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ANALYTIC PRECONDITIONERS FOR THE ITERATIVE SOLUTION OF
ELASTIC SCATTERING PROBLEMS

MARION DARBAS AND FRÉDÉRIQUE LE LOUËR

Abstract. We construct and analyze well-conditioned boundary integral equations for the
Krylov iterative solution of three-dimensional elastic scattering problems by a bounded rigid
obstacle. Following ideas developed by Antoine and Darbas [6] for acoustic scattering problems,
we use a suitable approximation of the Dirichlet-to-Neumann (DtN) map as a regularizing oper-
ator in the proposed boundary integral equations. We build an approximation of the DtN map
by using a small perturbation of its principal classical symbol inspired by On-Surface Radiation
Conditions method. From a numerical point of view, we consider instead an approximation of a
modified Dirichlet-to-Neumann map obtained from the standard DtN map adding a surface dif-
ferential operator. Existence and uniqueness occur for the "DtN-preconditioned" formulations.
Promising numerical experiments with the elastic sphere are provided.

1. Introduction

The paper is concerned with the preconditioning of iterative methods for the scattering problem
of time-harmonic elastic waves by a three-dimensional rigid obstacle. In recent years, interest has
grown considerably in developing effective numerical methods for such a scattering problem due to
the various biomedical or industrial applications (for example non-destructive testing of materials).

We assume the obstacle be represented by a bounded domain Ω− in R3. Let Ω+ denote the
exterior domain R3\Ω− and n the outer unit normal vector to the boundary Γ := ∂Ω−. The Lamé
parameters µ and λ and the density ρ are positive constants. The propagation of time-harmonic
waves in a three-dimensional isotropic and homogeneous elastic medium is governed by the Navier
equation

(1.1a) divσ(u) + ρω2u = 0,

where ω > 0 is the frequency. Here

σ(u) = λ(divu)I3 + 2µε(u) and ε(u) =
1

2

(
[∇u] + [∇u]

T)
denote the stress tensor and the strain tensor respectively. Notice that I3 is the 3-by-3 identity
matrix and [∇u] is the matrix whose the j-th column is the gradient of the j-th component of u.
The scattering problem is formulated as follows : Given an incident wave uinc which is assumed
to solve the Navier equation in the absence of any scatterer, find the solution u to the Navier
equation (1.1a) in Ω+ which satisfies the Dirichlet boundary condition

(1.1b) u = −uinc on Γ.

In addition the field u has to satisfy the Kupradze radiation conditions

(1.1c) lim
r→∞

r

(
∂up
∂r
− iκpup

)
= 0, lim

r→∞
r

(
∂us
∂r
− iκsus

)
= 0, r = |x|,

uniformly in all directions. The field u can be decomposed into a longitudinal field up with
vanishing curl and a transverse field us, with vanishing divergence, solutions respectively to

(1.2) ∆up + κ2
pup = 0 and curl curlus + κ2

sus = 0,

with κ2
p = ρω2(λ+ 2µ)−1 and κ2

s = ρω2µ−1.
The main difficulty for simulating such exterior boundary-value problems is related to the

unboundedness of the computational domain Ω+. The method of boundary integral equations
(BIEs) is one of the principal tools to overcome this concern (see e.g. [9, 26, 31, 30]). This
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approach applies the Green’s function formalism to reduce equivalently the governing boundary
value problem to an integral equation on the surface of the scatterer. Its efficiency has been widely
demonstrated for low and middle frequencies using collocation or boundary element methods (see
e.g. [9, 10]). However, solving the exterior Navier problem in the high-frequency regime remains a
very challenging problem for a few reasons. The discretization of boundary integral formulations
leads to fully-populated and in general, non-hermitian complex linear systems. To retain a certain
level of accuracy in the high-oscillatory solution, one has to consider a sufficient number of points
per wavelength (about 10 points). Moreover, the vector nature of the unknown greatly increases
the size of the scattering-matrices by comparison to the acoustic case. The solution of these large
and dense linear systems are handled by Krylov-subspaces iterative solvers (e.g. GMRES [39]). To
make possible the use of iterative solvers for scattering problems, two kinds of techniques have to
be investigated: fast methods for the computation of matrix-vector products and preconditioners
to speed up the convergence of the solver.

The Fast Multipole Method (FMM) is one of the most efficient methods used to perform
matrix-vector products and accelerate the resolution of the linear system. The method has been
introduced by Rokhlin et al (e.g. [16]) and was adapted to integral equations of wave propagation
in the 90’s (e.g. [15, 21, 22]). Recently, FMM have been extended to linear elasticity by Bonnet,
Chaillat and Semblat [13, 14]. The theoretical complexity of the multi-level FMM is O(N logN)
per iteration both for CPU time and memory, where N is the number of degrees of freedom.

Preconditioners are prescribed to yield fast convergence independently of both mesh size and
frequency. A recent class of analytic preconditioners has been derived to regularize the classi-
cal BIEs. The idea is to consider a judicious integral representation of the scattered field which
naturally incorporates a regularizing operator. This operator is an approximation to the Dirichlet-
to-Neumann (DtN) map, when considering Dirichlet boundary value problems. The BIEs arising
from this representation are compact perturbations of the identity operator. Such integral for-
mulations can be interpreted as generalizations of the well-known Brakhage-Werner (BW) [11]
and Combined Field Integral Equations (CFIE) [25]. Several well-conditioned integral equations
based on this formalism have already been proposed in acoustic and electromagnetic scattering
(e.g. [3, 5, 6, 12, 19, 33, 37]). A pseudo inverse of the principal classical symbol of the single layer
boundary integral operator - or equivalently the principal classical symbol of the Neuman trace of
the double layer boundary integral operator - is used to approach the DtN map [7, 6, 19] in the
framework of the On-Surface Radiation Condition (OSRC) methods (e.g. [29, 27, 4]). This is intui-
tively natural in view of the Calderón formulas and the compactness of the double layer boundary
integral operator. The resulting preconditioner can be expressed analytically by a simple square
root of the form i

√
∆Γ + κ2I. More precisely, a regularization of the square root, by considering

a small complex perturbation of the exterior wavenumber κ, is considered instead. This allows
to model the creeping waves and provides the existence and uniqueness of the solution to the
BIEs for any positive real values of the frequency. Furthermore, a complex Padé-approximation of
the square root operator [35] leads to a sparse matrix involving only the mass and rigidity finite
element matrices. This makes the implementation of the analytic preconditioner rather easy with
a low additional computational cost.

It is the purpose of this paper to extend to linear elasticity such analytic preconditioning tech-
niques. In this work we encounter some new difficulties for many reasons. First of all, one knows
that the double layer boundary integral operator and its adjoint are not compact. This implies
that regularizing the BIEs via a pseudo inverse of the single layer boundary integral operator is
not sufficient to obtain well-conditioned boundary integral equations. We have to take into ac-
count the principal part of the double layer boundary integral operator or its adjoint. Secondly,
we have to deal with longitudinal and transversal waves and the expression of the preconditioner
is, by consequence, more complicated than in the acoustic and electromagnetic cases. Finally, the
resulting preconditioner - expressed in a suitable vector function basis - is not diagonal and con-
sists in sums and products of square roots and their inverse and of surface differential operators.
Here, we suggest a more appropriate preconditioner for a numerical implementation by considering
a rewriting of the Somigliana integral representation formula. According to this representation,
we introduce a new Neumann-type trace by adding a surface differential operator to the traction
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trace. This allows to develop a new potential theory for the Navier equation. The expression of the
preconditioner is greatly simplified and previous works on the implementation of such OSRC-like
preconditioner can be applied. The associated preconditioned BIEs are well posed and show very
interesting spectral properties. Contrary to the acoustic and electromagnetic cases, defining the
Neumann-to-Dirichlet preconditioner as the inverse of the Dirichlet-to-Neumann preconditioner is
not sufficient to construct well-conditioned BIEs for the Neumann (or cavity) scattering problem.
A more extensive analysis of the DtN and NtD maps has to be realized in the transition region
corresponding to the grazing modes.

The paper is organized as follows: In section 2, we recall several results on the trace and po-
tential theory in linear elasticity and review the standard Brakhage-Werner-type and combined
field integral equations. In section 3, we present two preconditioning techniques based on a DtN
approach and a modified DtN approach for the Brakhage-Werner-type (BW) BIEs. The compu-
tation of the principal parts of the elementary boundary integral operators is described in detail.
This step is the key one to obtain the approximations of the DtN and modified DtN maps. We
also prove existence and uniqueness for the proposed preconditioned formulations. Section 4 is
devoted to a numerical investigation of the eigenvalues of the classical and preconditioned BW in-
tegral operators in the case of the elastic sphere. Furthermore, we study the convergence behavior
of GMRES in function of both a mesh refinement and a frequency increase. Preconditioned CFIEs
are built in section 5. We give a sketch of the numerical implementation of these novel BIEs in
section 6. Finally, we draw concluding remarks and we discuss possible research lines in section 7.

2. Classical boundary integral equations

In a first part, we review some well-known results about traces of vector fields, and integral
representations of time-harmonic elastic fields. Details can be found in [2, 18, 31, 30]. We introduce
a new Neumann-type trace and develop the corresponding potential theory. In a second part, we
describe the classical direct and indirect approaches usually used to solve time-harmonic exterior
elastic scattering problems.

2.1. Traces and elastic potentials. We assume Ω− be a bounded domain with a closed bound-
ary Γ of class C 2 at least. Throughout the paper we denote by Hs(Ω−), Hs

loc(Ω
+) and Hs(Γ)

the standard (local in the case of the exterior domain) complex valued, Hilbertian Sobolev space
of order s ∈ R defined on Ω−, Ω+ and Γ respectively (with the convention H0 = L2). Spaces of
vector functions will be denoted by boldface letters, thus Hs = (Hs)3. We set

∆∗u := divσ(u) = µ∆u+ (λ+ µ)∇ divu

and introduce the following energy spaces

H1(Ω−,∆∗) :=
{
u ∈H1(Ω−) : ∆∗u ∈ L2(Ω−)

}
,

H1
loc(Ω

+,∆∗) :=
{
u ∈H1

loc(Ω
+) : ∆∗u ∈ L2

loc(Ω
+)
}
.

Definition 2.1. For a vector function u ∈ (C∞(Ω−))3 we define the following interior traces :

γ−0 u = u|Γ (Dirichlet trace)
γ−1 u = Tu (Neumann or traction trace)
γ−1,αu = Tu− αMu|Γ (Neumann-type trace),

where T denotes the traction operator defined by

T = 2µ
∂

∂n
+ λn div +µn× curl .

The parameter α is a real-valued constant and the surface operator M is the tangential Günter
derivative defined by

M =
∂

∂n
− n div +n× curl .
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The following trace maps

γ−0 : H1(Ω−,∆∗) → H
1
2 (Γ)

γ−1 : H1(Ω−,∆∗) → H−
1
2 (Γ)

γ−1,α : H1(Ω−,∆∗) → H−
1
2 (Γ)

are continuous. For u ∈ H1
loc(Ω

+,∆∗) we define the exterior traces γ+
0 u, γ

+
1 u and γ+

1,αu in the
same way and the same mapping properties hold true.

For two (3 × 3) matrices A and B whose columns are denoted by (a1, a2, a3) and (b1, b2, b3),
respectively, we set A : B = a1 · b1 + a2 · b2 + a3 · b3. The following lemma is a consequence of the
Gauss divergence theorem and the identity

(2.1) div
(
σ(u)v

)
= ∆∗u · v + σ(u) : ε(v).

Lemma 2.2. For vector functions u and v in H1(Ω,∆∗), we have the first Green formula

(2.2)
ˆ

Ω

∆∗u · v dx =

ˆ
Γ

Tu · v ds−
ˆ

Ω

σ(u) : ε(v) dx,

where σ(u) : ε(v) = λ(divu)(div v) + 2µ ε(u) : ε(v) = σ(v) : ε(u).

We use the surface differential operators: The tangential gradient ∇Γ, the surface divergence
divΓ, the tangential vector curl curlΓ, the surface scalar curl curlΓ, the surface scalar Laplace-
Beltrami operator ∆Γ and the vector Laplace-Beltrami operator ∆Γ. For their definitions we refer
to [36, pages 68-75]. We recall some well-known surface decompositions that are useful in the
sequel for the determination of the principal part of the boundary integral operators.

Lemma 2.3. For a vector function u and a scalar function v both defined in the neighborhood of
Γ and sufficiently smooth, we have the following decompositions on Γ:

(2.3) ∇v = ∇Γv +
∂v

∂n
,

(2.4) divu = divΓ

(
n× (u× n)

)
+ 2H(u · n) + n · ∂u

∂n
,

(2.5) n× curlu = ∇Γ(u · n) + n×
(
R− 2H I3

)
(u× n) + n×

(∂u
∂n
× n

)
,

(2.6) ∆v = ∆Γv + 2H ∂u

∂n
+
∂2u

∂n2
,

where H is the mean curvature and R is the curvature operator.

Remark 2.4. The tangential Günter derivative can be rewritten as follows:

Mu =
(
[∇Γu]− (divΓ u) · I3

)
n.

Notice that [∇Γu] is the matrix whose the j-th column is the tangential gradient of the j-th
component of u.

For any complex number κ such that Im(κ) ≥ 0, let

G(κ,x− y) =
eiκ|x−y|

4π|x− y|

be the fundamental solution of the Helmholtz equation ∆v + κ2v = 0. Then, the fundamental
solution of the Navier equation can be written as follows

Φ(x,y) =
1

ρω2

(
curl curlx

{
G(κs,x− y) I3

}
−∇x divx

{
G(κp,x− y)I3

})
.
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It is a 3-by-3 matrix-valued function and we have Φ(x,y) = Φ(x,y)
T

= Φ(y,x). The single and
double layer potential operators are defined by

(2.7) Sϕ =

ˆ
Γ

Φ(· ,y)ϕ(y)ds(y) and Dψ =

ˆ
Γ

[T yΦ(· ,y)]
T
ψ(y)ds(y),

where T y = T (n(y), ∂y) and T yΦ(x,y) is the tensor obtained by applying the traction operator
T y to each column of Φ(x,y).

Theorem 2.5. The potential operators S and D are continuous from H−
1
2 (Γ) and H

1
2 (Γ) res-

pectively to H1(Ω−,∆∗) ∪H1
loc(Ω

+,∆∗). For any ϕ ∈ H−
1
2 (Γ) and ψ ∈ H

1
2 (Γ), the potentials

Sϕ and Dψ solve the Navier equation (1.1a) and satisfy the Kupraze radiation conditions (1.1c).

It follows that the Dirichlet trace and the traction trace can be applied to S and D and we
obtain the following identities

(2.8) γ±0 S = S, γ±1 S = ∓1

2
I +D′, γ±0 D = ±1

2
I +D, and γ±1 D = N,

where I is the identity operator and the elementary boundary integral operators S, D, D′ and N
are defined, for x ∈ Γ, by

Sϕ(x) =

ˆ
Γ

Φ(x,y)ϕ(y) ds(y),

Dψ(x) =

ˆ
Γ

[T yΦ(x,y)]
T
ψ(y) ds(y),

D′ϕ(x) =

ˆ
Γ

T x {Φ(x,y)ϕ(y)} ds(y),

Nψ(x) =

ˆ
Γ

T x

{
[T yΦ(x,y)]

T
ψ(y)

}
ds(y).

The operator S is a pseudo-differential operator of order −1, i.e it is bounded from H−
1
2 (Γ) to

H
1
2 (Γ) and compact fromH−

1
2 (Γ) to itself. The operators D and D′ are of order 0, i.e. they have

a strongly singular kernel and are bounded from H
1
2 (Γ) and H−

1
2 (Γ) to themselves, respectively.

The operator N is of order +1, i.e. it has a hypersingular kernel and is bounded from H
1
2 (Γ) to

H−
1
2 (Γ).

Theorem 2.6. For a solution u ∈H1
loc(Ω

+,∆∗) to the Navier equation (1.1a) in Ω+ that satisfies
the Kupradze radiation conditions, one can derive the Somigliana integral representation formula
for x ∈ Ω+:

(2.9) u(x) = Dγ+
0 u(x) − Sγ+

1 u(x).

For a solution u ∈ H1(Ω−,∆∗) to the Navier equation (1.1a) in Ω−, the Somigliana integral
representation formula is given for x ∈ Ω− by:

(2.10) u(x) = Sγ−1 u(x) − Dγ−0 u(x).

The Calderón projectors for the time-harmonic Navier equation are

P± =

±1

2
I +D −S

N ±1

2
I−D′

 .

We have P+ ◦ P− = P− ◦ P+ = 0 and thus the relations
SD′ = DS , D′N = ND ,

SN = D2 − 1

4
I , NS = D′

2 − 1

4
I.

(2.11)

Now we show that similar results remain true if we consider the Neumann-type trace γ1,α

instead of the traction trace γ1.
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Theorem 2.7. We introduce the potential operator Dα defined as D by switching the traction
operator T with T −αM. In the same way we construct the boundary integral operators Dα, D′α,
and Nα. Then we have the following results:

(i) Dα = D−αSM and for any ψ ∈H
1
2 (Γ) the potential Dαψ ∈H1(Ω−,∆∗)∪H1

loc(Ω
+,∆∗)

satisfies the Navier equation (1.1a) and the Kupradze radiation conditions (1.1c);

(ii) γ±1,αS = ∓1

2
I +D′α, γ

±
0 Dα = ±1

2
I +Dα and γ±1,αDα = Nα;

(iii) u = Dαγ+
0 u − Sγ

+
1,αu for any solution u ∈ H1

loc(Ω
+,∆∗) to the Navier equation (1.1a)

in Ω+ that satisfies the Kupraze radiation conditions;
(iv) u = Sγ−1,αu − Dαγ

−
0 u for any solution u ∈H1(Ω−,∆∗) to the Navier equation (1.1a) in

Ω−;

(v) SNα = D2
α −

1

4
I and NαS = D′α

2 − 1

4
I.

We have D0 = D, D0 = D, D′0 = D and N0 = N .

Proof. (i) The operator Dα applied to any vector density ψ writes for x ∈ Ω±

Dαψ(x) =

ˆ
Γ

[(
T y − αM

)
Φ(x,y)

]T
ψ(y)ds(y).

Using that for two vector densities ψ1, ψ2 we have [26]
ˆ

Γ

(Mψ1) ·ψ2 ds =

ˆ
Γ

ψ1 · (Mψ2) ds,

we obtain that

Dαψ(x) =

ˆ
Γ

[T yΦ(x,y)]
T
ψ(y)ds(y)− α

ˆ
Γ

[MΦ(x,y)]
T
ψ(y)ds(y)

=

ˆ
Γ

[T yΦ(x,y)]
T
ψ(y)ds(y)− α

ˆ
Γ

Φ(x,y)Mψ(y)ds(y)

= Dψ(x)− αSMψ(x).

(ii) We decompose the traces as follows

γ±1,αS = γ±1 S − αMγ±0 S
γ±0 Dα = γ±0 D − αγ

±
0 SM

γ±1,αDα = γ±1 Dα − αMγ±0 Dα

and we apply the equalities (2.8). The first two above equalities in (ii) are obvious. We develop
the third one. We have

γ±1,αDα = γ±1 (D − αSM)− αMγ±0 (D − αSM)

= N − α
(
∓1

2
I +D′

)
M− αM

(
±1

2
I +D

)
+ α2MSM

= N − αD′M− αMD + α2MSM
= Nα.

(iii) To obtain the new integral representation formula we use (i) and write, for any solution
u ∈H1

loc(Ω
+,∆∗),

Dαγ+
0 u − Sγ

+
1,αu = (D − αSM) γ+

0 u − S
(
γ+

1 u− αMγ+
0 u
)

= Dγ+
0 u − Sγ

+
1 u

= u.

The assertion (iv) is obtained in the same way.
(v) We use the above decomposition of Nα in terms of S, D, D′, N , and M, the equalities
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Dα = D − αSM and D′α = D′ − αMS and the Calderón formulas (2.11). We get

SNα = SN − αSD′M− αSMD + α2SMSM
= SN − αDSM− αSMD + α2SMSM
= −1

4
I +D2 − αDSM− αSMD + α2SMSM

= −1

4
I +D2

α ,

and finally
NαS = NS − αD′MS − αMDS + α2MSMS

= NS − αD′MS − αMSD′ + α2MSMS

= −1

4
I +D′

2 − αD′MS − αMSD′ + α2MSMS

= −1

4
I +D′α

2
.

�

2.2. The standard BW-type and combined field integral equations. Applying the po-
tential theory, the elastic scattering problem (1.1a)-(1.1b)-(1.1c) can be reduced, via direct and
indirect approaches, to a single uniquely solvable boundary integral equation [31].

The direct formulation consists in seeking the scattered field under the form

(2.12) u(x) = Sϕ(x), x ∈ Ω+,

setting ϕ = −γ+
1

(
u + uinc). Taking the interior Dirichlet and Neumann-type traces of the right

hand side of the above equality, we obtain

Sϕ = −γ−0 uinc and
( I

2
+D′α

)
ϕ = −γ−1,αuinc, on Γ.

Under certain compatibility conditions for the incident field uinc [26, 31, 30], these integral equa-
tions are uniquely solvable in H−

1
2 (Γ). To avoid any compatibility conditions, an idea is to

consider the following CFIE

(2.13) (
I

2
+D′α + iηS)ϕ = −

(
γ+

1,αu
inc + iηγ+

0 u
inc
)
, on Γ,

where η is a non-zero real constant. Then, the scattered field u given by (2.12) solves the Dirichlet
boundary value problem (1.1a)-(1.1b)-(1.1c) if the physical unknown ϕ solves the integral equation
(2.13). It can be shown that the homogenous equation (2.13) only has the solution ϕ = 0. The

integral operator (
I

2
+D′α+iηS) is not, in general, a compact perturbation of the identity operator

(close to a constant). However, an integral equation of the second kind equivalent to (2.13) can
be obtained using a left equivalent regularizer [28, 30, 31]. Then we can use Riesz theory to prove
existence of a unique solution to (2.13).

The indirect formulations are based on the following ansatz for the integral representation of
the scattered elastic field

(2.14) u(x) = Dαψ(x) + iηSψ(x), x ∈ Ω+,

where η is a non-zero real constant to choose and ψ is a fictitious density in H
1
2 (Γ). Applying

the exterior Dirichlet trace to (2.14) and expressing the boundary condition (1.1b), we get the
BW-type integral equation

(2.15) (
I

2
+Dα + iηS)ψ = −γ+

0 u
inc, on Γ.

Existence and uniqueness can be shown by the use of a right equivalent regularizer [28, 30, 31] for

the integral equations (2.15). We mention that in the special case α =
2µ2

λ+ 3µ
, it can be shown

that the integral equations (2.13) and (2.15) are of the second kind [24] for any real parameter η.
7



3. Preconditioned BW-type integral equations

This section is devoted to the construction of well-conditioned indirect boundary integral formu-
lations for the solution of the Dirichlet exterior problem in elasticity. We analyze two approaches:
the first one by applying the analytic preconditioning technique to the classical BW integral equa-
tion, namely equation (2.15) with α = 0, and the second one by applying the same preconditioning
technique to the equation (2.15) with α = 2µ.

3.1. DtN approach (α = 0). Here the field u represents a solution to the rigid body problem
(1.1a)-(1.1b)-(1.1c). Assume that the exact Dirichlet-to-Neumann map

Λex : γ+
0 u ∈H

1
2 (Γ) 7→ Λexγ+

0 u := γ+
1 u = Tu ∈H−

1
2 (Γ)

is known. The Somigliana integral representation (2.9) can be rewritten under this form

u(x) = Dγ+
0 u(x)− SΛexγ+

0 u(x), x ∈ Ω+.

Taking the Dirichlet trace, we obtain the following integral identity on Γ

(3.1)
1

2
I +D − SΛex = I.

In this ideal configuration, the solution is computed directly. However, an expression of the
exact DtN operator is not available for a general surface Γ. Instead, an approximation Λ of Λex is
introduced. We propose to consider the following ansatz which is inspired by the Brakhage-Werner
approach

u(x) = Dψ(x)− SΛψ(x), x ∈ Ω+,

where ψ is a fictive density. The scattered field u solves the Dirichlet boundary value problem if
ψ ∈H

1
2 (Γ) is a solution to the integral equation

(3.2)
(1

2
I +D − SΛ

)
ψ = −γ+

0 u
inc, on Γ.

The key task is now to propose an efficient approximation Λ of the exact DtN Λex. The following
lemma is proven in [2] and gives a hint for constructing Λ.

Lemma 3.1. Assume that ω is not an eigenfrequency of the Navier equation (1.1a) then we have

Λex = −S−1(
1

2
I−D) = N(

1

2
I +D)−1.

Proof. By the use of (3.1) and the Calderón formula (2.11) . �

We choose to construct the operator Λ as the pseudo-differential operator associated with the
principal classical symbol of the operator Λex. From Lemma 3.1, we then have to compute the
principal parts of the operators S or N . Since D and D′ are operators of order 0, it is necessary
to take into account their principal part too, contrary to the acoustic and electromagnetic cases.
This is realized in the following three lemmas.

Lemma 3.2. The principal part P−1
(S) of the boundary integral operator S is given by the fol-

lowing formulas

P−1(S) =
i

2ρω2

[(
∆Γ + κ2

sI
)− 1

2

(
κ2
sIt + ∇Γ divΓ It

)
−∇Γ

(
∆Γ + κ2

pI
)− 1

2 divΓ It

+ n
(
∆Γ + κ2

pI
) 1

2
(
n · In

)
− n

(
∆Γ + κ2

sI
)− 1

2 ∆Γ

(
n · In

)]
,

where In = n⊗ n and It = I− In.

Proof. Since curl curl = −∆ + ∇ div, the fundamental solution of the Navier equation can be
rewritten as follows

Φ(x,y) =
1

ρω2

(
(−∆x + ∇x divx)

{
G(κs,x− y)I3

}
−∇x divx

{
G(κp,x− y)I3

})
.
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Using Lemma 2.3, we split the operator ∇ div into a sum of surface differential operators acting
either on tangential densities, or normal densities to Γ. We have

∇div =

(
∇Γ + n

∂

∂n

)(
divΓ It + 2H(n · I) + n · ∂

∂n

)
= ∇Γ divΓ It +

∂2

∂n2
In + n

∂

∂n
divΓ +∇Γ

(
2H(n · I) + n · ∂

∂n

)
= ∇Γ divΓ It +

(
∆−∆Γ − 2H ∂

∂n

)
In + n

∂

∂n
divΓ +∇Γ

(
2H(n · I) + n · ∂

∂n

)
= ∇Γ divΓ It + (∆−∆Γ) In − 2H ∂

∂n
In + n

∂

∂n
divΓ +∇Γ

(
2H(n · I) + n · ∂

∂n

)
,

and

−∆ + ∇ div = (−∆ + ∇Γ divΓ)It −∆Γ In − 2H ∂

∂n
In + n

∂

∂n
divΓ +∇Γ

(
2H(n · I) + n · ∂

∂n

)
.

We use the following result [6].

Proposition 3.3. The single layer boundary integral operator associated with the scalar Helmholtz

equation with the wavenumber κ is a compact perturbation of the operator
i

2
(∆Γ + κ2I)−

1
2 .

To construct the principal part of the operator S, we first apply the above surface decomposition
of (−∆+∇ div) to the single layer boundary integral operator associated with the vector Helmholtz
equation with the wavenumber κs. Using Proposition 3.3 together with some well-known mapping
properties of the single layer potential and its derivatives, we obtain the following top-order part

i

2

(
∆Γ + κ2

sI
)− 1

2

(
κ2
sIt + ∇Γ divΓ It

)
− i

2
n
(
∆Γ + κ2

sI
)− 1

2 ∆Γ

(
n · In

)
.

Secondly, we apply the above surface decomposition of ∇ div to the single layer boundary integral
operator associated with the vector Helmholtz equation with the wavenumber κp. We obtain the
following top-order part

i

2
∇Γ

(
∆Γ + κ2

pI
)− 1

2 divΓ It −
i

2
n(κ2

pI + ∆Γ)
1
2

(
n · In

)
.

To conclude we substract the two above operators and multiply the result by (ρω2)−1. �

Lemma 3.4. The principal parts of the boundary integral operators D and D′ are given by the
following formulas

P
0
(D) = 2µP−1

(S)M +
i

2

(
n
(
∆Γ + κ2

sI
)− 1

2 divΓ It −∇Γ

(
∆Γ + κ2

pI
)− 1

2 n · In
)
,

and

P
0
(D′) = 2µMP−1

(S) +
i

2

(
n
(
∆Γ + κ2

pI
)− 1

2 divΓ It −∇Γ

(
∆Γ + κ2

sI
)− 1

2 n · In
)
.

Proof. We consider the following integral representations of the operators D and D′ (a rewriting
of the formulas in [32] Lemma 2.2)

(Dψ)(x) = 2µSMψ(x)−
ˆ

Γ

[n(y)× curly{G(κs,x− y)I3}]Tψ(y)ds(y)

−
ˆ

Γ

∇xG(κp,x− y)
(
n(y) ·ψ(y)

)
ds(y), x ∈ Γ,

(3.3)

and

(D′ϕ)(x) = 2µMSϕ(x)−
ˆ

Γ

n(x)× curlx{G(κs,x− y)ϕ(y)}ds(y)

− n(x)

ˆ
Γ

ϕ(y) ·∇yG(κp,x− y)ds(y), x ∈ Γ.

(3.4)

9



Let us work first on the operator D. The principal part of 2µSM is 2µP−1(S)M. In view of
(2.5), the top-order term of the second term in the right hand side (with the minus sign) of (3.3)
is

−
ˆ

Γ

[∇y
Γ{G(κs,x− y)n(y)}]T(Itψ)(y)ds(y) =

ˆ
Γ

n(y)G(κs,x− y) divΓ Itψ(y)ds(y).

By composition, the principal part of the above expression is
i

2
n
(
∆Γ + κ2

sI
)− 1

2 divΓ It. Further-
more, we deduce from (2.3) that the top-order term of the third term in the right hand side (with
the minus sign) of (3.3) is

−
ˆ

Γ

∇x
ΓG(κp,x− y)

(
n(y) ·ψ(y)

)
ds(y) = −∇Γ

ˆ
Γ

G(κp,x− y)
(
n(y) ·ψ(y)

)
ds(y).

By composition, the principal part of the above expression is − i
2
∇Γ

(
∆Γ + κ2

pI
)− 1

2 n · In. Adding
the three terms we obtain the principal part of P0(D).

Let us consider now the operator D′. The principal part of 2µMS is obviously 2µMP−1
(S).

Using (2.5), the top-order term of the second term in the right hand side (with the minus sign) of
(3.4) is expressed by

−
ˆ

Γ

∇x
Γ{G(κs,x− y)

(
n(x) ·ϕ(y)

)
}ds(y) = −∇Γ

ˆ
Γ

G(κs,x− y)
(
n(x) ·ϕ(y)

)
ds(y).

By composition, the principal part of the above expression is − i
2
∇Γ

(
∆Γ + κ2

sI
)− 1

2 n · In. The
top-order term of the third term in the right hand side (with the minus sign) of (3.4) is (see (2.3))

−n(x)

ˆ
Γ

(Itϕ)(y) ·∇y
ΓG(κp,x− y)ds(y) = n(x)

ˆ
Γ

G(κp,x− y) divΓ Itϕ(y)ds(y).

By composition, its principal part is
i

2
n
(
∆Γ + κ2

pI
)− 1

2 divΓ It. The principal part P0(D′) of D′ is
given by adding these three terms. �

Lemma 3.5. The principal part of the boundary integral operator N is given by the following
formula

P1(N) = 2µP0(D′)M + iµM
(
n
(
∆Γ + κ2

sI
)− 1

2 divΓ It −∇Γ

(
∆Γ + κ2

pI
)− 1

2 n · In
)

+
i

2

[
(λ+ 2µ)κ2

p n
(
∆Γ + κ2

pI
)− 1

2n · In + µ
(
∆Γ + κ2

sI
)− 1

2

(
κ2
sIt − curlΓ curlΓ

)]
.

Proof. We use the following integral representation of the operator N

(Nψ)(x) = 2µD′Mψ(x)−
ˆ

Γ

T x[n(y)× curly{G(κs,x− y)I3}]Tψ(y)ds(y)

−
ˆ

Γ

T x∇xG(κp,x− y)
(
n(y) ·ψ(y)

)
ds(y),

(3.5)

which is obtained by applying T x to the kernels of the right hand side in (3.3).
The principal part of 2µD′M is 2µP0(D′)M. To recover the principal parts of the other terms

in the operator N , we consider the following form for the operator T x [32].

T x = 2µMx + (λ+ 2µ)n(x) divx−µn(x)× curlx .

We have to apply T x to these two terms

(3.6) t1 = −
ˆ

Γ

[n(y)× curly{G(κs,x− y)I3}]Tψ(y)ds(y),

(3.7) t2 = −
ˆ

Γ

∇xG(κp,x− y)
(
n(y) ·ψ(y)

)
ds(y).
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• First, from Lemma 3.4, applying 2µMx to (3.6) and (3.7), we obtain the following prin-
cipal part

2µ
i

2
M
(
n
(
∆Γ + κ2

sI
)− 1

2 divΓ It −∇Γ

(
∆Γ + κ2

pI
)− 1

2 n · In
)
.

• Secondly, we observe that

(3.8)

[n(y)× curly{G(κs,x− y)I3}]Tψ(y)

= [curly{G(κs,x− y)I3}]T(ψ(y)× n(y))

= −[curly{G(κs,x− y)I3}] (ψ(y)× n(y))

= [curlx{G(κs,x− y)I3}](ψ(y)× n(y))

= curlx {G(κs,x− y)(ψ(y)× n(y))} .

The composition of the operator (λ+ 2µ)n(x) divx with this term vanishes since one has
div curl = 0. Now we apply the operator (λ+ 2µ)n(x) divx to (3.7). We have

− (λ+ 2µ)n(x) divx ∇xG(κp,x− y)
(
n(y) ·ψ(y)

)
= − (λ+ 2µ)n(x)∆xG(κp,x− y)

(
n(y) ·ψ(y)

)
= (λ+ 2µ)κ2

pn(x)G(κp,x− y)
(
n(y) ·ψ(y)

)
.

The principal part of the corresponding boundary integral operator is then given by
i

2
(λ+ 2µ)κ2

pn
(
∆Γ + κ2

pI
)− 1

2n · In.

• Finally, we apply the operator µn(x)× curlx to (3.8) and we obtain

µn(x)×
(

(−∆x + ∇x divx) {G(κs,x− y)(ψ(y)× n(y))}
)

= µκ2
sn(x)× {G(κs,x− y)(ψ(y)× n(y))} − µ curlxΓ divx {G(κs,x− y)(ψ(y)× n(y))}

= µκ2
sn(x)× {G(κs,x− y)(ψ(y)× n(y))} − µ curlxΓ {−∇

y
ΓG(κs,x− y) · (ψ(y)× n(y))} ,

(3.9)

since curlx curlx = −∆x + ∇x divx. The following integral part formula for a scalar
density ϕ1 and a tangential vector density ϕ2

−
ˆ

Γ

(∇Γφ1) ·ϕ2 ds = +

ˆ
Γ

ϕ1 divΓϕ2 ds,

and the identity divΓ(ϕ2×n) = curlΓϕ2 give the principal part for the boundary integral
operator associated with the kernel (3.9)

µ
i

2

(
∆Γ + κ2

sI
)− 1

2

(
κ2
sIt − curlΓ curlΓ

)
.

The composition of the operator µn(x) × curlx with the term (3.7) also vanishes since
curl∇ = 0.

We conclude by collecting all the results. �

Remark 3.6. The principal part P
1
(N) can be rewritten under the form

P1(N) = 2µP0(D′)M + 2µMP0(D)− (2µ)2MP−1(S)M

+
i

2

[
(λ+ 2µ)κ2

p n
(
∆Γ + κ2

pI
)− 1

2n · In + µ
(
∆Γ + κ2

sI
)− 1

2

(
κ2
sIt − curlΓ curlΓ

)]
.

The approximate DtN is then given by

(3.10) Λ = −(P−1
(S))−1

(I
2
− P

0
(D)

)
or Λ = P

1
(N)

(I
2

+ P
0
(D)

)−1

.

Square root operators of the form (∆Γ + κ2I)1/2 or (∆Γ + κ2I)1/2 and their inverse appear in
Λ. Since Γ is a compact manifold, the scalar Laplace-Beltrami operator ∆Γ admits a countable
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increasing sequence of non-negative real eigenvalues (βj)j∈N associated to the normalized eigen-
functions (Yj)j∈N satisfying the eigenvalue problem −∆ΓYj = βjYj in L2(Γ). For any κ > 0, the
scalar square root (∆Γ + κ2I)

1
2 and its inverse are defined by

(3.11) (∆Γ + κ2I)
1
2 =

∞∑
j=1

(κ2 − βj)
1
2 〈 · , Yj〉L2Yj and (∆Γ + κ2I)−

1
2 =

∞∑
j=1

(κ2 − βj)−
1
2 〈 · , Yj〉L2Yj .

For j ≥ 1 we have βj 6= 0. Since ∆Γ = divΓ ∇Γ = − curlΓ curlΓ, the vectors ∇ΓYj and curlΓ Yj
are eigenvectors of the vector Laplace-Beltrami operator ∆Γ with the eigenvalue βj . For j ≥ 0

we set Y(3)
j = nYj and for j ≥ 1 we set Y(1)

j = β
− 1

2
j ∇ΓYj and Y(2)

j = β
− 1

2
j curlΓ Yj . The

concatenation of the sequences (Y(1)
j )j∈N∗ , (Y(2)

j )j∈N∗ and (Y(3)
j )j∈N forms an orthonormal basis

of L2(Γ). The vector square root (∆Γ + κ2I)
1
2 and its inverse are defined for tangential fields by

(∆Γ + κ2I)
1
2 =

2∑
k=1

∞∑
j=1

(κ2 − βj)
1
2 〈 · ,Y(k)

j 〉L2Y(k)
j and,

(3.12) (∆Γ + κ2I)−
1
2 =

2∑
k=1

∞∑
j=1

(κ2 − βj)−
1
2 〈 · ,Y(k)

j 〉L2Y(k)
j .

The modes j such that βj < κ2
p correspond to the propagative modes while the ones given for

βj > κ2
s are linked to the evanescent modes. For elastic scattering problems, a transition region

corresponding to modes such that βj ≈ κ2
p or βj ≈ κ2

s gives the grazing modes. The artificial
singularity of the square root operator does not yield a satisfactory representation of these modes.
To approximately model this behavior, we use a regularization of Λ by introducing a small local
damping parameter ε > 0 in the transition region. More precisely, we consider the following
approximations of the DtN operator

(3.13) Λε = −(P−1,ε
(S))−1

(I
2
− P

0,ε
(D)

)
or Λε = P

1,ε
(N)

(I
2

+ P
0,ε

(D)
)−1

where P−1,ε(S), P0,ε(D), P1,ε(N) are defined in the same way as P−1(S), P0(D) and P1(N) but we
replace κs and κp by

(3.14)

 κs,ε = κs + iεs, with εs = 0.4κ
1
3
s R

2
3 ,

κp,ε = κp + iεp, with εp = 0.4κ
1
3
pR

2
3 ,

where R is the radius of the smallest sphere containing the scatterer [7]. The generalized BW
integral equation for the Dirichlet boundary condition, called DtN-preconditioned BW integral
equation, is given by

(3.15) (
1

2
I +D − SΛε)ψ = −γ+

0 u
inc, on Γ.

Remark 3.7. We have constructed an On-Surface Radiation Condition (OSRC) defined by

γ+
1 u = Λεγ

+
0 u, on Γ,

for the exterior Dirichlet elasticity problem. This is why this preconditioning approach can be also
called OSRC preconditioning.

We have the following existence and uniqueness result.

Proposition 3.8. The DtN-preconditioned BW integral equation (3.15) is uniquely solvable in
H

1
2 (Γ) for any frequency ω > 0 and damping parameters εs > 0 and εp > 0.
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Proof. We first prove that the boundary integral operator ( 1
2 I+D−SΛε) can be written as A+K,

where A is an invertible operator and K is a compact operator from H
1
2 (Γ) to itself. To this end,

we set ψ = ψ
(3)
0 Y(3)

0 +
+∞∑
j=1

(
ψ

(1)
j Y(1)

j + ψ
(2)
j Y(2)

j + ψ
(3)
j Y(3)

j

)
and compute

Cψ =
(1

2
I + P0(D)− P−1(S)Λε

)
ψ

=
1

2

(
I + P−1(S)

(
P−1,ε(S)

)−1
)
ψ +

(
P0(D)− P−1(S)

(
P−1,ε(S)

)−1
P0,ε(D)

)
ψ.

For j ∈ N∗, we set ψj = (ψ
(1)
j ,ψ

(2)
j ,ψ

(3)
j )

T
and we introduce a family of operators Lj defined by

Ljψj = ψ
(1)
j Y(1)

j + ψ
(2)
j Y(2)

j + ψ
(3)
j Y(3)

j . We can thus write ψ = ψ
(3)
0 Y(3)

0 +
+∞∑
j=1

Ljψj .

From Lemma 3.2 and the spectral expansions (3.11) and (3.12) of the square root operators,
we obtain the following spectral decomposition for the operators P−1(S) :

P−1
(S)ψ = s

(3,3)
0 ψ

(3)
0 Y(3)

0 +

+∞∑
j=1

i

2ρω2
Lj

s
(1,1)
j 0 0

0 s
(2,2)
j 0

0 0 s
(3,3)
j


ψ

(1)
j

ψ
(2)
j

ψ
(3)
j

 ,

with s(3,3)
0 = iκp

[
2ρω2

]−1 and for j ≥ 1, s(1,1)
j = (κ2

s−βj)
1
2 +βj(κ

2
p−βj)−

1
2 , s(2,2)

j = κ2
s(κ

2
s−βj)−

1
2

and s(3,3)
j = (κ2

p − βj)
1
2 + βj(κ

2
s − βj)−

1
2 . From lemma 3.4, we deduce

P
0
(D)ψ = 2µP−1

(S)Mψ −
+∞∑
j=1

1

2
Lj

 0 0 d̃
(1,3)
j

0 0 0

d̃
(3,1)
j 0 0


ψ

(1)
j

ψ
(2)
j

ψ
(3)
j

 ,

with d̃
(1,3)
j = (−βj)

1
2 (κ2

p − βj)−
1
2 and d̃

(3,1)
j = (−βj)

1
2 (κ2

s − βj)−
1
2 . The spectral decomposition

of P−1,ε
(S) and P

0,ε
(D) are given by the same formulas as here above with κs and κp replaced by

κs,ε and κp,ε. We denote by sj,ε and d̃j,ε their spectral coefficients. When j →∞ (i.e βj → +∞),
we have

s
(1,1)
j

(
s

(1,1)
j,ε

)−1
=

κ2
s + κ2

p

κ2
s,ε + κ2

p,ε

+O
(

1

βj

)
,

s
(2,2)
j

(
s

(2,2)
j,ε

)−1
=

κs
κs,ε

+O
(

1

βj

)
,

s
(3,3)
j

(
s

(3,3)
j,ε

)−1
=

κ2
s + κ2

p

κ2
s,ε + κ2

p,ε

+O
(

1

βj

)
.

This implies

P−1(S)(P−1,ε(S))−1ψ =
κp
κp,ε

ψ
(3)
0 Y(3)

0 +

+∞∑
j=1

Lj


κ2
s+κ2

p

κ2
s,ε+κ2

p,ε
0 0

0 κs

κs,ε
0

0 0
κ2
s+κ2

p

κ2
s,ε+κ2

p,ε



ψ

(1)
j

ψ
(2)
j

ψ
(3)
j

+ K̃1ψ,

with K̃1 a compact operator of negative order.
The tangential Günter derivative can be expressed in the spectral function basis as follows

MY(1)
j = −RY(1)

j + β
1
2
j Y

(3)
j , MY(2)

j = −RY(2)
j and MY(3)

j = β
1
2
j Y

(1)
j − 2HY(3)

j .
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From this, we deduce the following asymptotic expansions when j →∞ (i.e βj → +∞)

2iµ

ρω2
s

(1,1)
j β

1
2
j −

1

2
d̃

(1,3)
j =

κ2
p

4κ2
s

+O
(

1

βj

)
,

2iµ

ρω2
s

(3,3)
j β

1
2
j −

1

2
d̃

(3,1)
j =

κ2
p

4κ2
s

+O
(

1

βj

)
.

And we have

P
0
(D)ψ =

+∞∑
j=1

Lj

 0 0
κ2
p

4κ2
s

0 0 0
κ2
p

4κ2
s

0 0



ψ

(1)
j

ψ
(2)
j

ψ
(3)
j

+ K̃2ψ,

with K̃2 a compact operator of negative order.
Finally, the integral operator ( 1

2 I + D − SΛε) is a compact perturbation of the operator A
defined by

Aψ = (
1

2
+

1

2

κp
κp,ε

)ψ
(3)
0 Y(3)

0 +
1

2

+∞∑
j=1

Lj


1 +

κ2
s+κ2

p

κ2
s,ε+κ2

p,ε
0

κ2
p

2κ2
s
− κ2

s+κ2
p

κ2
s,ε+κ2

p,ε

κ2
p,ε

2κ2
s,ε

0 1+ κs

κs,ε
0

κ2
p

2κ2
s
− κ2

s+κ2
p

κ2
s,ε+κ2

p,ε

κ2
p,ε

2κ2
s,ε

0 1 +
κ2
s+κ2

p

κ2
s,ε+κ2

p,ε



ψ

(1)
j

ψ
(2)
j

ψ
(3)
j


which is invertible since the coefficients of the 3-by-3 matrices are diagonally dominant. It follows
that the operator is a Fredholm operator of index zero and the Riez theory yields its invertibility
if the operator is injective. Therefore, it is sufficient to prove that the homogeneous equation
associated to (3.15) admits ψ = 0 as unique solution to get the existence and uniqueness of the
solution to the generalized BW integral equation. Let ψ ∈ H

1
2 (Γ) be a solution to ( 1

2 I + D −
SΛε)ψ = 0. Then, the function u defined by

u+(x) = Dψ(x)− SΛεψ(x), x ∈ Ω+,

solves the homogeneous exterior Dirichlet problem and u+ = 0 in Ω+. Now we set

u−(x) = Dψ(x)− SΛεψ(x), x ∈ Ω−.

Then we have −γ−0 u− = ψ and −γ−1 u− = Λεψ. The first Green formula (2.2) with u = u− and
v = u− in the interior domain Ω− gives

(3.16)
ˆ

Ω

(
λ|divu−|2 + 2µ |ε(u−)|2

)
dx− ρω2

ˆ
Ω

|u−|2 dx =

ˆ
Γ

ψ ·Λεψ ds.

If we take the imaginary part of this equation, we obtain the equality

Im

(ˆ
Γ

ψ ·Λεψ ds

)
= 0.

We have the following spectral decomposition for the operator Λε

Λεψ = 2µMψ + i
ρω2

κp,ε
ψ

(3)
0 Y(3)

0(3.17)

+ iρω2
+∞∑
j=1

Lj


(
s

(1,1)
j,ε

)−1
0 −

(
s

(1,1)
j,ε

)−1
d̃

(1,3)
j,ε

0
(
s

(2,2)
j,ε

)−1
0

−
(
s

(3,3)
j,ε

)−1
d̃

(3,1)
j,ε 0

(
s

(3,3)
j,ε

)−1



ψ

(1)
j

ψ
(2)
j

ψ
(3)
j

 .(3.18)

• Let ψ ∈H
1
2 (Γ). Then we haveˆ

Γ

ψ ·Mψ ds =

ˆ
Γ

Mψ ·ψds =

ˆ
Γ

Mψ ·ψ ds.

It follows that the integral
ˆ

Γ

ψ · (2µMψ) ds is a real number.
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• For any a ∈ C, we have Im(ia) = Re(a). It follows that

Im

(ˆ
Γ

ψ
(3)
0 Y(3)

0 · (i
ρω2

κp,ε
ψ

(3)
0 Y(3)

0 )ds

)
= ρω2 Re

(
1

κp,ε

)
|ψ(3)

0 |2,

and Re

(
1

κp,ε

)
= Re

(
κp − iεp
|κp,ε|2

)
> 0.

• It remains to analyze the imaginary part of

ˆ
Γ

 ∞∑
j=1

Ljψj

 ·
iρω2

+∞∑
j=1

Lj


(
s

(1,1)
j,ε

)−1
0 −

(
s

(1,1)
j,ε

)−1
d̃

(1,3)
j,ε

0
(
s

(2,2)
j,ε

)−1
0

−
(
s

(3,3)
j,ε

)−1
d̃

(3,1)
j,ε 0

(
s

(3,3)
j,ε

)−1



ψ

(1)
j

ψ
(2)
j

ψ
(3)
j


 ds,

that is the real part of

+∞∑
j=1

(
ψ

(1)
j ψ

(2)
j ψ

(3)
j

)
(
s

(1,1)
j,ε

)−1
0 −

(
s

(1,1)
j,ε

)−1
d̃

(1,3)
j,ε

0
(
s

(2,2)
j,ε

)−1
0

−
(
s

(3,3)
j,ε

)−1
d̃

(3,1)
j,ε 0

(
s

(3,3)
j,ε

)−1


ψ

(1)
j

ψ
(2)
j

ψ
(3)
j

 ,

which we rewrite
+∞∑
j=1

(
s

(2,2)
j,ε

)−1|ψ(2)
j |

2 +

+∞∑
j=1

(
ψ

(1)
j ψ

(3)
j

)( (
s

(1,1)
j,ε

)−1 −
(
s

(1,1)
j,ε

)−1
d̃

(1,3)
j,ε

−
(
s

(3,3)
j,ε

)−1
d̃

(3,1)
j,ε

(
s

(3,3)
j,ε

)−1

)(
ψ

(1)
j

ψ
(3)
j

)
.

We have to prove that Re
((
s

(2,2)
j,ε

)−1
)
> 0 and then to prove that the real part of the 2-by-2

matrices written here above are positive definite matrices, for all j ≥ 1.
We have

(
s

(2,2)
j,ε )−1 = κ−1

s,ε

(
1 − βj

κ2
s,ε

) 1
2 . Let us set

(
1 − βj

κ2
s,ε

) 1
2 = as + ibs with as, bs ∈ R and

as ≥ 0. Then we have 2asbs = Im
(
1− βj

κ2
s,ε

)
= − Im

( βj

κ2
s,ε

)
= βj

2κsεs
|κs,ε|4 > 0. It follows that as > 0

and bs > 0 and

Re
((
s

(2,2)
j,ε )−1

)
=

κsas
|κs,ε|2

+
εsbs
|κs,ε|2

> 0.

We have
(
s

(1,1)
j,ε

)−1
d̃

(1,3)
j,ε =

(
s

(3,3)
j,ε

)−1
d̃

(3,1)
j,ε =

(−βj)
1
2

βj+(κ2
s,ε−βj)

1
2 (κ2

p,ε−βj)
1
2
, therefore the real part

of the 2-by-2 matrices are symmetric and diagonalizable. These are positive definite matrices
if and only if their eigenvalues are positive real constants. This is realized if the trace and the
determinant of 2-by-2 matrices are positive real constants. We have

Re
((
s

(1,1)
j,ε )−1

)
=

Re
(
s

(1,1)
j,ε )∣∣s(1,1)

j,ε

∣∣2 =
1∣∣s(1,1)

j,ε

∣∣2(Re
((
κ2
s,ε − βj

) 1
2

)
+ βj

Re
((
κ2
p,ε − βj

) 1
2

)
∣∣(κ2

p,ε − βj
) 1

2
∣∣2

)
≥ 0.

Assume Re
((
κ2
s,ε − βj

) 1
2

)
= 0, it follows that Im(κ2

s,ε − βj) = 2κsεs = 0 which leads to a

contradiction with the hypothesis that εs > 0. We deduce that Re
((
κ2
s,ε − βj

) 1
2 )
)
> 0 and

Re
((
κ2
p,ε − βj

) 1
2

)
> 0. We have proved that Re

((
s

(1,1)
j,ε )−1

)
> 0 and with the same arguments

we also have Re
((
s

(3,3)
j,ε )−1

)
> 0. We deduce that the trace of the 2-by-2 matrices are positive real

constants. From long and similar calculus, we obtain the positivity of the determinant. Collecting
all the results we conclude that

Im

(ˆ
Γ

ψ ·Λεψ ds

)
= 0.

implies ψ = 0 and we have proved the injectivity of the BIE operator. �
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The proof of the previous Proposition 3.8 highlights the good spectral behavior of the DtN-
preconditioned BW-type integral operator 1

2 I + D − SΛε. From a numerical point of view, the
application of the regularizing operator Λε needs the discretization of the operator P

0,ε
(D) and of

either P−1,ε
(S) or P

1,ε
(N). The expressions of these operators (see Lemmas 3.2, 3.4 and 3.5) show

that the associated matrices after discretization do not enjoy interesting properties. The aim is
to construct a preconditioner which is easier to implement. When we look at the definition of the
operator P0(D), we would like to delete the term 2µP−1(S)M. In the same way, we would like
to delete the term R = 2µ(P

0
(D′)M + MP

0
(D)) − 4µ2MP−1

(S)M in the definition of P
1
(N)

(cf. Remark 3.6) so that this operator is finally diagonal. The operator P0(D) − 2µP−1(S)M is
nothing else than the principal part of the integral operator D2µ, and P1(N) − R the principal
part of N2µ. These observations have motivated the following section.

3.2. Modified DtN approach (α = 2µ). We propose to rewrite the Somigliana representation
formula as follows:

u(x) = Dγ+
0 u(x)− Sγ+

1 u(x)
= Dγ+

0 u(x)− 2µSMγ+
0 u(x)− Sγ+

1 u(x) + 2µSMγ+
0 u(x)

= (D − 2µSM)γ+
0 u(x)− S(Λex − 2µM)γ+

0 u(x), x ∈ Ω+.

Here we consider the Modified Dirichlet-to-Neumann (MDtN) map

Λex
2µ : γ+

0 u ∈H
1
2 (Γ) 7→ Λex

2µγ
+
0 u := γ+

1,2µu = (Λex − 2µM)u = (T − 2µM)u ∈H−
1
2 (Γ) ,

and we have
u(x) = D2µγ

+
0 u(x)− SΛex

2µγ
+
0 u(x), x ∈ Ω+.

As previously, an approximation Λ2µ of Λex
2µ is introduced to construct the regularized integral

equation

(3.19) (
1

2
I +D2µ − SΛ2µ)ψ = −γ+

0 u
inc, on Γ,

where ψ is a fictive density. Then the scattered field u expressed by

(3.20) u(x) = D2µψ(x)− SΛ2µψ(x), x ∈ Ω+,

solves the Dirichlet elastic boundary value problem if the fictive density ψ ∈H
1
2 (Γ) is solution to

the integral equation (3.19).

Lemma 3.9. Assume that ω is not an eigenfrequency of the Navier equation (1.1a) then we have

Λex
2µ = −S−1(

1

2
I−D2µ) = N2µ(

1

2
I +D2µ)−1.

Proof. We have Λex
2µ = Λex − 2µM. We use Lemma 3.1 to obtain

Λex
2µ = −S−1

(1

2
I−D

)
− 2µS−1SM

= −S−1
(1

2
I− (D − 2µSM)

)
= −S−1

(1

2
I−D2µ

)
.

(3.21)

For the second equality we use Theorem 2.7 (v) and it remains to prove that N2µ is invertible
which ensures that (D2

2µ − 1
4 I) is invertible too. From the proof of Lemma 3.5, we obtain that

N2µψ(x) = (λ+ 2µ)κ2
p

ˆ
Γ

n(x)G(κp,x− y)
(
n(y) ·ψ(y)

)
ds(y)

+ µκ2
s

ˆ
Γ

n(x)× curlx curlx {G(κs,x− y)(ψ(y)× n(y))} ds(y), x ∈ Γ.

(3.22)

The frequency ω is not an eigenfrequency for the Navier equation means that the wavenumber
κp is not an eigenfrequency for the Helmholtz equation and that the wavenumber κs is not an
eigenfrequency for the Maxwell’s equation. In this case, one knows that the corresponding single
layer boundary integral operators are invertible. The operator N2µ being an orthogonal linear
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combination of the acoustic and electromagnetic single layer boundary integral operators, we
deduce that it is invertible too. �

According to these results, we propose the following representation of the operator Λ2µ

(3.23) Λ2µ = P
1
(N2µ)

(1

2
I + P

0
(D2µ)

)−1

,

where P
0
(D2µ) and P

1
(N2µ) are the principal parts of the integral operators D2µ and N2µ respec-

tively. These operators are expressed by

P
0
(D2µ) =

i

2

(
−∇Γ

(
∆Γ + κ2

pI
)− 1

2 n · In + n
(
∆Γ + κ2

sI
)− 1

2 divΓ It

)
,

P
1
(N2µ) =

i

2

[
(λ+ 2µ)κ2

p n
(
∆Γ + κ2

pI
)− 1

2n · In + µ
(
∆Γ + κ2

sI
)− 1

2

(
κ2
sIt − curlΓ curlΓ

)]
=

iρω2

2

[
n
(
∆Γ + κ2

pI
)− 1

2n · In +
(
∆Γ + κ2

sI
)− 1

2

(
It −

1

κ2
s

curlΓ curlΓ

)]
.

For the same reasons as mentioned previously we will consider instead the following MDtN-
preconditioner

(3.24) Λ2µ,ε = P
1,ε

(N2µ)
(I

2
+ P

0,ε
(D2µ)

)−1

where P
1,ε

(N2µ) and P
0,ε

(D2µ) are deduced from P
1
(N2µ) and P

0
(D2µ) respectively by substituting

κs and κp for κs,ε and κp,ε (see (3.14)). We will see in Section 4.1 that this operator is more suited
to a numerical implementation than Λε. We can use previous investigations in the implementa-
tion of acoustic and electromagnetic OSRC-like preconditioners [7]. The new boundary integral
equation for the Dirichlet boundary condition is given by

(3.25) (
1

2
I +D2µ − SΛ2µ,ε)ψ = −γ+

0 u
inc, on Γ,

and is called MDtN-preconditioned BW integral equation. Following the steps of the proof of
Proposition 3.8, we can prove the existence and uniqueness of the solution of (3.25).

Proposition 3.10. The MDtN-preconditioned BW integral equation (3.25) is uniquely solvable
in H

1
2 (Γ) for any frequency ω > 0 and damping parameters εs > 0 and εp > 0.

4. Spectral study for the spherical case

This section is devoted to a numerical investigation of the eigenvalues of the standard and
the DtN- and MDtN-preconditioned BW integral operators for the spherical case. The use of
complex Padé rational approximants to localize the DtN and MDtN-preconditioners is discussed.
Furthermore, we analyze the convergence properties of the GMRES algorithm for solving the
different BW-type integral equations.

4.1. Asymptotic analysis. Let Γ the sphere of radius R. Spectral decomposition in terms of
the vector spherical harmonics of the elementary boundary integral operators S, D and N , and
of their principal parts can be obtained. Let us denote by B

(j,l)
m , (j, l) ∈ {1, 2, 3} × {1, 2, 3},

the spectral coefficients of the decomposition of an integral operator B (B = S,D or N). Each
coefficient is of multiplicity 2m + 1. In this section, we study their asymptotic behavior. To this
end, we distinguish three zones of modes: the hyperbolic zone for |κpR| → +∞ and m � κpR
(propagative modes), the elliptic zone when m→ +∞ and m� κsR (evanescent modes), and the
transition zone of physical surface modes between m ≈ κpR and m ≈ κsR. First, let us consider
the hyperbolic zone. We have the following results.

Lemma 4.1. In the hyperbolic zone, that is |ωR| → +∞, we have the following asymptotic
behavior :
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• for the operator S :

S
(1,1)
m =

i

µκs

(
sin2(κsR− (m+ 1)π2 )− i

2 sin
(
2(κsR− (m+ 1)π2 )

))
+O

(
1

|ωR|

)
, m ≥ 1,

S
(2,2)
m =

i

µκs

(
cos2(κsR− (m+ 1)π2 ) + i

2 sin
(
2(κsR− (m+ 1)π2 )

))
+O

(
1

|ωR|

)
, m ≥ 1,

S
(3,3)
m =

i

(λ+ 2µ)κp

(
sin2(κpR− (m+ 1)π2 )− i

2 sin
(
2(κpR− (m+ 1)π2 )

))
+O

(
1

|ωR|

)
, m ≥ 0,

S
(1,3)
m = O

(
1

|ωR|

)
, m ≥ 1,

• for the operator D :

D
(1,1)
m =

1

2
− sin2(κsR− (m+ 1)π2 ) + i

2 sin
(
2(κsR− (m+ 1)π2 )

)
+O

(
1

|ωR|

)
, m ≥ 1,

D
(2,2)
m =

1

2
− cos2(κsR− (m+ 1)π2 )− i

2 sin
(
2(κsR− (m+ 1)π2 )

)
+O

(
1

|ωR|

)
, m ≥ 1,

D
(3,3)
m =

1

2
− sin2(κpR− (m+ 1)π2 ) + i

2 sin
(
2(κpR− (m+ 1)π2 )

)
+O

(
1

|ωR|

)
, m ≥ 1,

D
(1,3)
m = O

(
1

|ωR|

)
, D

(3,1)
m (ωR) = O

(
1

|ωR|

)
, m ≥ 1,

• and for the operator N :

N
(1,1)
m =

µκs
i

(
− cos2(κsR− (m+ 1)π2 )− i

2 sin
(
2(κsR− (m+ 1)π2 )

))
+O

(
1

|ωR|

)
, m ≥ 1,

N
(2,2)
m =

µκs
i

(
− sin2(κsR− (m+ 1)π2 ) + i

2 sin
(
2(κsR− (m+ 1)π2 )

))
+O

(
1

|ωR|

)
, m ≥ 1,

N
(3,3)
m = i(λ+ 2µ)κp

(
cos2(κpR− (m+ 1)π2 )+ i

2 sin
(
2(κpR− (m+ 1)π2 )

))
+O

(
1

|ωR|

)
, m ≥ 0,

N
(1,3)
m = O

(
1

|ωR|

)
, N

(3,1)
m (ωR) = O

(
1

|ωR|

)
, m ≥ 1.

Proof. We use asymptotic expansions for the spherical Bessel and Hankel functions expressed in
[1]. �

And in the elliptic zone, we have

Lemma 4.2. In the elliptic zone, that is m→ +∞, we have the following asymptotic behavior :
• for the operator S :

S
(1,1)
m =

1

µ

R

2(2m+ 1)
+

1

(λ+ 2µ)

R

2(2m+ 1)
+O

(
1

m3

)
,

S
(2,2)
m =

1

µ

R

2m+ 1
+O

(
1

m3

)
,

S
(3,3)
m =

1

µ

R

2(2m+ 1)
+

1

(λ+ 2µ)

R

2(2m+ 1)
+O

(
1

m3

)
,

S
(1,3)
m = O

(
1

m2

)
,

• for the operator D :

D
(1,1)
m = − µ

λ+ 2µ

1

2(2m+ 1)
+O

(
1

m3

)
,

D
(2,2)
m = − 3

2(2m+ 1)
+O

(
1

m3

)
,

D
(3,3)
m = − 3µ

λ+ 2µ

1

2(2m+ 1)
+O

(
1

m3

)
,

D
(1,3)
m =

µ

2(λ+ 2µ)
+O

(
1

m2

)
,
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• and for the operator N :

N
(1,1)
m =

−2µ(λ+ µ)

λ+ 2µ

m+ 1
2

2R
+O

(
1

m

)
,

N
(2,2)
m = −µ

m+ 1
2

2R
+O

(
1

m

)
,

N
(3,3)
m =

−2µ(λ+ µ)

λ+ 2µ

m+ 1
2

2R
+O

(
1

m

)
,

N
(1,3)
m = N

(3,1)
m =

µ(3λ+ µ)

2R(λ+ 2µ)
+O

(
1

m2

)
.

Proof. We use asymptotic expansions given in [1]. �

Let us validate both these asymptotic estimates and the principal parts of the elementary
boundary integral operators proposed in section 3.1. We keep only the modes m such that |m| ≤
mmax with mmax = [4κs] (cf. section 4.2). The value [x] denotes the integer part of a real number
x. We set the physical parameters κs = 16π, ρ = µ = 1, and λ = 2. This corresponds to the
Poisson’s ratio ν = 1/3, and to the relation κs = 2κp. We can see in Fig. 1 that the estimates
obtained in the elliptic zone (cf. Lemma 4.2) well predict the behavior of the compact operator S.
The principal part of the operator S is given by the diagonal coefficients. Note that the operator
S and the proposed operator P−1,ε(S) exhibit the same asymptotic behavior in the elliptic zone.
Furthermore, their spectral coefficients have the same magnitude order in the hyperbolic and
transition parts. We conclude that the operator P−1,ε

(S) represents a good approximation to the
boundary integral operator S.
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Figure 1. Asymptotic behavior: comparison between the integral operator S
and the principal part P−1,ε

(S), for κs = 16π and mmax = [4κs].

We report in Fig. 2 numerical comparisons for the integral operator D. Same conclusions hold.
The obtained estimates in the elliptic zone are validated and the operator P0,ε(D) contains the
necessary spectral informations of the operator D. Here, the principal part of the operator D
is contained in the extra-diagonal coefficients. Finally, we consider the integral operator N in
Fig. 3. The operator N is a first-order pseudodifferential operator. The linear dependance of the
diagonal coefficients on m in the elliptic zone shows this property. The operator P

1,ε
(N) have an

identical behavior. However, in view of a numerical implementation, we would like to delete the
diagonal components of P0,ε(D), and the extra-diagonal ones of P1,ε(N) in the elliptic part. This
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is realized by considering P0,ε(D2µ) and P1,ε(N2µ) (cf. Fig. 4 and 5). Furthermore, note that
diagonal coefficients of P

0,ε
(D) associated with propagative and creeping modes are regularized.

Spectral extra-diagonal coefficients of P
1,ε

(N2µ) are equal to zero for any mode.
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Figure 2. Asymptotic behavior: comparison between the integral operator D
and the principal part P

0,ε
(D), for κs = 16π and mmax = [4κs].

4.2. Spectral comparison of standard and preconditioned BW integral formulations.
We consider the unit sphere as the scatterer. For the following numerical tests, the constitutive
properties of the elastic obstacle are given by ρ = 1, ν = 1/3, µ = 1 and λ = 2. The wavenumbers
satisfy κs = 2κp. This subsection is devoted to analyze the effect of the preconditioning on the
eigenvalue clustering of the BW integral operators. In a finite dimensional approximation, we
keep only the modes m such that m ≤ mmax. The number of modes mmax to retain must be
large enough to capture the hyperbolic and transition parts of the spectrum (mmax ≥ κp) but also
the elliptic part (mmax ≥ κs), while avoiding the divergence of the spherical Bessel and Hankel
functions. For our simulations, we will always set κs+7.5log10(κs+π) ≤ mmax ≤ [4κs]. The lower
bound is proposed in the context of multipole methods [14]. This truncation parameter mmax

represents the mesh refinement.
First, we numerically exhibit an optimal parameter ηopt which minimizes the condition number

of the usual BW integral operator (2.15). A good choice is around the value ηopt = (κs + κp)/2.
We illustrate this observation in Fig. 6. We will consider this value in the sequel, and (2.15) with
this choice is the reference integral equation.

Now, we study the eigenvalue behavior of the standard (2.15) and preconditioned BW integral
equations (3.15) and (3.25). We also consider the integral equation (3.2) with a DtN approxi-
mation proposed by Gächter and Grote in [23], called GGDtN approach. This approximation is
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Figure 3. Asymptotic behavior: comparison between the integral operator N
and the principal part P

1,ε
(N), for κs = 16π and mmax = [4κs].
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Figure 4. Asymptotic behavior: comparison between the integral operator D2µ

and the principal part P
0,ε

(D2µ), for κs = 16π and mmax = [4κs].
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Figure 5. Asymptotic behavior: comparison between the integral operator N2µ

and the principal part P
1,ε

(N2µ), for κs = 16π and mmax = [4κs].
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Figure 6. Optimal coupling parameter ηopt for the classical BW integral oper-
ator versus κs, taking κs = 2κp and mmax = [4κs].

constructed in the framework of non-reflecting boundary conditions for the spherical case. In Fig.
7, we compare the analytic eigenvalues of the different BW integral operators for κs = 32π and
mmax = [3κs]. We zoom in on the eigenvalues of the DtN- and MDtN-preconditioned BW integral
operators in Fig. 8. As we can see, according to the theoretical results, these two operators are
the same.
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Figure 8. Distribution of the eigenvalues of the DtN- and MDtN-preconditioned
BW integral operators for κs = 32π and mmax = [3κs].

The GGDtN approach does not allow a better eigenvalue distribution than the reference BW
one. The approximation proposed in [23] considers efficiently the hyperbolic part of the exact DtN
operator but this information is not sufficient to regularize the usual BW integral equation. All
the modes have to be taken account in the approximation. This is done by considering (3.13) and
(3.24). The eigenvalues of the associated DtN- and MDtN-preconditioned BW operators (3.15)
and (3.25) show a very interesting clustering around a point near (1, 0). We can conclude to
the efficient regularizing effect of the proposed analytic preconditioning technique. However, the
DtN-preconditioner is more complicated to implement than the MDtN one. From now on, we only
consider the MDtN approach.

The MDtN-preconditioner Λ2µ,ε (cf. (3.24)) is defined with the help of non-local pseudodiffer-
ential square root operators, of the form

√
1 + z, and their inverses. We propose to use complex

Padé approximants with a rotating branch-cut technique [8, 34, 35, 7] to a suitable localization
of these operators. We will discuss this in section 6. We compare the analytical eigenvalues of
the MDtN-preconditioned BW integral operator obtained with the exact square root operators,
and the ones obtained considering Padé approximants. Efficiency of Padé approximants depends
on different parameters to choose: their order (2L+ 1) and the θ-rotation of the branch-cut. We
fix θ = π/3 (θ = π/2 resp.) for the localization of the square root operator (of its inverse resp.).
We study how the order impacts on the clustering of the eigenvalues. To this aim, we consider
different Padé orders in Fig. 9.
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Figure 9. Distribution of the eigenvalues of the MDtN-preconditioned BW in-
tegral operator versus Padé order, κs = 32π, mmax = [3κs].
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The clustering of the eigenvalues around the point (1, 0) is better with higher Padé orders. We
can see a spiral curve which is absorbed by the accumulation point when the Padé order increases.
Complex Padé rational approximants for L ≥ 10 provide an adequate tool to localize the MDtN-
preconditioner Λ2µ,ε. This is confirmed when we observe the condition number (cf. Fig. 10). The
condition number of the MDtN-preconditioned integral equation - with Padé approximants or not-
remains between 1.4 and 1.8 independently of the wavenumber κs (and hence κp too). This is
not the case for the usual BW one. The dependance on the wavenumbers comes from the largest
magnitude eigenvalues linked to a grazing mode. Note that the condition number of the standard
BW IE is independent on the truncation parametermmax, as predicted by the asymptotic behavior
of the eigenvalues in the elliptic part. The MDtN-preconditioned EI preserves this good property.
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Figure 10. Unit sphere: Condition number

4.3. Convergence of the iterative solver GMRES. We study the scattering by the unit
sphere of an incident plane elastic wave of polarization p and propagating in the direction d. Here,
we consider shear plane waves. In this case, the polarization of the plane waves is orthogonal to
the direction of propagation. We fix p = (1, 0, 0)T and d = (0, 0, 1)T . For all the tests, we set
ρ = 1, ν = 1/3, µ = 1 and λ = 2.

We use the iterative method GMRES with no restart for solving the linear systems of the
standard and MDtN-preconditioned BW integral equations with or without the use of Padé ap-
proximants. The solution of the linear systems is expanded on the basis of normal and tangential
vector spherical harmonics (see [32] for the coefficients of the incident wave). The size of the
considered matrices is N = (3(2mmax + 1)2 − 2). The GMRES iterations are stopped when the
initial residual has decreased by a factor of 10−5. Concerning the complex Padé approximants,
we fix L = 12 and θ = π/2. We examine the influence of an increase of the frequency and of
the truncation parameter mmax on the GMRES convergence. In Fig. 11-left, the value of the
wavenumber κs varies from π to 8π. The number of GMRES iterations increases with κs for the
classical BW integral equation. The MDtN preconditioning leads to an independence of the GM-
RES convergence on κs, even for high values of κs. Only 7 iterations are required independently of
κs. The size of the linear systems varies from 2698 to 17785 in the tests reported in Fig. 11-right.
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The number of GMRES iterations to solve the standard and MDtN-preconditioned BW integral
equation is independent of the truncation parameter mmax, and is efficiently decreasing using the
MDtN preconditioning. The iterative solution needs only 7 iterations against 69 for the classical
one. These results well fit with the previous spectral observations and validate the robustness of
our approach.
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Figure 11. Unit sphere: Convergence of GMRES solver

5. Preconditioned combined field integral equations

In this section, we derive in the same way preconditioned CFIEs. Recall that the standard
CFIE is expressed by

(
I

2
+D′α + iηS)ϕ = −

(
γ+

1,αu
inc + iηγ+

0 u
inc
)
, on Γ,

with ϕ = −γ+
1

(
u+uinc) and η a non-zero real constant. The idea is to precondition the operator

S with an approximation of the DtN or of the MDtN operator before combining it with the integral

operator
I

2
+D′α. We propose two preconditioned CFIEs:

• A DtN-preconditioned CFIE (α = 0) Find ϕ = −γ+
1

(
u+ uinc) solution to

(
I

2
+D′ −Λ′εS)ϕ = −

(
γ+

1 u
inc −Λ′εγ

+
0 u

inc
)
, on Γ.

• A MDtN-preconditioned CFIE (α = 2µ): Find ϕ = −γ+
1

(
u+ uinc) solution to

(
I

2
+D′2µ −Λ′2µ,εS)ϕ = −

(
γ+

1,2µu
inc −Λ′2µ,εγ

+
0 u

inc
)
, on Γ.

We can remark that these integral operators are nothing else than the adjoint operators of
the DtN- and MDtN-preconditioned BW integral operators (3.15) and (3.25) respectively. Con-
sequently, the two proposed CFIEs are uniquely solvable for any frequency ω > 0 and damping
parameters εs > 0 and εp > 0. Furthermore, they show the same spectral properties than the pro-
posed indirect preconditioned integral equations, namely an excellent eigenvalue clustering around
the point (1, 0) even for high frequencies, and a condition number independent of both frequency
and mesh parameter. These novel CFIEs are therefore well-suited to an iterative Krylov solution,
and here the unknown is the physical field.

6. Sketch of the numerical implementation

In this last section, we suggest ideas to implement the MDtN-preconditioned BW integral
equation (3.25). We give elements of discretization to validate the ease of implementation of the
proposed OSRC preconditioning approach. Let us denote by [A] the matrix associated with the
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discretization by finite elements of a given integral operator A. To solve the MDtN-preconditioned
BW integral equation with a GMRES iterative method, one needs to compute at each iteration

v =
(1

2
[I] + [D2µ]− [S][Λ2µ,ε]

)
u,

with v,u ∈ CN , N the size of the approximation space. The matrix [I] represents the mass matrix
on the surface mesh.

• First, we apply the MDtN-preconditioner w = [Λ2µ,ε]u.

• Secondly, we compute the dense matrix-vector products v =
(1

2
[I] + [D2µ]

)
u − [S]w

coming from the discretization of the integral operators D2µ and S. The integrals involve
singular kernels. These singularities have to be carefully treated. Moreover, the use of
FMM [13, 14] is prescribed to efficiently evaluate these products.

We focus on the application of the MDtN-preconditioner: computation of w = [Λ2µ,ε]u. Recall

that Λ2µ,ε = P1,ε(N2µ)
(I

2
+ P0,ε(D2µ)

)−1

. First, we have to solve

(6.1)
( [I]

2
+ [P0,ε(D2µ)]

)
q = u,

and secondly to realize

(6.2) w = [P
1,ε

(N2µ)]q.

We explain the different steps to implement (6.1)-(6.2). Suppose that we know u ∈ RT (RT is
well-known lower-order Raviart-Thomas space [38]).

• Step 1: We determine the Helmholtz decomposition of u such that

u ≈ curlΓ ϕu + ∇Γψu + nφu.

• Step 2: We propose to solve (6.1) with an iterative solver. At each iteration, we have

to compute y =
( [I]

2
+ [P

0,ε
(D2µ)]

)
x. After determining the three scalar potentials

(ϕx, ψx, φx) of x, we obtain easily the potentials of y given by
ϕy =

1

2
ϕx,

ψy =
1

2

(
ψx −

1

κp,ε

(
[I] +

[∆Γ]

κ2
p,ε

)−1/2

φx

)
,

φy =
1

2

(
φx +

i

κs,ε

(
[I] +

[∆Γ]

κ2
s,ε

)−1/2

[∆Γ]ψx

)
,

and we have
y ≈ curlΓ ϕy + ∇Γψy + nφy.

The matrix −[∆Γ] is the rigidity matrix on the surface mesh.
• Step 3: We have obtained q in the previous step. We determine three scalar potentials

(ϕq, ψq, φq) of q such that

q ≈ curlΓ ϕq + ∇Γψq + nφq.

• Step 4: We solve (6.2) through

ϕw =
i

2µκs,ε

(
[I] +

[∆Γ]

κ2
s,ε

)−1/2

ϕq,

ψw =
iρω2

2κs,ε

(
[I] +

[∆Γ]

κ2
s,ε

)−1/2

ψq,

φw =
iρω2

2κp,ε

(
[I] +

[∆Γ]

κ2
p,ε

)−1/2

φq.

Finally, we derive
w ≈ curlΓ ϕw + ∇Γψw + nφw.
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To efficiently localize the different inverse square root operators (1 + z)−1/2, we use complex
Padé approximants of order (2L+ 1) applying a rotating of the usual branch-cut {z ∈ R, z < −1}
with an angle θ. We have(

[I] +
[∆Γ]

κ2

)−1/2

≈ r0[I] +

L∑
j=1

rj

( [∆Γ]

κ2
− qj [I]

)−1

,

where rj , j = 0, . . . , L, and qj , j = 1, . . . , L, are complex coefficients depending on the angle θ [8,
34, 35, 7]. To conclude, the implementation of the MDtN-preconditioner requires only the solution
of sparse linear systems involving mass and rigidity matrices, and the numerical determination of
the Helmholtz decomposition of a vector defined in RT .

7. Conclusion and perspectives

In this paper, we have built well-conditioned integral equations for the iterative solution of the
Dirichlet elastic scattering problems. The preconditioning strategy is based on a rewriting of the
Somigliana integral representation of the scattered field. A regularizing operator is incorporated
and forces the integral equations arising from this representation to have very interesting spectral
properties. Two regularizing operators are proposed: an approximation of the exact DtN operator
and an approximation of a Modified DtN operator. The second preconditioner is more suited to
a numerical implementation. It is expressed using the principal parts of the elementary boundary
integral operators, namely surface differential operators and square root operators.

A numerical investigation of the eigenvalues of the standard and preconditioned integral op-
erators for the spherical case illustrates the efficiency of the approach. The eigenvalues of the
preconditioned formulations are well clustered and their condition number is close to 1 indepen-
dently of both a frequency increase and a mesh refinement. This leads to a fast convergence of
the GMRES iterative solver. These first results are very encouraging. Furthermore, notice that
the proposed analytic preconditioner shows highly-desirable advantages: sparse structure, ease of
implementation and a low additional computational cost using Padé approximants to localize the
square root operators.

The numerical implementation and validation of this preconditioning approach for more gen-
eral obstacles will be challenging future works. A combination with the FMM seems promising.
Previous work in this area in acoustic scattering [20] has shown significant improvements for the
computational time and cost of the solution. It would be very interesting to test first the numerical
accuracy of the DtN and the MDtN approximations in the OSRC context, before applying them
as preconditioners.

Appendix A

In this appendix we give the spectral decomposition of the different elastic boundary integral
operators in terms of the vector spherical harmonics. Let us introduce the spherical harmonics
Ym,` as the functions of order m for ` = −m, . . . ,m, with m, ` ∈ N , given by [17]

Ym,`(x̂) = (−1)
|`|+`

2

√
2m+ 1

4π

(m− |`|)!
(m+ |`|)!

P |`|m (cosθ)ei`φ, x̂(θ, φ) ∈ S2,

where P `m denote the `-th associated Legendre polynomials of order m. The tangential vector
spherical harmonics defined by

Y(1)
m,` =

1√
m(m+ 1)

∇S2Ym,`, Y(2)
m,` =

1√
m(m+ 1)

curlS2 Ym,` = Y(1)
m,` × x̂,

for ` = −m, . . . ,m and m = 1, 2, . . . together with the normal vector spherical harmonics

Y(3)
m,` = x̂Ym,`,
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for ` = −m, . . . ,m and m = 0, 1, 2, . . . form a complete orthonormal system in L2(S2) undowed
with the hermitian product

(ϕ1|ϕ2)S2 =

ˆ
S2
ϕ1(x̂) ·ϕ2(x̂)ds(x̂).

Let us denote by jm the spherical Bessel function of order m ∈ N and by h(1)
m the spherical

Hankel function of the first kind and order m ∈ N. We set z(1)
m = jm and z(3)

m = h
(1)
m and

u
(k)
m,`(κ,x) = z(k)

m (κ|x|)Ym,`(x̂), M
(k)
m,`(κ,x) = curl

(
xu

(k)
m,`(κ,x)

)
, N

(k)
m,`(κ,x) =

1

iκ
curlM

(k)
m,`(κ,x).

Then, the fundamental solution of the Navier equation admits the following series expansion
for |x| > |y|:

Φ(x,y) =
iκs
µ

∞∑
m=1

1

m(m+ 1)

m∑
`=−m

M
(3)
m,`(κs,x)⊗M (1)

m,`(κs,y)

+
iκs
µ

∞∑
m=1

1

m(m+ 1)

m∑
`=−m

N
(3)
m,`(κs,x)⊗N (1)

m,`(κs,y)

+
i

κp(λ+ 2µ)

∞∑
m=0

m∑
`=−m

∇u
(3)
m,`(κp,x)⊗∇u

(1)
m,`(κp,y)

where ⊗ denotes the tensor product. We denote by ξ
(1)
m (t) = th

(1)
m (t) et ψm(t) = tjm(t) the

Ricatti-Hankel and Ricatti-Bessel functions of order m respectively. In the case of the scattering
by an elastic sphere of radius R, we have SY(3)

0,0 = S
(3,3)
0 Y(3)

0,0 and for m ≥ 1 and ` = −m, . . . ,m,

S


Y(1)
m,`

Y(2)
m,`

Y(3)
m,`

 =


S

(1,1)
m 0 S

(1,3)
m

0 S
(2,2)
m 0

S
(3,1)
m 0 S

(3,3)
m



Y(1)
m,`

Y(2)
m,`

Y(3)
m,`


with, for m ≥ 1

S
(1,1)
m =

i

µκs
ψ′m(κsR)ξ

(1)′

m (κsR) +
i

κp(λ+ 2µ)
m(m+ 1)jm(κpR)h

(1)
m (κpR),

S
(3,1)
m =

i

µκs

√
m(m+ 1)

2

[
jm(κsR)ξ

(1)′

m (κsR) + h
(1)
m (κsR)ψ′m(κsR)

]
+

iR

(λ+ 2µ)

√
m(m+ 1)

2

[
h

(1)′

m (κpR)jm(κpR) + j′m(κpR)h
(1)
m (κpR)

]
,

S
(2,2)
m =

i

µκs
ψm(κsR)ξ

(1)
m (κsR),

S
(1,3)
m = S

(3,1)
m ,

and for m ≥ 0

S
(3,3)
m =

i

µκs
m(m+ 1)jm(κsR)h

(1)
m (κsR) +

iκpR
2

(λ+ 2µ)
j′m(κpR)h

(1)′

m (κpR).

We also have D′ = DT , DY(3)
0,0 = D

(3,3)
0 Y(3)

0,0 and for m ≥ 1 and ` = −m, . . . ,m,

D


Y(1)
m,`

Y(2)
m,`

Y(3)
m,`

 =


D

(1,1)
m 0 D

(1,3)
m

0 D
(2,2)
m 0

D
(3,1)
m 0 D

(3,3)
m



Y(1)
m,`

Y(2)
m,`

Y(3)
m,`


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with, for m ≥ 1

D
(1,1)
m = − i

κsR

[((
κ2
sR

2 −m(m+ 1) + 1
)
h

(1)
m (κsR) + κsRh

(1)′

m (κsR)
)
ψ′m(κsR)

+
((
κ2
sR

2 −m(m+ 1) + 1
)
jm(κsR) + κsRj

′
m(κsR)

)
ξ

(1)′

m (κsR)
]

+
iκsR

2

(
h

(1)
m (κsR)ψ′m(κsR) + jm(κsR)ξ

(1)′

m (κsR)
)

+
iµm(m+ 1)

κpR(λ+ 2µ)

[
h

(1)
m (κpR)ψ′m(κpR) + jm(κpR)ξ

(1)′

m (κpR)− 4jm(κpR)h
(1)
m (κpR)

]
,

D
(1,3)
m =

2i
√
m(m+ 1)

κsR

[
ψ′m(κsR)ξ

(1)′

m (κsR)− jm(κsR)ξ
(1)′

m (κsR)− h(1)
m (κsR)ψ′m(κsR)

]
+
µ
√
m(m+ 1)

iκpR(λ+ 2µ)

[
jm(κpR)

((
κ2
pR

2 −m(m+ 1)
)
h

(1)
m (κpR) + 2κpRh

(1)′

m (κpR)
)

+h
(1)
m (κpR)

((
κ2
pR

2 −m(m+ 1)
)
jm(κpR) + 2κpRj

′
m(κpR)

)]
−
iλκpR

√
m(m+ 1)

(λ+ 2µ)
jm(κpR)h

(1)
m (κpR),

D
(2,2)
m = i(κsR)2

(
j′m(κsR)h

(1)
m (κsR) + h

(1)′

m (κsR)jm(κsR)
)

− iκsR
2

(
jm(κsR)ξ

(1)′

m (κsR) + h
(1)
m (κsR)ψ′m(κsR)

)
,

D
(3,1)
m =

√
m(m+ 1)

iκsR

[
jm(κsR)

((
κ2
sR

2 −m(m+ 1) + 1
)
h

(1)
m (κsR) + κsRh

(1)′

m (κsR)
)

+h
(1)
m (κsR)

((
κ2
sR

2 −m(m+ 1) + 1
)
jm(κsR) + κsRj

′
m(κsR)

)]
+iκsR

√
m(m+ 1)jm(κsR)h

(1)
m (κsR)

+
iµ
√
m(m+ 1)

(λ+ 2µ)

[
2κpRj

′
m(κpR)h

(1)′

m (κpR)− jm(κpR)h
(1)′

m (κpR)− j′m(κpR)h
(1)
m (κpR)

]
,

and for m ≥ 0

D
(3,3)
m =

im(m+ 1)

κs

[
h

(1)
m (κsR)

(
κsj
′
m(κsR)− jm(κsR)

R

)
+ jm(κsR)

(
κsh

(1)′

m (κsR)− h
(1)
m (κsR)

R

)]
− iµ

(λ+ 2µ)

[
j′m(κpR)

((
κ2
pR

2 −m(m+ 1)
)
h

(1)
m (κpR) + 2κpRh

(1)′

m (κpR)
)

+h
(1)′

m (κpR)
((
κ2
pR

2 −m(m+ 1)
)
jm(κpR) + 2κpRj

′
m(κpR)

)]
− i(κpR)2λ

2(λ+ 2µ)

(
jm(κpR)h

(1)′

m (κpR) + j′m(κpR)h
(1)
m (κpR)

)
.

We have NY(3)
0,0 = N

(3,3)
0 Y(3)

0,0 and for m ≥ 1 and ` = −m, . . . ,m

N


Y(1)
m,`

Y(2)
m,`

Y(3)
m,`

 =


N

(1,1)
m 0 N

(1,3)
m

0 N
(2,2)
m 0

N
(3,1)
m 0 N

(3,3)
m



Y(1)
m,`

Y(2)
m,`

Y(3)
m,`


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where for m ≥ 1

N
(1,1)
m =

iµ

κsR2

((
κ2
sR

2 − 2m(m+ 1) + 2
)
h

(1)
m (κsR) + 2κsRh

(1)′

m (κsR)
)

×
((
κ2
sR

2 − 2m(m+ 1) + 2
)
jm(κsR) + 2κsRj

′
m(κsR)

)
+

4iµ2m(m+ 1)

κp(λ+ 2µ)

(
κph

(1)′

m (κpR)− h
(1)
m (κpR)

R

)(
κpj
′
m(κpR)− jm(κpR)

R

)
,

N
(3,1)
m =

µ
√
m(m+ 1)

iκsR

[((
κ2
sR

2 − 2m(m+ 1)
)
h

(1)
m (κsR) + 2ξ

(1)
m (κsR)

)(
κsj
′
m(κsR)− jm(κsR)

R

)
+
((
κ2
sR

2 − 2m(m+ 1)
)
jm(κsR) + 2ψm(κsR)

)(
κsh

(1)′

m (κsR)− h
(1)
m (κsR)

R

)]
−
iµR

√
m(m+ 1)

κp(λ+ 2µ)

{[ 2µ

R2

((
κ2
pR

2 −m(m+ 1)
)
h

(1)
m (κpR) + 2κpRh

(1)′

m (κpR)
)

+ λκ2
ph

(1)
m (κpR)

]
×
(
κpj
′
m(κpR)− jm(κpR)

R

)
+
[ 2µ

R2

((
κ2
pR

2 −m(m+ 1)
)
jm(κpR) + 2κpRj

′
m(κpR)

)
+ λκ2

pjm(κpR)
]

×
(
κph

(1)′

m (κpR)− h
(1)
m (κpR)

R

)}
,

N
(2,2)
m = iµκsR

2
(
κsj
′
m(κsR)− jm(κsR)

R

)(
κsh

(1)′

m (κsR)− h
(1)
m (κsR)

R

)
,

N
(1,3)
m = N

(3,1)
m ,

and for m ≥ 0

N
(3,3)
m = 4iµ

m(m+ 1)

κs

(
κsh

(1)′

m (κsR)− h
(1)
m (κsR)

R

)(
κsj
′
m(κsR)− jm(κsR)

R

)
+

iR2

κp(λ+ 2µ)

[ 2µ

R2

((
κ2
pR

2 −m(m+ 1)
)
h

(1)
m (κpR) + 2κpRh

(1)′

m (κpR)
)

+ λκ2
ph

(1)
m (κpR)

]
×
[ 2µ

R2

((
κ2
pR

2 −m(m+ 1)
)
jm(κpR) + 2κpRj

′
m(κpR)

)
+ λκ2

pjm(κpR)
]
.

Now, let us consider the principal parts P−1(S), P0(D) and P1(N) of the integral operators S,
D and N respectively (see Section 2.1). By recalling that the eigenvalues of the surfacic operator

∆Γ are given by −m(m+ 1)

R2
, we have the following results

P−1
(S)


Y(1)
m,`

Y(2)
m,`

Y(3)
m,`

 =


s

(1,1)
m 0 0

0 s
(2,2)
m 0

0 0 s
(3,3)
m



Y(1)
m,`

Y(2)
m,`

Y(3)
m,`

 ,

with

s
(1,1)
m =

i

2ρω2

[(
κ2
s −

m(m+ 1)

R2

) 1
2

+
m(m+ 1)

R2

(
κ2
p −

m(m+ 1)

R2

)− 1
2

]
,

s
(2,2)
m =

i

2ρω2
κ2
s

(
κ2
s −

m(m+ 1)

R2

)− 1
2

,

s
(3,3)
m =

i

2ρω2

[(
κ2
p −

m(m+ 1)

R2

) 1
2

+
m(m+ 1)

R2

(
κ2
s −

m(m+ 1)

R2

)− 1
2

]
,

P0(D)


Y(1)
m,`

Y(2)
m,`

Y(3)
m,`

 =

 0 0 d
(1,3)
m

0 0 0

d
(3,1)
m 0 0



Y(1)
m,`

Y(2)
m,`

Y(3)
m,`

 ,
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with

d
(1,3)
m =

i

κ2
s

(m(m+ 1)

R2

)1/2
[(
κ2
s −

m(m+ 1)

R2

) 1
2

+
m(m+ 1)

R2

(
κ2
p −

m(m+ 1)

R2

)− 1
2

]
− i

2

(m(m+ 1)

R2

)1/2(
κ2
p −

m(m+ 1)

R2

)− 1
2

,

d
(3,1)
m =

i

κ2
s

(m(m+ 1)

R2

)1/2
[(
κ2
p −

m(m+ 1)

R2

) 1
2

+
m(m+ 1)

R2

(
κ2
s −

m(m+ 1)

R2

)− 1
2

]
− i

2

(m(m+ 1)

R2

)1/2(
κ2
s −

m(m+ 1)

R2

)− 1
2

,

and, finally,

P
1
(N)


Y(1)
m,`

Y(2)
m,`

Y(3)
m,`

 =


np

(1,1)
l 0 0

0 n
(2,2)
m 0

0 0 n
(3,3)
m



Y(1)
m,`

Y(2)
m,`

Y(3)
m,`

 ,

with

n
(1,1)
m =

i

2ρω2

(
κ2
s −

m(m+ 1)

R2

) 1
2

+
2iµ

κ2
s

m(m+ 1)

R2

[(
κ2
p −

m(m+ 1)

R2

) 1
2

+
m(m+ 1)

R2

(
κ2
s −

m(m+ 1)

R2

)− 1
2

]
−2iµ

(m(m+ 1)

R2

)1/2(
κ2
s −

m(m+ 1)

R2

)− 1
2

,

n
(2,2)
m =

i

2
µ
(
κ2
s −

m(m+ 1)

R2

) 1
2

,

n
(3,3)
m =

i

2ρω2

(
κ2
p −

m(m+ 1)

R2

) 1
2

+
2iµ

κ2
s

m(m+ 1)

R2

[(
κ2
s −

m(m+ 1)

R2

) 1
2

+
m(m+ 1)

R2

(
κ2
p −

m(m+ 1)

R2

)− 1
2

]
−2iµ

(m(m+ 1)

R2

)1/2(
κ2
p −

m(m+ 1)

R2

)− 1
2

.
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