-populated and in general, non-hermitian complex linear systems. To retain a certain
level of accuracy in the high-oscillatory solution, one has to consider a sufficient number of points
per wavelength (about 10 points). Moreover, the vector nature of the unknown field greatly
increases the size of the scattering-matrices by comparison to the acoustic case. The solution
of these large and dense linear systems are handled by Krylov-subspaces iterative solvers (e.g.
GMRES [39]). To make possible the use of iterative solvers for scattering problems, two kinds of
techniques have to be investigated: fast methods for the computation of matrix-vector products
and preconditioners to speed up the convergence of the solver.

The Fast Multipole Method (FMM) is one of the most efficient methods used to perform
matrix-vector products and accelerate the resolution of the linear system. The method has been
introduced by Rokhlin et al (e.g. [16]) and was adapted to integral equations of wave propagation
in the 90’s (e.g. [15, 21, 22]). Recently, FMM have been extended to linear elasticity by Bonnet,
Chaillat and Semblat [13, 14]. The theoretical complexity of the multi-level FMM is O(NlogN)
per iteration both for CPU time and memory, where N is the number of degrees of freedom.

Preconditioners are prescribed to yield fast convergence independently of both mesh size and
frequency. A recent class of analytic preconditioners has been derived to regularize the classi-
cal BIEs. The idea is to consider a judicious integral representation of the scattered field which
naturally incorporates a regularizing operator. This operator is an approximation of the Dirichlet-
to-Neumann (DtN) map, when considering Dirichlet boundary value problems. The BIEs arising
from this representation are compact perturbations of the identity operator. Such integral for-
mulations can be interpreted as generalizations of the well-known Brakhage-Werner (BW) [11]
and Combined Field Integral Equations (CFIE) [25]. Several well-conditioned integral equations
based on this formalism have already been proposed in acoustic and electromagnetic scattering
(e.g. [3, 5, 6, 12, 19, 33, 37]). A pseudo inverse of the principal classical symbol of the single layer
boundary integral operator - or equivalently the principal classical symbol of the Neuman trace of
the double layer boundary integral operator - is used to approach the DtN map [7, 6, 19] in the
framework of the On-Surface Radiation Condition (OSRC) methods (e.g. [29, 27, 4]). This is intui-
tively natural in view of the Calder6on formulas and the compactness of the double layer boundary
integral operator. The resulting preconditioner can be expressed analytically by a simple square
root of the form iv/Ar + k2I. More precisely, a regularization of the square root, by considering
a small complex perturbation of the exterior wavenumber k, is considered instead. This allows
to model the creeping waves and provides the existence and uniqueness of the solution to the
BIEs for any positive real values of the frequency. Furthermore, a complex Padé-approximation of
the square root operator [35] leads to a sparse matrix involving only the mass and rigidity finite
element matrices. This makes the implementation of the analytic preconditioner rather easy with
a low additional computational cost.

It is the purpose of this paper to extend to linear elasticity such analytic preconditioning tech-
niques. In this work we encounter some new difficulties for many reasons. First of all, one knows
that the double layer boundary integral operator and its adjoint are not compact. This implies
that regularizing the BIEs via a pseudo inverse of the single layer boundary integral operator is
not sufficient to obtain well-conditioned boundary integral equations. We have to take into ac-
count the principal part of the double layer boundary integral operator or its adjoint. Secondly,
we have to deal with longitudinal and transversal waves and the expression of the preconditioner
is, by consequence, more complicated than in the acoustic and electromagnetic cases. Finally, the



resulting preconditioner - expressed in a suitable vector function basis - is not diagonal and con-
sists in sums and products of square roots and their inverse and of surface differential operators.
Here, we suggest a more appropriate preconditioner for a numerical implementation by considering
a rewriting of the Somigliana integral representation formula. According to this representation,
we introduce a new Neumann-type trace by adding a surface differential operator to the traction
trace. This allows to develop a new potential theory for the Navier equation. The expression of the
preconditioner is greatly simplified and previous works on the implementation of such OSRC-like
preconditioner can be applied. The associated preconditioned BIEs are well posed and show very
interesting spectral properties. Contrary to the acoustic and electromagnetic cases, defining the
Neumann-to-Dirichlet preconditioner as the inverse of the Dirichlet-to-Neumann preconditioner is
not sufficient to construct well-conditioned BIEs for the Neumann (or cavity) scattering problem.
A more extensive analysis of the DtN and NtD maps has to be realized in the transition region
corresponding to the grazing modes.

The paper is organized as follows: In section 2, we recall several results on the trace and po-
tential theory in linear elasticity and review the standard Brakhage-Werner-type and combined
field integral equations. In section 3, we present two preconditioning techniques based on a DtN
approach and a modified DtN approach for the Brakhage-Werner-type (BW) BIEs. The compu-
tation of the principal parts of the elementary boundary integral operators is described in detail.
This step is the key one to obtain the approximations of the DtN and modified DtN maps. We
also prove existence and uniqueness for the proposed preconditioned formulations. Section 4 is
devoted to a numerical investigation of the eigenvalues of the classical and preconditioned BW in-
tegral operators in the case of the elastic sphere. Furthermore, we study the convergence behavior
of GMRES in function of both a mesh refinement and a frequency increase. Preconditioned CFIEs
are built in section 5. We give a sketch of the numerical implementation of these novel BIEs in
section 6. Finally, we draw concluding remarks and we discuss possible research lines in section 7.

2. CLASSICAL BOUNDARY INTEGRAL EQUATIONS

In a first part, we review some well-known results about traces of vector fields, and integral
representations of time-harmonic elastic fields. Details can be found in [2, 18, 31, 30]. We introduce
a new Neumann-type trace and develop the corresponding potential theory. In a second part, we
describe the classical direct and indirect approaches usually used to solve time-harmonic exterior
elastic scattering problems.

2.1. Traces and elastic potentials. We assume )~ be a bounded domain with a closed bound-
ary T' of class 42 at least. Throughout the paper we denote by H*(Q7), Hy (QF) and H*(T')
the standard (local in the case i the exterior domain) complex valued, Hilbertian Sobolev space
of order s € R defined on 27, Q+ and T respectively (with the convention H® = L?). Spaces of
vector functions will be denoted by boldface letters, thus H® = (H*)3. We set
Ay :=divo(u) = pAu+ A+ p)Vdivu

and introduce the following energy spaces

H' (Q™,A) ={uec H(Q7): A'ueL*(Q7)},

HL (0, A%) = {u cHL (07): AueL? (sT+)}

loc

Definition 2.1. For a vector function u € (€°°(Q7))> we define the following interior traces :

You = w (Dirichlet trace)
vyu = Tu (Neumann or traction trace)
Yot = Tu—aMuy (Neumann-type trace),

)

where T' denotes the traction operator defined by

T= 2u% + Andiv+pun x curl.
3



The parameter o is a real-valued constant and the surface operator M is the tangential Giinter
derivative defined by

M = i —ndiv+n x curl.
on

The following trace maps

N

% H'Q7,AY) = H:(I)
T HYQT,AY) - H (D)
e HY(Q,AY) — H (D)
are continuous. For w € H},.(Q%, A*) we define the exterior traces Yo, vFu and 'yf:au in the
same way and the same mapping properties hold true.
For two (3 x 3) matrices A and B whose columns are denoted by (aq,as,as) and (b, ba, b3),

respectively, we set A : B = ay - by 4+ ag - by 4+ a3 - b3. The following lemma is a consequence of the
Gauss divergence theorem and the identity

(2.1) div (o(u)v) = A*u- v + o(u) : €(v).

Lemma 2.2. For vector functions w and v in H'(Q, A*), we have the first Green formula

(2.2) /QA*u cvdr = /FTu cvds — /Q o(u) : e(v) dx,
where o(u) : e(v) = A(divu)(dive) + 2ue(u) : e(v) = o(v) : e(u).

We use the surface differential operators: The tangential gradient Vr, the surface divergence
divp, the tangential vector curl curly, the surface scalar curl curly, the surface scalar Laplace-
Beltrami operator Ar and the vector Laplace-Beltrami operator Ar. For their definitions we refer
to [36, pages 68-75]. We recall some well-known surface decompositions that are useful in the
sequel for the determination of the principal part of the boundary integral operators.

Lemma 2.3. For a vector function w and a scalar function v both defined in the neighborhood of
T and sufficiently smooth, we have the following decompositions on I':

0

(2.3) Vv=Vrv + a—:}l,

. . Ju
(2.4) divu =divp (n x (u x n)) + 2H(u-n) + n- I

ou
(2.5) nxcurlu = Vp(u-n) + nx (R—2HI3)(uxn) + n x (a—n X n),
ou  9*u

(26) Av =Arv + 2H % + W’

where H s the mean curvature and R s the curvature operator.

Remark 2.4. The tangential Ginter derivative can be rewritten as follows:
Mu = ([Vru] — (divp u) - I5)n.
Notice that [Vru| is the matriz whose the j-th column is the tangential gradient of the j-th
component of u.
For any complex number « such that Im(x) > 0, let
eirlz—yl
Gkyx—y) = pr—]

be the fundamental solution of the Helmholtz equation Av + x2v = 0. Then, the fundamental
solution of the Navier equation can be written as follows

O(x,y) = ,0312 (curl curl, {G(ns, T —vy) 13} — Vedivy {G(np, T — y)Ig}) .
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It is a 3-by-3 matrix-valued function and we have ®(x,y) = ®(x, y)T = ®(y,x). The single and
double layer potential operators are defined by

(2.7) Se = / (- y)p(y)ds(y) and Dep = / T, y)] (y)ds(y).

where Ty = T'(n(y), 0y) and T ®(x,y) is the tensor obtained by applying the traction operator
T, to each column of ®(x,y).

Theorem 2.5. The potential operators S and D are continuous from H_%(l") and H%(F) res-
pectively to H (Q~,A*) U H},.(QF,A*). For any ¢ € Hié(I‘) and Y € H%(F), the potentials
S and D solve the Navier equation (1.1a) and satisfy the Kupraze radiation conditions (1.1c).

The Dirichlet and traction traces can be applied to § and D and we obtain the following
identities
1 1
(2.8) 1ES =S, ~iEs= Fol+ D', iD= +51+ D, and vED = N,

where I is the identity operator and the elementary boundary integral operators S, D, D’ and N
are defined, for x € T', by

Sp(x) = / B, y)p(y) ds(y).
Dep(a)

/ Ty (a. )" (y) ds(y).

FT:c {@(z,y)p(y)} ds(y),

V@) = [ T {T, 0@ vw)} dst)

D'p()

The operator S is a pseudo-differential operator of order —1, i.e it is bounded from H_%(l") to
H: (T") and compact from H: (T) to itself. The operators D and D’ are of order 0, i.e. they have
a strongly singular kernel and are bounded from H z (T') and H -3 (T") to themselves, respectively.
The operator N is of order +1, i.e. it has a hypersingular kernel and is bounded from H %(I’) to
H™ ().

Theorem 2.6. For a solution w € Hj,.(0F, A*) to the Navier equation (1.1a) in QF that satisfies
the Kupradze radiation conditions, one can derive the Somigliana integral representation formula
forx e Qt:

(2.9) u(@) = Dyfule) — Sy u(a).

For a solution w € H"(Q~,A*) to the Navier equation (1.1a) in Q~, the Somigliana integral
representation formula is given for x € Q™ by:

(2.10) u(z) = Svyy u(x) — Dy u(x).

The Calderén projectors for the time-harmonic Navier equation are

1
+-I+D -5
N i§I—D’

We have Pt o P~ = P~ o Pt = 0 and thus the relations
SD'=DS, D'N=ND,

2.11 1 1
211) SN:Dz—ZL NS:D’Q—EI.

Now we show that similar results remain true if we consider the Neumann-type trace 7 o
instead of the traction trace ;.

5



Theorem 2.7. We introduce the potential operator D, defined as D by replacing the traction
operator T' by T — aM. In the same way we construct the boundary integral operators D,, DL,
and No. Then we have the following results:

(i) Doy = D—aSM and for any ¢ € H%(F) the potential Doap € HY(Q~, A*)UH], (QF,A¥)
satisfies the Navier equation (1.1a) and the Kupradze radiation conditions (1.1c);
1 1
(ii) vfaS = IF§I + D/, voiDa = iiI + D, and vaDa = Ng;
(iil) u = Doyfu — S’yﬁau for any solution w € Hj, (2, A*) to the Navier equation (1.1a)
in QT that satisfies the Kupraze radiation conditions;
(iv) u = 8v ,u — Daryg u for any solution u € H'(Q,A*) to the Navier equation (1.1a) in
Q-
2 1 12 1
(v) SN = D2 — 11 and No§ = D, — 1.
We have Dy =D, Dy = D, Djy = D and Ny = N.

Proof. (i) The operator D, applied to any vector density v writes for x € QF
T
Dob(a) = [ (T —am)o(@.y)] ww)asiy)

Using that for two vector densities 1, ¥, we have [26]

[ M) yds = [ 9 (M) ds,

r r
we obtain that
Dave) = [ [T,y wwis) o [ M@y vu)isy)
r r

= /F[Ty‘P(w,y)]Tiﬁ(y)dS(y)—a/rfﬁ(w,y)Mw(y)dS(y)
= DyY(x) — aSMip(x).

(ii) We decompose the traces as follows

TaS = NS—aMy$
VOiDa = 'inD - oz’yS[SM
MHaPa = i Da—aMyiD,

and we apply the equalities (2.8). The first two above equalities in (ii) are obvious. We develop
the third one. We have

VD = i (D—aSM) - aMyf (D - aSM)
= N-a <:F;I+ D’) M —aM (i;I + D) +a’MSM
= N-aD'M —aMD +a’?MSM
= N,.

(iii) To obtain the new integral representation formula we use (i) and write, for any solution
u € Hy, (21, A7),
Dovgu — 87, u= (D —aSM)yfu — S (v u— aMryfu)
=Dvju — Sy u
=u.
The assertion (iv) is obtained in the same way.

(v) We use the above decomposition of N, in terms of S, D, D', N, and M, the equalities
6



Dy =D —aSM and D, = D' — aMS and the Calderén formulas (2.11). We get

SN, = SN —-aSD'M —aSMD + o>SMSM
= SN —aDSM — aSMD + a?SMSM

1
= _ZI +D? —aDSM — aSMD + a2SMSM

1
= —-1+D?
L+ Dz

and finally
N,S = NS-—aD'MS—aMDS + a’?MSMS
= NS —aD'MS —aMSD' + o> MSMS

— _31 + D —aD'MS — aMSD' + > MSMS

1 2
— 14D
4 +Pa

O

2.2. The standard BW-type and combined field integral equations. Applying the po-
tential theory, the elastic scattering problem (1.1a)-(1.1b)-(1.1c) can be reduced, via direct and
indirect approaches, to a single uniquely solvable boundary integral equation [31].

The direct formulation consists in seeking the scattered field under the form

(2.12) u(x) = Sp(x), =e€QF,

inc)

setting ¢ = —'yfr (u + u'™¢). Taking the interior Dirichlet and Neumann-type traces of the right
hand side of the above equality, we obtain

C

, I ,
Sp =—y,u'™ and (5 +D,)p =—7,u", onl.

Under certain compatibility conditions for the incident field u*¢ [26, 31, 30], these integral equa-

tions are uniquely solvable in H _%(F). To avoid any compatibility conditions, an idea is to
consider the CFIE

I . 4
(2.13) (5 + Do+ inS)e = (v ow™ + iy w™),  onT,

where 7 is a non-zero real constant. Then, the scattered field u given by (2.12) solves the Dirichlet
boundary value problem (1.1a)-(1.1b)-(1.1c) provided the physical unknown ¢ is solution of the
integral equation (2.13). It can be shown that the homogenous equation (2.13) has only the trivial

solution ¢ = 0. The integral operator (5 + D!, +inS) is not, in general, a compact perturbation

of the identity operator (close to a constant). However, an integral equation of the second kind
equivalent to (2.13) can be obtained using a left equivalent regularizer [28, 30, 31]. Then we can
use Riesz theory to prove existence of a unique solution to (2.13).

The indirect formulations are based on the following ansatz for the integral representation of
the scattered elastic field

(2.14) u(@) = Datp(a) + nSp(x), @€ QY

where 7 is a non-zero real constant to choose and ) is a fictitious density in H %(F). Applying
the exterior Dirichlet trace to (2.14) and expressing the boundary condition (1.1b), we get the
BW-type integral equation

I .
(2.15) (5 + Da +inS)$ = —3fw™, onT.

Existence and uniqueness can be shown by the use of a right equivalent regularizer [28, 30, 31| for
2

I

A+ 3u

that the integral equations (2.13) and (2.15) are of the second kind [24] for any real parameter 7.
7
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3. PRECONDITIONED BW-TYPE INTEGRAL EQUATIONS

This section is devoted to the construction of well-conditioned indirect boundary integral formu-
lations for the solution of the Dirichlet exterior problem in elasticity. We analyze two approaches:
the first one by applying the analytic preconditioning technique to the classical BW integral equa-
tion, namely equation (2.15) with o = 0, and the second one by applying the same preconditioning
technique to the equation (2.15) with a = 2u.

3.1. DtN approach (a = 0). Here the field u represents a solution to the rigid body problem
(1.1a)-(1.1b)-(1.1c). Assume that the exact Dirichlet-to-Neumann map
A yiu e H%(F) = A u =y u=Tue Hié(lﬂ)
is known. The Somigliana integral representation (2.9) can be rewritten under this form
u(z) = Dyfu(z) — SAvfu(z), =ecQt.
Taking the Dirichlet trace, we get the integral identity on I':

1
(3.1) G+ D —SA*=1.

In this ideal configuration, the solution is computed directly. However, an expression of the
exact DtN operator is not available for a general surface I'. Instead, an approximation A of A®™ is
introduced. We propose to consider the following ansatz which is inspired by the Brakhage-Werner
approach

u(z) = Dip(x) — SAY(z), =€’
where 1 is a fictive density. The scattered field u solves the Dirichlet boundary value problem if
1
1 € H2(T') is a solution of the integral equation

1 )
(3.2) (51 +D - SA)’!,[J = —ygdu", onT.

The key task is now to propose an efficient approximation A of the exact DtN A®*. The following
lemma [2] gives a hint for constructing A.

Lemma 3.1. Assume that w is not an eigenfrequency of the Navier equation (1.1a) then we have
1 1
A = —5—1(51 - D)= N(§I + D)L

Proof. By the use of (3.1) and the Calderén formula (2.11) . O

We choose to construct the operator A as the pseudo-differential operator associated with the
principal classical symbol of the operator A”. From Lemma 3.1, we have to compute the principal
parts of the operators S or N. Since D and D’ are operators of order 0, it is necessary to take
into account their principal part too, contrary to the acoustic and electromagnetic cases. This is
realized in the following three lemmas.
Lemma 3.2. The principal part P (S) of the boundary integral operator S is expressed by

1

P(S)=-—— [(AF +R21)E (f«gIt + Vi divy It) — Vr(Ar + K2) 2 dive I,

- 2 pw?
Fn(Ar+R20)E (nT,) — n(Ar + #21) FAp (n- In)],
where I, =n®n and I =1—1,.

Proof. Since curlcurl = —A + V div, the fundamental solution of the Navier equation can be
rewritten as follows

O(x,y) = ,Ti? ((—Am + Vo dive) {Glke, @ — y)Is} — Vg divg {Glrsp,  — y)Ig}).

8



Using Lemma 2.3, we split the operator V div into a sum of surface differential operators acting
either on tangential densities, or normal densities to I'. We have

. 0 . 0
Vdiv = (VF + n6n> <d1vr L +2H(n-1)+n- 8n>
= Vrdi I+8721 + id' +Vr(2H(n-1) + i
= T A1V 1t on2 n nan 1vr r n n on
= VrpdivrI; + A—Ap—??‘[i In-i-nidin-i-Vr 2’}"[(’I’L~I)-f—’l’l'i
on on on
. 0 o .. 0
= VF lel" It + (A — AF) In — 27-[871’1,1” + néTf; le]_“ +V1" (27‘[(71 . I) +n- an) s
and

—A + Vdiv = (—A +Vr diVF)It —Arl,, — 2’}.[21” + ’I’Li divp +Vr 27‘[(77, : I) +n- i .
on on on

We use the following result [6].
Proposition 3.3. The single layer boundary integral operator associated with the scalar Helmholtz

i
equation with the wavenumber k is a compact perturbation of the operator §(AF + /@21)—%.

To determine P_(S), we first apply the above surface decomposition of (—A + V div) to the
single layer boundary integral operator associated with the vector Helmholtz equation with the
wavenumber k4. Using Proposition 3.3 together with some well-known mapping properties of the
single layer potential and its derivatives, we obtain the following top-order part

%(AF +r21) 2 (szt + Vrdivp It) — %n(Ap +r20) 2 Ap (n-1,).

Secondly, we apply the above surface decomposition of V div to the single layer boundary integral
operator associated with the vector Helmholtz equation with the wavenumber x,. We obtain the
top-order part

1 -1 1 1
§VF (Ap + HIQ)I) 2divp I — in(H?)I + Ar)é (n . In).
To conclude we substract the two above operators and multiply the result by (pw?)~*. O

Lemma 3.4. The principal parts F,(D) and R (D') of the boundary integral operators D and D’
are given respectively by the following formulas

[N

P(D)=2uP (S)M + %(n(AF + H?I)_% divr Iy = Vr(Ar +£21) *n- In),

and
1
2

Proof. We consider integral representations of the operators D and D’ obtained in [32]

P(D') =2uMP_(S) + (n(AF + 531)‘% divp Iy — Vp(Ap + 531)‘% n- In).

(D) () = 2uSMap(x) — / [n(y) x curl, {G(r,, x — y)Is}] 9 (y)ds(y)

(3.3) r
= [ VGl =) (nly) - ¥(v)) ds(w). €T,
and
(D'p)(x) = 2uMSp(x) — / n(z) x curl,{G(ks,x — y)p(y)}ds(y)
(3.4) r

~ (@) | pl)- VGl = y)is(y). @ €T
9



Let us work first on the operator D. The principal part of 2uSM is 2uP  (S)M. In view of
(2.5), the top-order term of the second term in the right hand side (with the minus sign) of (3.3)

1S

—/F [VE{G(rs, @ — y)n(y)}] (1) (y)ds(y) = /Fn(y) G(ks, z —y) dive Ly (y)ds(y).

) 1
By composition, the principal part of the above expression is in(Ap + /131) * divp Iy. Further-

more, we deduce from (2.3) that the top-order term of the third term in the right hand side (with
the minus sign) of (3.3) is

—/F VEG(kp,x —y)(n(y) - ¥(y)) ds(y) = —Vr /F Glkp, —y)(n(y) - P(y)) ds(y).

3 1
By composition, the principal part of the above expression is —%Vp (Ap + /if,I) ’n-1,. Adding

the three terms we obtain the principal part of F, (D).

Let us consider now the operator D’. The principal part of 2uM.S is obviously 2uMP_ (S).
Using (2.5), the top-order term of the second term in the right hand side (with the minus sign) of
(3.4) is expressed by

- /F VE{G(ks,x —y)(n(z) - ¢(y)) }ds(y) = =V /F Gk, —y)(n(x) - @(y))ds(y).

By composition, the principal part of the above expression is —3VF (AF + /@?I)_§ n - 1,. The
top-order term of the third term in the right hand side (with the minus sign) of (3.4) is (see (2.3))

~n(z) [ (1up)y) - VEG (@ = y)ds(y) = n(w) [ Gl =) divr Teply)s(w).
By composition, its principal part is %n(Ap + /{%I)_% divr I;. The principal part B, (D’) of D’ is
given by adding these three terms. O
Lemma 3.5. The principal part P,(N) of the boundary integral operator N is expressed by
R(N) = 2uB(D)M+ipM(n(Ar + K21) "2 dive T, — Vi (Ar 4 £20) 2 L)

_1 _1
—|—% {()\ + 2p)k2 n(Ar + ngI) *n-I, + p(Ar + &) 2 (/{ilt — curlr curlp )] )
Proof. We use the following integral representation of the operator N

(V) (@) = 20D M(@) ~ [ Tuln(y) x curl, (Glre ~ )} b (w)ds(y)
(3.5) r
- /FTmeG(Hp,w —y)(n(y) - P(y)) ds(y),

which is obtained by applying T, to the kernels of the right hand side in (3.3).
The principal part of 2D’ M is 2uP,(D’)M. To recover the principal parts of the other terms
in the operator N, we consider the following form for the operator T, [32].

Ty =2uMyg + (A4 2u)n(x) divy —un(x) X curl, .
We have to apply T', to these two terms

(3.6) t = —/ n(y) x curly{G(ks, x — y)I3}]T¢(y)ds(y),

(37) by = — / VoGl — y)(n(y) - (y)) ds(y).

10



e First, from Lemma 3.4, applying 2uM, to (3.6) and (3.7), we obtain the principal part

1 1 _1

2u5 M(n(Ar + £20) 7 dive I = Ve (Ar +121) 2 Lo ).
e Secondly, we observe that
[n(y) x curly {G (s, @ — y)ls}] 9(y)

= [ecurly{G(rs,z — y)I3}] (¢(y) x n(y))
(3.8) = —[eurly{G(ks, z — y)ls}] (¥(y) x n(y))
)

= [eurly{G(rs,x — y)3}|(Y(y) x n(y)
= curly {G(ks, — y)(P(y) x n(y))}.

The composition of the operator (A + 2u)n(x) div, with this term vanishes since one has
div curl = 0. Now we apply the operator (A + 2u)n(x) div, to (3.7). We have

— (A 2p)n(z) dive Vo G(kp, z — y) (n(y) - ¥(y))
— (A 2u)n(2)AeG(rp, z — y) (n(y) - Y (y))
A+ 2p)rin(x)G(kp, x — y) (n(y) - ¥ (y)).

The principal part of the corresponding boundary integral operator is then given by

SO 2RIn(Ar + 20 P T,
e Finally, we apply the operator un(x) x curl, to (3.8) and we obtain
(3.9)
pm(@) x (=B + Vo dive) {Glry, @ — y)(w(y) x n(y))} )
= prin(x) x {G(rs, @ — y)(Y(y) x n(y))} — peurlf divy {G(ks, 2 — y)(P(y) x n(y))}
= prin(a) x {G(rs, @ — y)(Y(y) x n(y))} — peurl {~V{G(ks,z —y) - (Y(y) x n(y))},

since curly, curl, = —A, + V div,. The following integral part formula for a scalar
density ¢, and a tangential vector density ¢,

~ (o) prds =+ [ oy dive oy s,
T T

and the identity divr (¢, X 1) = curly ¢, give the principal part for the boundary integral
operator associated with the kernel (3.9)

u% (Ar + 531)7% (mgIt — curly curlr )

The composition of the operator un(x) x curl, with the term (3.7) also vanishes since
curlV =0.

We conclude by collecting all the results. O
Remark 3.6. The principal part P.(N) can be rewritten under the form
B(N) = 2uB(D')M +2uME,(D) - (2u)2MP., (S)M
+% [(A +2p)s2n(Ar + nf,l)‘%n T + p(Ar + £21)

Nl=

(nglt — curlp curlp )} .

The approximate DtN is then given by

I I -1
(3.10) A=—(P(S)(5-RMD) o  A=RW)(5+ED) .
Square root operators of the form (Ar + x2I)%/? or (Ar + x21)'/2? and their inverse appear in
A. Since T' is a compact manifold, the scalar Laplace-Beltrami operator Ar admits a countable
11



increasing sequence of non-negative real eigenvalues (3;);en associated to the normalized eigen-
functions (Y;),en satisfying the eigenvalue problem —ArY; = ;Y; in L?(T'). For any x > 0, the
scalar square root (Ar + k21)2 and its inverse are defined by

(3.11) (Ar+42D)% =3 (57 = B))%(-,Y;)12Y; and (Ap+ K272 =3 (k2 = B;) 73 (-,Y;) 12
=1 =1
For j > 1 we have 3; # 0. Since Ar = divr V = — curlpr curly, the vectors VrY; and curlr Y;

are eigenvectors of the vector Laplace-Beltrami operator Ar with the eigenvalue 3;. For j > 0
we set y§3> = nY; and for j > 1 we set y§.1) = ﬁ;ivaj and yf) = 5;5 curlpY;. The
concatenation of the sequences (y§1>)j€N*7 (y;Q))jeN* and (37;3))]-@; forms an orthonormal basis

of L*(T"). The vector square root (Ar + x2I)2 and its inverse are defined for tangential fields by

2 o
(Ar+r2D)F =352 = ) (- Y)Y and,

k=1j=1
2 oo
1 1
(3.12) (Ar 4 &)~ 2 :ZZ K2 — B;)3 (- ,y(k)> y(k)
k=1j=1

The modes j such that 3; < Iﬁ% correspond to the propagative modes while the ones given for
B; > k2 are linked to evanescent waves. For elastic scattering problems, a transition region
corresponding to modes such that §; ~ &2 or §; &~ 7} includes the grazing modes. The artificial
singularity of the square root operator does not yield a satisfactory representation of these modes.
To approximately model this behavior, we use a regularization of A by introducing a small local
damping parameter € > 0 in the transition region. More precisely, we consider the following
approximations of the DtN operator

1 1

(3.13) A==, ) (5-R.D) o A=R.(N)3

where P, _(S), F.(D), B, _(N) are defined in the same way as P (S), (D) and P,(N) by

0,e 1,e 0
replacing ks and &, respectively with ks . and sy ¢

+E.(D)

1
Ks,e = Ks + i€, with es = 0.4rK3 R%,
(3.14)

. . 12
Kpe = Kp + 1€p, with ep = 0.4K5 R3,

where R is the radius of the smallest sphere containing the scatterer [7]. The generalized BW
integral equation for the Dirichlet boundary condition, called DtN-preconditioned BW integral
equation, is given by

1 )
(51 +D—SA)Y = —yfu™, onT.

Remark 3.7. We have constructed an On-Surface Radiation Condition (OSRC) defined by

(3.15)

S

Hu=A~Nju, onT,

for the exterior Dirichlet elasticity problem. This is why this preconditioning approach can be also
called OSRC preconditioning.

We have the following existence and uniqueness result.

Proposition 3.8. The DtN-preconditioned BW integral equation (3.15) is uniquely solvable in
H%(F) for any frequency w > 0 and damping parameters e, > 0 and €, > 0.

12



Proof. We first prove that the boundary integral operator (%IJrD —SA.) can be written as A+ K,
where A is an invertible operator and K is a compact operator from H z (T") to itself. To this end,

+oo
we set ¢ = )" Y + Z (1/5(»1) y§” + ¢j(~2) y§2) + ¢§3) y§3>) and compute

(SHRD)-PL (A ) = 3 (P (5)(P, .(8)) )t (BD)-P,(5)(P,.(5) "B.(D))w.

-
For j € N*, we set ¢; = (¢§1), 1/)(.2) 1p(.3)) and we introduce a family of operators L; defined by

L, = qu(.l) y§.1> + ¢§2) yf) + 1/) y(‘” We can thus write ¥ = 1/) ) + Z L.

From Lemma 3.2 and the spectral expansions (3.11) and (3.12) of the square root operators,
we obtain the following spectral decomposition for the operator P ,(S) :

too N (N (RN AT
- i
P9 =50 W6 43— 0 s o ¢(2) :
=1 P 0 0 5B ¢(3)

with s( 3) = =ik [2pw2]_ and for j > 1, 55.1’1) = (K/z—ﬁj)%‘i‘ﬁj( —B;)"%,s 2 2 = K2(K2—B;) 2
and 5(3’3) = (k2 — B;)% + B;(k% — B;)"%. From Lemma 3.4, we deduce

boo | 0 0 4 wg)
B(D)yp=2uP (SIMp =3 L | 0 0 0 |92 ],
= >V 0 0 1/,(3

1 1

with ng) = (—Bj)%(lif, — fp;)”2 and cif”” = (=B;)2 (k2 — B;)~2. The spectral decomposition
of P, (S)and F, (D) are given by the same formulas as here above with x4 and r, replaced by
#is.c and k.. We denote by s; . and d; . their spectral coefficients. When j — oo (i.e 8; — +00),

we have
(1,1) 7 (1,1) K2+ 512; 1
Sj ( j e ) S 7/4}2’ T l€2 + O E )

s,e p,E
(2,2) ( (2,2\~1 _ FKs o 1
8.7 (5_775 ) K/s,g + (/BJ )
(3,3)( (3,3))71 K2+ "&;2; Lo 1
sj sj,E - le 8 T K%’E BJ .
This implies
1{2 I€2 1
K2 qing 0 0 wj( )
_ I{ 8,€ P,E Ks —
PSP ()= D o) S 3] I I B R et
1 Kgtky,
= 0 0 g e

with K7 a compact operator of negative order.
The tangential Giinter derivative can be expressed in the spectral function basis as follows

1 g 1 -
MY = RYD +5; Y, MYP = RYP and MY =5 Y] —oHY

From this, we deduce the following asymptotic expansions when j — oo (i.e f; = +00)

2ip (L) 5(1,3) 1
2 _ d _ ¥
o2 S50 9% 4 2 +O B;
2ip §(33) g3 “3,1) 1
— d
w2 55 P; ~ dn 2 +O B;

13



And we have

K2 1
+oo 0 0 4,% wj( : _
D)y = ch 32 0 0 ||¢® |+ Ky,
e 0 0 Y

where 1?2 is a compact operator of negative order.
Finally, the integral operator (%I + D — SA.) is a compact perturbation of the operator A
defined by

1+ n§+ni 0 Li _ n§+ni K;E w(l)

1 1 K (3) (3) 53,5—"_”?;,5 2K§ NE,E-"_K/}Q),E 2”3,5 9

Ay = (55 D45 E:z: 0 L+ 0 v
2 2, .2 2 ’ 2,2

5 % fp e 0 1+ % 1/)(3)

2H K/s,s-"_ﬁp,a 2Ks,a Hs,a-"_np,a .7

which is invertible since the coefficients of the 3-by-3 matrices are diagonally dominant. It follows
that th e operator is a Fredholm operator of index zero and the Riez theory yields its invertibility
if the operator is injective. Therefore, it is sufficient to prove that the homogeneous equation
associated to (3.15) admits ¥ = 0 as unique solution to get the existence and uniqueness of the

solution to the generalized BW integral equation. Let 1) € H%(I‘) be a solution to (%I + D —
SA:)Y = 0. Then, the function u defined by

qu(m) =Dy(z) - SAP(x), x¢€ QJra
solves the homogeneous exterior Dirichlet problem and u+ = 0 in QF. Now we set

u” (x) =DyY(x) — SAY(x), Q.

Then we have —y5 u™ = ¢ and —y; u~ = Ac¢. The first Green formula (2.2) with u = u~ and
v = u~ in the interior domain ™ gives
(3.16) / ()\| divu™|? + 2u |£(u*)|2> dx — pw2/ lu™|? de = /E - At ds.

Q Q r

If we take the imaginary part of this equation, we obtain the equality

Im(/r’l/)-AE’t,bd8> =0.

We have the spectral decomposition for the operator A,

Acp = 2uMep + i - w(3>y<3>

D,E
-1 —1 5 (1)
G o (o
+ ipw? Z L; 0 (sff)) 0 1#;2)
S T o (2 )\l

. Let'LpEH%(I‘). We can write
/F¢'M¢d8=/FM¢-¢ds:/FM¢-1/)ds.

We deduce that the integral / 1 - (2uMap) ds is a real number.
r
e For any a € C, we have Im(ia) = Re(a). It follows that
w2 1
Im ( / sV (5=l ¥ ) = p’ Re () 5”7,
Kp,e Kp,e

1 .
and Re () = Re (W) > 0.
Kp,e |l

14



e It remains to analyze the imaginary part of

- [T 0 ()T (4
./1“ Z L ipw? Z L; 0_1 (55»,25’2)) 0 X qu(.z) ds,
Aol o e e
which is the real part of
b )T 0 () (o
SE o | 0 e e k)
= (5o (52" )\

that we rewrite
+oo 1)y —1 1501,
Z (2 ?) |¢ @2 4 Z (¢<1 (3)) < (551 V) —(s (,1 )" d§}83>> <%§3>
—1 1 - .
= J ( 5353)) d§3€1) (85?63)) ,(/}

We have to prove that Re (( (2, 2)) ) > 0 and that the real parts of the above 2-by-2 matrices

are positive definite matrices, for all j > 1.

1 1
‘We have (s;?;Q))_ = K (1 — —)2. Let us set (1 - f; )2 = as + ibs with as,bs € R and
as > 0. Then we have 2asbs =Im(1- fzj ) =—1Im (f; ) =B; \?f\i > 0. It follows that ay > 0

and bg > 0 and

Re ((s(?’z))*l) _ fsls | Ebs

- [Fsel?  [Rsel®

We have (sg}gl))fldﬁ?’) = (55?’5’3)) 1df’5’1) (=5;)* +. Therefore the real parts
Bj+(x 55*61)2(“;;5*51)

of the 2-by-2 matrices are symmetric and diagonalizable. These are positive definite matrices

if and only if their eigenvalues are positive real constants. This is realized if the trace and the

determinant of 2-by-2 matrices are positive real constants. We have

Re ((8(»1’1))_1> _ e (35164)) S (Re ((Kg,s - ﬁj)%> + B; - ((H?LE - 5j)2>) >

J.e 1 1) (1 1)’ |("f;2),a B ﬁj)%‘z

] 5
Assume Re ((/{?16 - ﬁj)f) = 0. It follows that Im(k2_ — ;) = 2kses = 0. This leads to a

1
contradiction with the hypothesis that ¢, > 0. We deduce that Re ((I{ia — 5;‘)2)) > 0 and
Re ((’4129,5 — 5]')%) > 0. We have proved that Re (( €, 1)) 1) > 0 and with the same arguments

we also hav e Re ((sfe’?’))* ) > (0. We deduce that the trace of the 2-by-2 matrices are positive real

constants. From long and similar calculus, we obtain the positivity of the determinant. Collecting

all the results we conclude that
Im(/'tp-AE't/)dS) =0
r

implies 9 = 0. The injectivity of the BIE operator is proved. O

The proof of the previous Proposition 3.8 highlights the good spectral behavior of the DtN-
preconditioned BW-type integral operator %I + D — SA.. From a numerical point of view, the
application of the regularizing operator A, needs the discretization of the operator F, (D) and of
either P, (S) or B, _(NN). The expressions of these operators (see Lemmas 3.2, 3.4 and 3.5) show
that the associated matrices after discretization do not enjoy interesting properties. The aim is
to construct a preconditioner which is easier to implement. When we look at the definition of the
operator P, (D), we would like to delete the term 2uP  (S)M. In the same way, we would like
to delete the term R = 2u(P (D" )M + MP, (D)) — 4> MP_ (S)M in the definition of P, (N)
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(cf. Remark 3.6) so that this operator is finally diagonal. The operator F, (D) — 2uP ,(S)M is
nothing else than the principal part of the integral operator Ds,, and F,(N) — R the principal
part of Ny,. These observations have motivated the following section.

3.2. Modified DtN approach (a = 2u). We propose to rewrite the Somigliana representation
formula as follows:

Dy u(z) — Sy, u(x)

Dy u(z) — 2uS Mo u(z) — Sy ule) + 2uS Mo u(z)
(D - 2uSM)yg u(z) — S(A™ — 2uM)yfu(z), =€ Q.
Here we consider the Modified Dirichlet-to-Neumann (MDtN) map

A%xu : 'yo+u € H%(F) > AGQ’;ﬂgu = fyffmu = (A" = 2uM)u = (T — 2uM)u € H_%(l")7

and we have

u(@) = Dynfule) - SALfule), oeqr.

As previously, an approximation Ag, of Aezxu is introduced to construct the regularized integral
equation

1 inc
(3.17) (51 + Doy — SA2 ) = —yfu™,  onT,
where 1) is a fictive density. Then the scattered field uw expressed by
(3.18) u(x) = Dop(x) — SAyp(z), xe€QF,

solves the Dirichlet elastic boundary value problem provided the fictive density ¥ € H %(1—‘) is
solution of the integral equation (3.17).
Lemma 3.9. Assume that w is not an eigenfrequency of the Navier equation (1.1a) then we have
ex 1l 1 _
AS, =—S 1(51 —Dy,) = N2M(§I+D2N) L

Proof. We have A3, = A™ — 2uM. We use Lemma 3.1 to obtain

A3, =5 (31-D) —2u5'sM

2
(3.19) e (%I —(D - ZMSM))
— (%I - DQM).

For the second equality we use Theorem 2.7 (v) and it remains to prove that Ny, is invertible
which ensures that (D3, — 11) is invertible too. From the proof of Lemma 3.5, we obtain that

Nautb(@) = (34 2001 [ m(@)Glsn @~ ) (nly) - 9(w)ds(y)
(3.20) r

+ k2 /1“ n(x) x curl, curl, {G(ks,z — y)(¥(y) X n(y))} ds(y), x € T.

The frequency w is not an eigenfrequency for the Navier equation means that the wavenumber
kp is not an eigenfrequency for the Helmholtz equation and that the wavenumber x, is not an
eigenfrequency for the Maxwell’s equation. In this case, one knows that the corresponding single
layer boundary integral operators are invertible. The operator Ny, being an orthogonal linear
combination of the acoustic and electromagnetic single layer boundary integral operators, we
deduce that it is invertible too. (]

According to these results, we propose the following representation of the operator Ag,

1 —1
(3.21) Ay = P (Noy,) (51 n RJ(DQH)) ,
16



where P, (Ds,) and B, (Ny,) are the principal parts of the integral operators Dy, and Ny, respec-
tively. These operators are expressed by

) _1 _1
R(Dyy) = 5(= Vr(Ar + k2D "> L+ n(Ap + £20) " dive L),
) _1 _1
P (Ny,) = % [(A + QM)HI% n(Ap + K;I) n-1, + H(Ar + HEI) 2 (mgIt — curly curlp )}
ipw?

_1 _1 1
= 5 |:TL(A1“ +r2) *n-Ip 4+ (Ap + £2) 2 (It - curlyp curlp )} .

For the same reasons as mentioned previously we will consider instead the following MDtN-
preconditioner

I -1
(322) A2/_L,€ - Plyg (NQ/_L) (5 +‘PO,5 (DQ#))

where B, _(N3,) and F, _(Ds,) are deduced from P, (Ny,) and F,(Ds,,) respectively by substituting
ks and Ky, for ks and K, . (see (3.14)). We will see in Section 4.1 that this operator is more suited
to a numerical implementation than A.. We can use previous investigations in the implementa-
tion of acoustic and electromagnetic OSRC-like preconditioners [7]. The new boundary integral
equation for the Dirichlet boundary condition is given by

1 .
(3.23) (§I + Doy — SAgu )Y = —'ya'u“m, on T,

and is called MDtN-preconditioned BW integral equation. Following the steps of the proof of
Proposition 3.8, we can prove the existence and uniqueness of the solution of (3.23).

Proposition 3.10. The MDtN-preconditioned BW integral equation (3.23) is uniquely solvable
mn H%(F) for any frequency w > 0 and damping parameters €5 > 0 and €, > 0.

4. SPECTRAL STUDY FOR THE SPHERICAL CASE

In this section, we present a numerical investigation of the eigenvalues of the standard and
the DtN- and MDtN-preconditioned BW integral operators for the spherical case. The use of
complex Padé rational approximants to localize the DtN and MDtN-preconditioners is discussed.
Furthermore, we analyze the convergence properties of the GMRES algorithm for solving the
different BW-type integral equations.

4.1. Asymptotic analysis. Let I' the sphere of radius R. Spectral decomposition in terms of
the vector spherical harmonics of the elementary boundary integral operators S, D and N, and of
their principal parts can be obtained (cf. Appendix A). Let us denote by Bg’l), (4,1) € {1,2,3} x
{1,2,3}, the spectral coefficients of the decomposition of an integral operator B (B = S, D or
N). Each coefficient is of multiplicity 2m + 1. We study their asymptotic behavior. To this
end, we distinguish three zones of modes: the hyperbolic zone for |k,R| — +o0o and m < k,R
(propagative modes), the elliptic zone when m — +o0o0 and m > kR (evanescent modes), and the
transition zone of physical surface modes between m ~ x, R and m ~ k,R. First, let us consider
the hyperbolic zone. We have the following results.

Lemma 4.1. In the hyperbolic zone, that is |wR| — +00, the following asymptotic behaviors hold:
e for the operator S :

1

(1,1) 102 s 1o s

m = s - ]_ 5) — 5 2 S - ]- 5 I Z ]‘?
S 7 (sin®(ksR— (m+1)%) — % sin (2(ksR — (m + )2)>)+O<Wff|> m
522 _ M;s (cos?(ksR— (m+1)%) + sin (2(k,R— (m+1)%))) + O (|wR|) , m>1,

' 1
swt = : 2(kpR — (m +1)Z) — Lsin (2(5,R — (m+1)2))) + O —= ), m >0
o 21#)1‘% (sin®(kp (m+1)3) — £sin (2(k, (m+1)%))) oF m >

S (@] |wR|) , m>1,
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e for the operator D :

1 . 1
DAY 5 sin(k,R — (m +1)%) + sin (2(k,R— (m+1)Z)) + O (wR|> , om>1,
1 , 1
DE? = 5 cos?(ksR— (m+1)3) — +sin (2(ksR— (m+1)5)) + O wR ) m>1,
1 , 1
DB i sin®(kpR — (m+1)%) + Lsin (2(k,R— (m+1)%)) + O wr) " > 1,
1 1
DY = O(—5), DYV (wR) =0 —5 > 1
e and for the operator N :
s _ 1
NGB = Mf (—cos?(ksR— (m+ 1)) — Lsin (2(ksR— (m+1)%))) + O <|wR|> , m>1,
s . ;. 1
NZ2 M;‘_f (=sin®*(ksR — (m+1)3) + £sin (2(k,R— (m+1)%))) + O (le> , o om>1,
, 1
NP = (A +2u)k, (cos®(kpR — (m 4+ 1)T)+ L sin (2(k,R — (m+1)T))) + O (IwR> ,m >0,
1 1
NaP = o—), NYwR) =0(— > 1.
wR[)’ k) wr[ ) "=
Proof. We use asymptotic expansions for the spherical Bessel and Hankel functions expressed in
[1]. O

And in the elliptic zone, we have

Lemma 4.2. In the elliptic zone, that is m — +o00, the following asymptotic behaviors hold :
e for the operator S :

sut = ;2(2;“)*(“12“)2(275“)*O(nlﬁ)’
s = p2em+ D) ke 2emt) O (m?’) ’
s00 = 0().

e for the operator D :

1 1
Dt = _)\—f%u2(2m+1)1—0<m3)’
DY = _“3]”“)? mg) 1
D = _>\+’u2/i 2(2m +1) o <m3) ’
o = a0 o)
e and for the operator N :
—2u(\ m+ 3 1
NG = ;ﬁ;}f“) 2R2+O<m>,
NP = fum2;§+(9 nt),
—2u(\ m+ 3 1
NG = fi;ﬂ")ng2+0<m>l,
N = N}3»1>:2’~;§(A:Z)+o(nﬂ>



Proof. We use asymptotic expansions given in [1]. O

Let us validate both these asymptotic estimates and the principal parts of the elementary
boundary integral operators proposed in Section 3.1. We keep only the modes m such that
|m| < Mmax With mmax = [4ks] (cf. Section 4.2). The value [x] denotes the integer part of a real
number x. We set the physical parameters ks = 167w, p = u = 1, and A = 2. This corresponds to
the Poisson’s ratio v = 1/3, and to the relation ks = 2k,. We can see in Fig. 1 that the estimates
obtained in the elliptic zone (cf. Lemma 4.2) well predict the behavior of the compact operator S.
The principal part of the operator S is given by the diagonal coefficients. Note that the operator
S and the proposed operator P, (S) exhibit the same asymptotic behavior in the elliptic zone.
Furthermore, their spectral coefficients have the same magnitude order in the hyperbolic and
transition parts. We conclude that the operator P, _(.S) represents a good approximation of the
boundary integral operator S.
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FIGURE 1. Asymptotic behavior: comparison between the integral operator S
and the principal part P | _(5), for k, = 16m and mpax = [4ks].

We report in Fig. 2 numerical comparisons for the integral operator D. Same conclusions hold.
The obtained estimates in the elliptic zone are validated and the operator F, (D) contains the
necessary spectral informations of the operator D. Here, the principal part of the operator D
is contained in the extra-diagonal coefficients. Finally, we consider the integral operator N in
Fig. 3. The operator N is a first-order pseudodifferential operator. The linear dependance of the
diagonal coefficients on m in the elliptic zone shows this property. The operator B _(N) have an
identical behavior. However, in view of a numerical implementation, we would like to delete the
diagonal components of F, _ (D), and the extra-diagonal ones of B, (V) in the elliptic part. This
is realized by considering F, _(D2,) and B, (Na,) (cf. Fig. 4 and 5). Furthermore, note that
diagonal coefficients of F, (D) associated with propagative and creeping modes are regularized.
Spectral extra-diagonal coefficients of B, _(N2,) are equal to zero for any mode.

4.2. Spectral comparison of standard and preconditioned BW integral formulations.
We consider the unit sphere as the scatterer. For the following numerical tests, the constitutive
properties of the elastic obstacle are given by p =1, v = 1/3, g = 1 and A = 2. The wavenumbers
satisfy xs; = 2k,. This subsection is devoted to analyze the effect of the preconditioning on the
eigenvalue clustering of the BW-type integral operators. In a finite dimensional approximation,
we keep only the modes m such that m < mpyax. The number of modes mpy,x to retain must be
large enough to capture the hyperbolic and transition parts of the spectrum (mmax > £p) but also
19
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the elliptic part (mmax > ks), while avoiding the divergence of the spherical Bessel and Hankel
functions. For our simulations, we will always set #s 4 7.510g1 (ks +7) < Mmax < [4ks]. The lower
bound is proposed in the context of multipole methods [14]. This truncation parameter mmax
represents the mesh refinement.

First, we numerically exhibit an optimal parameter 77,,¢ which minimizes the condition number
of the usual BW integral operator (2.15). A good choice is around the value nop; = (ks + Kp)/2.
We illustrate this observation in Fig. 6. We will consider this value in the sequel, and (2.15) with

this choice is the reference integral equation.
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FIGURE 6. Optimal coupling parameter 7., for the classical BW integral oper-
ator versus ks, taking ks = 2k, and Mpax = [4Ks).

Now, we study the eigenvalue behavior of the standard (2.15) and preconditioned BW integral
equations (3.15) and (3.23). We also consider the integral equation (3.2) with a DtN approxi-
mation proposed by Géchter and Grote in [23], called GGDtN approach. This approximation is
constructed in the framework of non-reflecting boundary conditions for the spherical case. In Fig.
7, we compare the analytic eigenvalues of the different BW integral operators for ks = 327 and
Mmax = [3ks]. We zoom in on the eigenvalues of the DtN- and MDtN-preconditioned BW integral
operators in Fig. 8. As we can see, according to the theoretical results, these two operators are
the same.

T T T 4
0 Standard BW O Standard BW
|| % GGDtN-preconditioned BW| 1 3| ¢ DtN-preconditioned BW
A * * - MDtN-preconditioned BW|
< * 2
87 5 °
* 1+ o
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~ . 3 , o °
=4 2 2 4 6 8 4 -3 -2 -1 1 2
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FIGURE 7. Distribution of the eigenvalues of the standard and preconditioned
BW integral operators for ks = 327 and muyax = [3Ks)-

The GGDtN approach does not allow a better eigenvalue distribution than the reference BW
one. The approximation proposed in [23] considers efficiently the hyperbolic part of the exact DtN
operator but this information is not sufficient to regularize the usual BW integral equation. All
the modes have to be taken account in the approximation. This is done by considering (3.13) and
(3.22). The eigenvalues of the associated DtN- and MDtN-preconditioned BW operators (3.15)
and (3.23) show a very interesting clustering around a point near (1,0). We can conclude to
the efficient regularizing effect of such an analytic preconditioning technique. However, the DtN-
preconditioner is more complicated to implement than the MDtN one. From now on, we only
consider the MDtN approach.

The MDtN-preconditioner Ag, . (cf. (3.22)) is defined with the help of non-local pseudodif-
ferential square root operators, of the form /1 + z, and their inverses. We use complex Padé
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approximants with a rotating branch-cut technique [8, 34, 35, 7] to a suitable localization of these
operators. We will discuss this in Section 6. We compare the analytical eigenvalues of the MDtN-
preconditioned BW integral operator obtained with the exact square root operators, and the ones
obtained considering Padé approximants. Efficiency of Padé approximants depends on different
parameters to choose: their order (2L + 1) and the 6-rotation of the branch-cut. We fix § = 7/3
(0 = /2 resp.) for the localization of the square root operator (of its inverse resp.). We study
how the order impacts on the clustering of the eigenvalues. To this aim, we consider different Padé
orders in Fig. 9.
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FI1GURE 9. Distribution of the eigenvalues of the MDtN-preconditioned BW in-
tegral operator versus Padé order, ks = 3271, Myax = [3Ks)-

The clustering of the eigenvalues around the point (1,0) is better with higher Padé orders. We
can see a spiral curve which is absorbed by the accumulation point when the Padé order increases.
Complex Padé rational approximants for L > 10 provide an adequate tool to localize the MDtN-
preconditioner Ay, .. This is confirmed when we observe the condition number (cf. Fig. 10). The
condition number of the MDtN-preconditioned integral equation - with Padé approximants or not-
remains between 1.4 and 1.8 independently of the wavenumber k, (and hence k, too). This is
not the case for the usual BW one. The dependance on the wavenumbers comes from the largest
magnitude eigenvalues linked to a grazing mode. Note that the condition number of the standard
BW IE is independent on the truncation parameter m,.x, as predicted by the asymptotic behavior
of the eigenvalues in the elliptic part. The MDtN-preconditioned EI preserves this good property.
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4.3. Convergence of the iterative solver GMRES. We study the scattering by the unit
sphere of an incident plane elastic wave of polarization p and propagating in the direction d. Here,
we consider shear plane waves. In this case, the polarization of the plane waves is orthogonal to
the direction of propagation. We fix p = (1,0,0)7 and d = (0,0,1)7. For all the tests, we set
p=1,v=1/3, p=1and A =2.

We use the iterative method GMRES with no restart for solving the linear systems of the
standard and MDtN-preconditioned BW integral equations with or without the use of Padé ap-
proximants. The solution of the linear systems is expanded on the basis of normal and tangential
vector spherical harmonics (see [32] for the coefficients of the incident wave). The size of the
considered matrices is N = (3(2mmax + 1)? — 2). The GMRES iterations are stopped when the
initial residual has decreased by a factor of 107°. Concerning the complex Padé approximants,
we fix L = 12 and 0§ = 7/2. We examine the influence of an increase of the frequency and of
the truncation parameter mp,x on the GMRES convergence. In Fig. 11-left, the value of the
wavenumber k varies from 7 to 87. The number of GMRES iterations increases with k, for the
classical BW integral equation. The MDtN preconditioning leads to an independence of the GM-
RES convergence on kg, even for high values of k5. Only 7 iterations are required independently of
ks. The size of the linear systems varies from 2698 to 17785 in the tests reported in Fig. 11-right.
The number of GMRES iterations to solve the standard and MDtN-preconditioned BW integral
equation is independent of the truncation parameter m,.y, and is efficiently decreasing using the
MDtN preconditioning. The iterative solution needs only 7 iterations against 69 for the classical
one. These results well fit with the previous spectral observations and validate the robustness of
our approach.
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5. PRECONDITIONED COMBINED FIELD INTEGRAL EQUATIONS

In this section, we derive in the same way preconditioned CFIEs. Recall that the standard
CFIE is expressed by

I . _
(5 + D +1inS)p = 7(fyiaumc +inygu™®), onT,

with ¢ = —vf (u +u™¢) and 1 a non-zero real constant. The idea is to precondition the operator
S with an approximation of the DtN or of the MDtN operator before combining it with the integral

I
operator 3 + D!,. We propose two preconditioned CFIEs:
e A DtN-preconditioned CFIE (o = 0) Find ¢ = —v;" (u + u™°) solution to

I ) ,
(5 + D' —ALS)p = — (7 u™ — Alygu™), onT.
e A MDtN-preconditioned CFIE (o = 2u): Find ¢ = —v (u 4+ u™°) solution to

I inc

(5 + D/Q# - /2#,55)90 = _(VJTLQNU’ - /QM,E’Y(;FuinC)a on I

We can remark that these integral operators are nothing else than the adjoint operators of
the DtN- and MDtN-preconditioned BW integral operators (3.15) and (3.23) respectively. Con-
sequently, the two proposed CFIEs are uniquely solvable for any frequency w > 0 and damping
parameters €, > 0 and €, > 0. Furthermore, they show the same spectral properties than the pro-
posed indirect preconditioned integral equations, namely an excellent eigenvalue clustering around
the point (1,0) even for high frequencies, and a condition number independent of both frequency
and mesh parameter. These novel CFIEs are therefore well-suited to an iterative Krylov solution,
and here the unknown is the physical field.

6. SKETCH OF THE NUMERICAL IMPLEMENTATION

In this last section, we suggest ideas to implement the MDtN-preconditioned BW integral
equation (3.23). We give elements of discretization to validate the ease of implementation of the
proposed OSRC preconditioning approach. Let us denote by [A] the matrix associated with the
discretization by finite elements of a given integral operator A. To solve the MDtN-preconditioned
BW integral equation with a GMRES iterative method, one needs to compute at each iteration

v = (3004 (D2 = (8] Azc] ),

with v,u € CY¥, N the size of the approximation space. The matrix [I] represents the mass matrix
on the surface mesh.

o First, we apply the MDtN-preconditioner w = [Ag, cJu.
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1
e Secondly, we compute the dense matrix-vector products v = (5[1} + [Dgu])u — [S]w

coming from the discretization of the integral operators D,, and S. The integrals involve
singular kernels. These singularities have to be carefully treated. Moreover, the use of
FMM [13, 14] is prescribed to efficiently evaluate these products.

We focus on the application of the MDtN-preconditioner: computation of w = [Ay, .Ju. Recall

I —1
that Ay, . = B, (Noy) (5 + 5. (Dgu)) . First, we have to solve

(6.) D+ B ou)a=u

and secondly to realize
(6.2) w = [F . (N2u)]q.

l,e
We explain the different steps to implement (6.1)-(6.2). Suppose that we know u € RT (RT is
well-known lower-order Raviart-Thomas space [38]).

e Step 1: We determine the Helmholtz decomposition of u such that
u = curlr p, + Vroy + noy,.

e Step 2: We propose to solve (6.1) with an iterative solver. At each iteration, we have

M

to compute y = (5 + [R (Dgu)])x. After determining the three scalar potentials

0,e

(¢x, ¥x, dx) of x, we obtain easily the potentials of y given by

Py = %(p)ﬁ
)
.’E (2

and we have
y = curlr ¢y + Vi), + ney.
The matrix —[Ar] is the rigidity matrix on the surface mesh.
e Step 3: We have obtained q in the previous step. We determine three scalar potentials

(pqs Uq, Oq) of q such that
q =~ curlr g + Vg + ngg.
e Step 4: We solve (6.2) through

(3 [AF] *1/2
Pw = 2uK (H K2 ) Pa:
S,€ S,E
2 _
_ipt o [Ary 2
Yw = 2’%,5( ”z,s) kY
.9 _
ipw [Ar]y\ —1/2
w I
¢ 2kp.e ([ } K2 ) a

Finally, we derive
w = curlp ¢y + Vithy + noy.
To efficiently localize the different inverse square root operators (1 + z)_l/ 2. we use complex
Padé approximants of order (2L 4 1) applying a rotating of the usual branch-cut {z € R,z < —1}
with an angle §. We have

[Ap]\~1/2 [Ar] -1

(m+55) 7~ ol (S -al)
j=1

where r;, 7 =0,...,L,and ¢;, j = 1,..., L, are complex coefficients depending on the angle 6 8,

34, 35, 7]. To conclude, the implementation of the MDtN-preconditioner requires only the solution
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of sparse linear systems involving mass and rigidity matrices, and the numerical determination of
the Helmholtz decomposition of a vector defined in RT'.

7. CONCLUSION AND PERSPECTIVES

In this paper, we have built well-conditioned integral equations for the iterative solution of the
Dirichlet elastic scattering problems. The preconditioning strategy is based on a rewriting of the
Somigliana integral representation of the scattered field. A regularizing operator is incorporated
and forces the integral equations arising from this representation to have very interesting spectral
properties. Two regularizing operators are proposed: an approximation of the exact DtN operator
and an approximation of a Modified DtN operator. The second preconditioner is more suited to
a numerical implementation. It is expressed using the principal parts of the elementary boundary
integral operators, namely surface differential operators and square root operators.

A numerical investigation of the eigenvalues of the standard and preconditioned integral op-
erators for the spherical case illustrates the efficiency of the approach. The eigenvalues of the
preconditioned formulations are well clustered and their condition number is close to 1 indepen-
dently of both a frequency increase and a mesh refinement. This leads to a fast convergence of
the GMRES iterative solver. These first results are very encouraging. Furthermore, notice that
the proposed analytic preconditioner shows highly-desirable advantages: sparse structure, ease of
implementation and a low additional computational cost using Padé approximants to localize the
square root operators.

The numerical implementation and validation of this preconditioning approach for more gen-
eral obstacles will be challenging future works. A combination with the FMM seems promising.
Previous work in this area in acoustic scattering [20] has shown significant improvements for the
computational time and cost of the solution. It would be very interesting to test first the numerical
accuracy of the DtN and the MDtN approximations in the OSRC context, before applying them
as preconditioners.

APPENDIX A

In this appendix we give the spectral decomposition of the different elastic boundary integral
operators in terms of the vector spherical harmonics. Let us introduce the spherical harmonics
Y.n.¢ as the functions of order m for £ = —m, ..., m, with m,¢ € N, given by [17]

mﬂﬁzhn@wfﬁ:%ZthWww#ﬂ@@@e%

where P!, denote the /-th associated Legendre polynomials of order m. The tangential vector
spherical harmonics defined by

1 1
YWY = VoV, Y, = ———curle Y, =YV, x &,
’ m(m+1) ’ m(m+1) '
for { =—m,...,mand m = 1,2, ... together with the normal vector spherical harmonics

Y, =&Y

for { = —m,...,mand m = 0,1,2,... form a complete orthonormal system in LQ(SQ) undowed
with the hermitian product

(ilee: = [ 01(@)- wa@as(a).

Let us denote by j,, the spherical Bessel function of order m € N and by h,(ﬁ) the spherical
Hankel function of the first kind and order m € N. We set zy(i) = jm and z,(;f) = h%) and

)e(/{,.’ll) = curl (z ug:,)e(m,:c)), N

m,

ut) (k@) = 20 (k|2|) Yoo (&), M

m, m,

1
)g(/@,w) = curl Mff)e(n,zc)
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Then, the fundamental solution of the Navier equation admits the following series expansion
for |z| > |y|:

iKs 1 (3 o
> _ S M) (re @) © MU, (s,
(x,y) B mE m(m+1) 2 (s @) @ M, (s, y)

m

T 1 (3) O N
e D NV (ks, ) @ Ny, p(Ks, y)
p == m(m+1) e;m o :

m
oo m

1 d 3) T
oo 2 2 Vi) © Vs . y)

m=0/~¢=—m

where ® denotes the tensor product. We denote by &(,}L)(t) = th%)(t) et Y, (t) = tim(t) the
Ricatti-Hankel and Ricatti-Bessel functions of order m respectively. In the case of the scattering
by an elastic sphere of radius R, we have sy((fg = 583’3))7(()?()) and form >1and £ = —m,...,m,

1 1
YO\ [V 0 sE\ (Y
s{y@, (=] o s22 o ||¥2
3 (3,1) (3,3) 3
ySn,)é Sm 0 Sm yiﬂ?é
with, for m > 1
(1,1) i, (1)’ ¢ j O
(L RED (koR)+ — i (kp R)A (15 R),
s e, Y (s ) (55 R) - g s m(am o+ L) (s R) o (1 )
. 1 ’
s _ M% @ [im (s RYER (5. R) + Y (5 R) 0 (a0
iR \/m % . . (1)
(A +2p) 2 [hm (5p R)jm (ipR) + i (15 B) (”pR)]’
51(1%2) = %wm(HsR) g)(KSR)’
SEY = sE,
and for m >0
. . 2 ’
3P = L (m o+ Djim(ks R)ASY (ks R) + iyt i (kpR)RY) (kpR).

[k (A+2p)""

We also have D’ = DT Dygi)) = D(()S’g)yéi)) and for m > 1and £ = —m,...,m,

Yo\ (PR 0 DR\ (W)
DY@, =] o DI o [|¥7,
Vo) \P& 0 DY AV
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with, for m > 1

DY = L [((52B2 = mlm 4 1) + 1) (5, 7) + wuBRY (5,) )4 (5 )

+((K§R2—m<m+1>+1>jm<mR>+mRj;nms ) (v R)|

P (0D (R (0 R) - G R)EY (5, )

W[ (6 R (5 R) + i (5 RS (1 B) = A (e BB (5, )
D = %[W“ﬁ) W (roR) = i (roR)ER (50 R) = B3 (s Ry, (5 ) |

p/m(m+ 1) [ . W

ik, RN+ 200) [Jm(/pr) ((n§R2 —m(m+ 1))h£n)(/<;pR) + QHPRhgn) (npR))

D R)(( 2R2—m(m+1))jm(fpr>*2“pRj4n<“PR))]

A 1
AR R D) ;R (x, R),

(A+2p)
DY = i(sR)? (JmmsR)h&n)(mR) 1) (ko R)jm (o))
) SR . ’
ik (Jm(nsR) (U (k4 R) +h£,£>(KSR)¢;n(nsR)),
1 ,
DY = % [ 'm(msR)<(/<;§R2 —m(m+ 1) + D)AY (5.R) + ko RRY (HSR))

1D (5. R) (( 2R2 — m(m +1) + 1) jm(raR) + Hst;n(nsR))]
+iksRy/m(m + 1)jm (ks R)hgn)(/ﬁsR)
ipy/m(m—+1)

Dt L Rin(sa O (5o R) — jm sy RRG (5 R) = (p ROB ()

and for m >0

im(m+1 . im (ks R . / h,%) KksR
D = % [h%)(msR) (Iﬁ:sj:n(ﬂsR) — %) + Jm(ksR) (/{Shﬁ}ﬂ (ksR) — %)}
L 2p2 8 (1
T [jm(npR) ((%R m(m + 1))h$) (5, R) + 2k, RhSS (H,,R))

R = m(m + 1)) jim (1, R) + 26, R (5 ) ) |

PRI (5 R) + i (i FORSE) (1, R) )

We have NV ) = NP Y§) and for m > 1 and £ = —m, ..., m

Yo, NED 0 NI (P
NIV =] o NP0 [V

3 (3,1) (3,3) 3
Y, N 0 N Y&,
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where for m > 1
NGO o ((ngRZ —2m(m + 1) + 2) b (k. R) + 2nsRh£,P'(msR))
ke R?
X ((ngz —2m(m+1) 4 2) jm (ks R) + 2&5Rj§n(nsR)>

dig?m(m +1) ¢ ay hia (5p R)\ () Jm(rpR)
T2 (’“”vphm (kpR) — T) (Hp]m(HpR) - T)’

Ny = m/mimdl) (2R = 2m(m + 1) B2 (5, R) + 2680 (55 B) ) (ot (s ) — L(“R))

irsR , WY (ks R) !
(=282 = 2mlm + 1)) (ko) + 2 (. R) ) (b (v R) = =222 )|

_juRv%ﬂmw=U{[2u

(1) 1y (1)
O\ 270) 72 ((ﬁf,RQ —m(m + 1)) han’ (kpR) + 26, Rhn (HPR)> + X&2him (/ipR):|

X (/fpj;n(ﬂpR) _ @)
% ((K’%RQ —m(m +1))jm(kpR) + QHpRj;n(”pr)> + Afiz%jm(npR)}

/ K (k,R)
X (ﬁph%) (kpR) — 7512'7 ) ;

.m sR ’ hfqi) SR
N,g’Q) = ipksR? (nsj;n(nsR) - %) (nshﬁi) (ksR) — %),
N7(nl73) _ NT(;?J)’

+

and for m >0

(1) .
39 _ gD ay o (8RR jmlER)
Nm = 41[1/ K/QS (ﬁshm (K/SR) R ) (K/Sjm(ﬁ:sR) R )
iR 20 . ) (ay V)
e (X190 | P2 - 1 m 2 m m R
+/£p(/\ T 20) []232 (("ipR m(m + ))h (kpR) + 2k, Rh (HPR)) + A2 han (p )}
X [R—’; ((Kzim —m(m + 1)) jm(r,R) + 2f$pRj;n(f€pR)) + Mijm(fpr)} :

Now, let us consider the principal parts P, (S), B (D) and P, (N) of the integral operators S,

0
D and N respectively (see Section 2.1). By recalling that the eigenvalues of the surfacic operator

Ar are given by 7%, we have the following results
Vi N B I W e
pas |30 |- 0w o ||e]
o, 0o 0 s \p?,
with
s i -(K%_m(m+1))§+m(m+1)(K2_nM>é_
2pw? s R2 R2 P R2 )
s = 2;ﬂég@g_7”@;jb>-{ ]
s@® = L (KQ—m(m_Fl))% m(m—|—1)< 2_m(m—|—1)>*% 7
2pw? | \'P R2 R2 s 2
Vil 0 0 dM\ (Yo
DY, =] 0o 0o o0 v, |
o)\ oo )\



with

. 1/2 1 _1
3 & m(m+1) s mm+1)\z mm+1)/ , mim+1)\~2
dn™ = ?( R ) (”S_ R? ) TR (”P_ R )
i rm(m+1) 1/2 , m(m+1)\~2
_5( RZ )12_(“1’_ R ) ’ ]
FICEVN i rm(m+1) / , mm+1)\z mm+1)/, mm+1)\-2
moT ?g( R? ) (”P_ R? ) R? (S_ R )
_Z(m(m+1))”2(ﬁ2_m<m+l>)é
2\ B2 TR ’
and, finally,
ygi,)e niat 0 0 y%?z
P (N) y(2)€ _ 0 n(272) 0 y(2)e ,
yi)e 0 0 g y(ms)z
with
eV i (Hz_m(m—&—l))% 2ipm(m +1) (2_m(m+1)>% m(m+1)(2_m(m+1)
" 2pw? \ R? K2 R? P R? R? ’
. /m(m+1) 1/2 , m(m+1)\~2
_2”‘( R2 ) (’Qs_ R2 ) ’
22 _ & (o M(m+1))%
= SulRs 7 ,
33 i o, mm+1)\z: 2ipgmm+1)|/ , mm+1)\z mm+1)/ , m(m+1)
tme T g2 (“P R2 ) k2 R? ( * R? ) R2 (”P*
. /m(m+1) 1/2 m(m + 1)\~
() ()
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