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Abstract

This paper consists in introducing an option price expansion for model combining local and
stochastic volatility with tight error estimates. The local volatility part is considered as general but
has to satisfy some growth and boundedness assumptions. For the stochastic part, we choose a
square root process, which is usually used for modelling the behaviour of the variance process. In
the particular case of Call options, we also provide expansions of the Black-Scholes implied volatility
which allow to obtain very simple and rapid formulas in comparison to the Monte Carlo approach
while maintaining a very competitive accuracy.

1 Introduction

Models combining local and stochastic volatility have emerged in the last decade to offer more flexibility
in the skew and smile management. This includes for instance the well known SABR model introduced
by Hagan and al in [HKLWO2] or more recently the CEV-Heston model studied notably by Forde et
al [FP12] (see [Cox75] for the CEV model and [Hes93] for the Heston model). If the interest of such
models is increasing, their use is still challenging because of the lack of closed formulas. The price to
be paid for the more realistic dynamic is time costly numerical methods like PDE engine or Monte Carlo
simulations. In this work we focus on models with general local volatility function and a stochastic vari-
ance modelled by a square root process and in a perspective of real time calibration procedures, we aim
at providing analytical approximations.

>Comparison with the literature. In the two last decades, an impressive number of papers have been
devoted to the analytical approximations and their applications to finance. Although the large body of
the existing literature is mainly focusing on pure local volatility or pure stochastic volatility models, we
count recently some studies focusing on hybrid local and stochastic volatility models. We cite among
them regrouping the similar approaches:

Geodesic approach and small maturity expansions: we refer to Hagan et al [HKLWO02], Berestycki
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and al [BBF04], Henry Labordere [Lab05]-[Lab08] and Lewis [Lew(07] who used an explicit computa-
tion of the geodesic distance in the SABR model to derive short maturity implied volatility expansions.
More recently we cite the work of Jordan et al [JT11] who utilise the WKB or ray method (see [Kel78])
and boundary layer corrections to derive the asymptotic behavior of the density function in the SABR
model for small maturities. We finally cite Forde et al [FJ12]: using small noise expansions inspired
by [FW98] and large deviation argument, the authors provide small-time implied volatility expansions
in general local and stochastic volatility models but under restrictive conditions: null correlation, strong
hypotheses of the stochastic volatility coefficients (excluding square root processes) and uniform ellip-
ticity condition for the local volatility function. Drawbacks of the geodesic approach are: 1) accuracy
restricted to short maturities; 2) validity only for time homogeneous parameters.
Long maturities point of view with fixed strike/large strike regime: Forde et al study in [FP12] the
large-time asymptotic of SABR and CEV-Heston models in different regime of strikes using large de-
viation theory and saddlepoint methods. But limitations are: 1) only available for time-independent
parameters; 2) limited to null correlation.
Ergodic approach: see Fouque et al [CFK10] where an asymptotic expansion w.r.t. a fast mean re-
version parameter of the volatility is performed in a particular hybrid model built on a CEV-type local
volatility and a stochastic volatility driven by an Ornstein Uhlenbeck process.
Perturbation methods: we cite the very recent paper of Pascucci et al [PP12] which provides an ex-
pansion of the characteristic function in a general local and stochastic volatility model (possibly incor-
porating also Levy jumps). To perform the approximation of the characteristic function, the authors used
their so-called Adjoint Expansion PDE method which is inspired of the well-known singular perturbation
in the work of Hagan et al [HW99] for the CEV model. Then they obtain option price approximation
formulas using Fourier methods. Drawbacks of the method are: 1) error estimates only available un-
der condition of uniform parabolic PDEs; 2) necessary to perform finely numerical integrations in the
Fourier inversion step.

As a difference with several quoted papers which doesn’t satisfy all the following conditions, we aim
at giving an explicit and accurate analytical formula:

1. covering both short and long maturities,

2. handling general local volatility function, non-null correlation as well time-dependent parameters,
3. with computational time close to zero,

4. with complete mathematical justification.

To achieve this, we use the so called Proxy principle introduced in [BGMO09] and [BGM10a] to perform
non-asymptotic expansion with the help of a Proxy process.

>Comparison with previous works and contribution of the paper. The approach still consists in
expanding the price w.r.t. parameters of the model using a smart parameterization and in computing the
correction terms using Malliavin calculus in the Gaussian framework. As a difference with the work
on Heston models [BGM10b] for which one can use a conditioning argument to represent the price
as a simple expectation related to the variance process, we follow a direct approach like in [BGM10a]
or [BGMO09], with a suitable paremetrization of both the price and variance processes. We provide an
explicit third order formula order w.r.t. the interest parameters, the leading term being a suitable Black-
Scholes price, while the other terms are sensitivities in the Black-Scholes framework weighted with
functionals of the model parameters. This allows in particular to retrieve the results of [BGM10a] for
pure local volatility models and of [BGM10b] for pure Heston models. To go even further than the cited



references, we also provide implied volatility expansions for the particular case of Call options.

Note also that the Malliavin differentiability of local and stochastic volatility models is not standard
and may fail for high order (see [AEOS] for Heston models). To overcome this difficulty, we use the
Malliavin calculus on smooth processes very close in L? to the initial one in order to prove the accuracy
of our formulas.

>Formulation of the problem. We are given a maturity 7 > 0 (typically the maturity of the financial
product we attempt to price) and we consider the solution of the stochastic differential equation (SDE):

1
dX; = (1, X) VidW, = S0 X Vidr, Xo = xo, (1.1)
AV, = aydt + &+/V,dB;, Vo = vo, (1.2)

W, B); = p,dt,

where (B;, Wy)o<<r is a two-dimensional correlated Brownian motion on a filtered probability space
(Q, F, (F1)o<i<r, P) with the usual assumptions on the filtration (¥)o<;<r. In our setting, (X;)scjo0.r] 1S
the log of the forward price, o the local volatility function and (V;)[0,7] 1S a square root process with
an initial value vy > 0, a measurable, positive and bounded drift function (a;):c[0,7] and a measurable,
positive and bounded volatility of volatility function (&;)se(0.77-

We work with the model of stochastic variance (1.2) for the sake of clarity in the calculus, but the results
developed throughout the paper can be adapted for a time-dependent CIR process:

dY[ = K[(H[ — Yt)dt + VY \/YtdBt

A simple space-change y — o xsds
Appendix A.1.

Our aim is to give an accurate analytical approximation of any European option price of the form:

y allows us namely to retrieve the formulation (1.2). See details in

E[A(X7)], (1.3)

where E stands for the standard expectation operator (under a risk neutral probability measure) and &
is a given Lipschitz bounded payoff function. To accomplish this, we choose a proxy model in which
analytical calculus are possible. At first glance we approximate the process (X;, Vi)iefo,r] defined in
(1.1)-(1.2) by the following Gaussian process:

1
dx? =a(t, x0) v dW; — Eaz(t, Xo)v,dt, (1.4)
t
Vs =v0+f ads. (1.5)
0

Such an approximation can be justified if the volatility of volatility is quite small leading to the approx-
imation V; =~ v, (which is realistic in practice) and if one of the two following situations holds: i) the
local volatility function o (¢, -) has small variations, which means that o(t, X;) = o(, xo); ii) the local part
of the diffusion component is small (i.e. |o|,, small) which implies X; ~ xy, and thus o (¢, X;) = o(t, xo).
Besides we expect to have additionally better approximations for small maturities (leading to X; = xp
and V, 2 vo,t € [0,T)).

To rely the initial process (1.1)-(1.2) to the proxy process (1.4)-(1.5), we introduce a two-dimensional
parameterized process given by:

1
dX; =o(t,nX] + (1 — p)xo) /V/dW,; — E(fz(t, nX; + (1 - mxo)V/ds, X = xo, (1.6)
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AV =a,dt + né; |V dB;, vo, (1.7)

where 7 is an interpolation parameter lying in the range [0, 1], so that on the one hand for = 1, X! = X,
and V! = V,, and on the other hand for n = 0, X° = X? and V? = v,. This parameterization is only a way
to rely X and the proxy model and to derive successive corrective processes in order to obtain a tractable
approximation formula.

>Outline of the paper. The paper is organised as follows. In Section 2 we present a third order price
approximation formula in Theorem 2.2.1 which is the main result of the paper. We also provide the
magnitude of the error term. The result is followed by an outline of the proof to present in an heuristic
way the methodology to perform the expansion and to drawn the reader attention to the main difficulties.
The explicit calculus of the expansion coefficients is postponed to Appendix A.2. Section 3 is devoted to
the complete proof of the error estimate. Analyse the accuracy of the formula is far from straightforward
and constitutes the technical core of the paper. In the Section 4 we apply our expansion formula to the
particular case of Call/Put options to derive implied volatility expansions with local volatility frozen at
spot and at mid-point between the strike and the spot. Results are stated in Theorems 4.1.1 and 4.2.1.
Section 5 is gathering numerical experiments illustrating the performance and the rapidity of our implied
volatility formulas in comparison to the Monte Carlo simulations. In Appendix A, we give intermediate
and complementary results.

2 Main Result

2.1 Notations and definitions

The following notations and definitions are frequently used in the following.

>Extremes of deterministic functions. For measurable and bounded functions f : [0,7] — R and

g : [0,T] xR — R, we denote fi,r = inf f;, fap = sup fi, Igle = sup [g(f,x)| and ginr =
1€[0,T] t€[0,T] 1€[0,T],xeR
inf t, x).
te[O,T],xeRg( x)

> Differentiation and Integration. If these derivatives have a meaning, we write: w;i)(x) = aiﬂ/’(t’ x) for
any measurable function ¢ of (¢, x) € [0, T] X R. When considering the spatial point xy, we oftenly use if

unambiguous the notations v, = ;(xp) and g.//fi) = wgi)(xo).

Definition 2.1.1. Integral Operator. The integral operator w! is defined as follows: for any integrable

function I, we set:
T
ol = f Ldu,
t

fort € [0,T]. Its n-times iteration is defined analogously: for any integrable functions (I1,--- ,1,), we
set:

w(ly, ) = ool )],
forte[0,T].

Definition 2.1.2. Greeks. Let Z be a random variable and h a payoff function. The i-th Greek for the
variable Z is defined by the quantity (when it has a meaning):

IE[W(Z + x)] ’
d xi x=0"

GlZ) =

4



Given appropriate smoothness assumptions concerning h, one also has:

G'(z) = Blh(2)].

>Assumptions on o and (V;),<7.

e (H,,): o is a bounded measurable function of (z,x) € [0,7] X R and three times continuously
differentiable w.r.t. x with bounded! derivatives. Set

M (o) = max |8 ,0(t, %)l and Mo(c) = max |80z, X)|co.
I<i<3 ¥ 0<i<3 ¥

In addition, we assume the following ellipticity condition: fOT o?v,dt > 0.
e (P): a and ¢ are measurable, bounded on [0, T'] and positive. In addition &,¢ > 0 and 2(%)inf > 1.

Remark 2.1.1. Because there exists a unique process (V;);<r satisfying the SDE (1.2), (Hy,) guarantees
the existence and the uniqueness of a solution for (1.1), considering generalized stochastic integration
w.r.t. semi-martingales (see [Pro04, Theorem 6 p. 249]). In addition (P) implies that ¥n € [0, 1],
PVt e [0,T]: th > 0) =1 (See Lemma [BGM10b, Lemma 4.2 ], and replace in the original paper k by
0 and k6, by a;).

We define the stochastic volatility process:

Definition 2.1.3. A7 = \/V", Vi € [0,T], ¥n € [0, 1].

In addition, we introduce (A;).c[o,7] defined for any ¢ € [0, T'] by:
= AT = VO =\ = v + f ayds. @2.1)
0

r>Assumptions on the payoff function 2. We denote by C7'(R), the space of real-valued infinitely
differentiable functions with compact support. For practical applications in finance, assuming that & €
Cy (R) is too strong and we introduce Lipy(R), the space of Lipschitz bounded real-valued functions in
the following sense: for some positive constants Cy, and Ly:

|h(x)| < Cy, Vx € R,
MO < 1y V(xy) €R2x# Y,

This space includes the classical Put payoff function x — (K — e*), with strike K. Assume that 4 and/or
its first derivative (defined a.e.) is exponentially bounded could lead to technical difficulties in the L?
estimates because exponential moments of integrated square root processes explode (see [AP06]).

>>Generic constants and upper bounds. We keep the same notation C for all non-negative constants
depending on: universal constants, on a number p > 1 arising in L? estimates, in a non decreasing way

on fsup, Moy(o), Mi(o), T, lo2,T

fOT o2v,dt
We frequently use the short notation A <. B for positive A which means that A < CB for a generic
constant C. Similarly "A = O(B)" means that |A| < CB for a generic constant C.

, Vo, 1/vo, asup,and |ple. A generic constant does not depend on x.

>>Miscellaneous. The L” norm of a random variable is denoted, as usual, by ||.|[,

Ithe boundedness assumption of o and its derivatives could be weakened to L?-integrability conditions, up to extra works.



2.2 Third order approximation price formula
We state the main result of the paper:

Theorem 2.2.1. (3rd order approximation price formula.) Assume (Hy,) and (P). Then for any h €
Lipp(R), we have:

6
E[h(X7)] = BIAXD)] + ) nirGl(XT) + Errors , (22)
i=1
where:
i I I I
_Cl,T 3 C2,T B C3,T _ C4,T _Cls
ME="" "7 Ty T Thir
I I I I I \2
_ 3Cl,T + C2,T 4 5C3,T N 7C4,T N (CI,T) 3 Cf,T
.1 2 2 4 2 8 2
Cs Cls Cls Cls Cls
3,T Is 2T 3,T Is 5T 6,7
+ ——+Ci +—+—+C + ——+ ——,
4 ) 2 ) 4
3(Cl )2 C’ Cs C?
i i ! 1T LT 2T 3,T
mr =Cir —2C5 1 - 6C4,T - 1 + T, TS
1 I ! I !
_ 3Czs,T B 3C3s,T 3 5C4S,T Als 3C6fT 3 Cl,Tci,T
2 2 2 >T 4 4
13(Cl )2 Cs Cs
nar =Ch  +3Ch ; + L 2T STl
’ ’ ’ 8 2 4 ’
3Cls Cls Cls (Cs )2
I 4,T 5T 6,T 1,7 1 s
+C3p + 2 + 2 + > + 5 +C +C 7,
3O P 5CLC,
775,T - 2 4 4 )
I 2 2 I
:(CI,T) N (Cf,T) + Cl,ch,T
e, T > 3 5 s
and:
Cé’T = w(o-zv, O'O'(l)v)g, Cé’T = w(o-zv, ((0'(1))2 + 0'0'(2))\/)%,
Cé’T = a)(0'2v, v, ((0'(1))2 + 0'0'(2))\/)5, Czll,T = a)(0'2v, oo Dy, O'O'(l)v)g, Ci,T = w(péov, 0'2)5,
C3 1 = wlpéav, péo, o), Cr = w(@v,a?, 07, Clr = w(péov, o)y,
CéfT = w(péov, o, 0'0'(1))5, CéfT = w(o-zv,pfcrv, 0'0'(1))3, Cff’T = w(péov, o2, O'O'(l)v)g,
Cé‘fT = w(péov, ooy, 0'2)5, Cé‘fT = w(o?v, péoVy, o-z)g.
Then the approximation error is estimated as follows:
Errors, = O(Laloleo[£3,p + Mi(0)(Mo(0) + £qup)*1T7). (2.3)

Remark 2.2.1. Under (H,,), X; is a non degenerate normal random variable and consequently, what-
ever is the regularity of h, the Greeks QZ(XITJ) introduced in (2.1.2) exist and are well defined for any
integer i. Note also that on the contrary to [BGM10b, Theorem 2.2], we do not assume anymore that the
correlation is bounded away to —1 and 1.



Remark 2.2.2. The magnitude of Errors , provided in (2.3) justifies the label of third order approximation
formula because using the notation M = max(Mo(0), Eqp), we readily have Errorsy, = O(M V).
Besides, making reference to the introduction, we retrieve that if || = 0 or max(M;(0), Ewp) = 0 or
T = 0, the approximation formula (2.2) is exact (the model and the proxy coincide and the C coefficients
vanish). In addition if L, = 0 (i.e. h is constant), the error is equal to zero as well the sensitivities.

Remark 2.2.3. If one prefers to restrict to a second order approximation, it simply writes:

s
1.,T

1 3
E[A(X7)] =EIAXD)] + C 7[5G1(XD) = 5G5(XT) + G5(XP)] + —=[-G3(Xp) + G5(X7)]

+ O(Lplorloo[£L,, + Mi(a)(Mo(0) + §sup)]T%).

We let the reader verify that the additional corrective terms of the expansion (2.2) are bounded up to
3
generic constants by tha'lgx,[.f2 + M () (Mo(0) +E&sup)]T 2 using standard upper bounds for the deriva-

sup
tives of the Gausssian density and the magnitude of the additional coefficients C.

2.3 Corollaries and outline of the proof

>Particular cases of pure local volatility model and pure stochastic volatility model.

a) Observe that if & is equal to zero, all the coefficients C* and C" are null and then we exactly
retrieve the expansion of the pure local volatility model proposed in [BGM10a] (taking into account the
contribution of A;). The terms C! therefore read as purely local contributions.

b) If M, () = 0 (case of pure Heston model), all the coefficients C* and C* are equal to zero: we retrieve
the development that was found in [BGM10b] (with the contributions of o, and considering that x = 0
whereas k6; = ;). To see this, one has to transform the sensitivities w.r.t. the total variance which appear
in [BGM10b, Theorem 2.2] in terms of sensitivities w.r.t. the log-spot.
¢) Finally we interpret the coefficients C'* as a mixture contribution of both the local and stochastic parts
of the volatility. All these terms notably depend on the correlation. In case of independence of W and B,
all the coefficients are equal to 0 except the C! terms and C .%T

>>Applications to Call payoff function. One can directly apply this Theorem for the Put payoff function
h(x) = (K — €¥);. The reader should remark that the above expansion formula is exact for the particular
payoff function i(x) = exp(x) (indeed E[i(X7)] = E[h(XD)] = G7P(X]) = €™ and the sum of the
corrective terms is equal to zero). This implies that the expansion remains valid for the Call payoff
function A(x) = (¢* — K), although & ¢ Lipp(R) (one can replace Cj, and L, by the strike K) and that the
Call/Put parity relationship is preserved within these approximations.

>>Outline of the proof. We present here a sketch of proof in order to fix the main ideas and to point the
finger at the principal difficulties.

The first step is to construct corrective processes to approximate X7 in L”. Consider the parameterized
process defined in (1.6)-(1.7). We recall that the Gaussian proxy process (X,P )icro.77 defined in (1.4) is
obtained by setting 7 = 0. The below corrective processes (X; /)se(0,71-(Vir)re[0,71-(Ai reo,7) for i € {1, 2}
are obtained by a formal i-times differentiation of (1.6)-(1.7) w.r.t. n and by taking n = O thereafter. For
the first corrective processes, we obtain:

dX1, =[X = x0)0V A + Ao (AW, — o 4,dn),  Xap =0, (2.4)

!
Vl,lszs/lsdBSa (25)
0



Ay, =L (2.6)
Mo :

The second corrective processes are:
dXo, ={A X = x0)20® +2X1,00] + 2(XP - x0)A 1,0V} dAW, — o7, A,dr) Q2.7)

Vs,
+ {0 dW, = [(XF = xo) V1,0 Vo + (XF = x0)2(0)?, + T’af]dz}, X0 =0

1%
V2t—f§s ls Sa (28)
2
Vo Vlt
Agy =t - LI 2.9
DY TS BE 9

The reader will notice that under (H,,), these corrective processes (Xi)e(0.71-(Vir)eejo.11-(Ait)refo.r) for
€ {1, 2} are well defined.

The second step is to compute the corrective terms. Assuming that & € C7’(R), we perform a third order

Taylor expansion for the function £ at x = X7 around x = X;:

E[h(X7)] =E[h(XD)] + E[hD(XD) (X7 — XD)] + lE[h@)(XP)(XT - XM7 (2.10)

(1 n)2

B[(Xy - X2)? f HOKE + n(Xr - XB) an]
0

Xo,
=E[h(XD)] + E[AV(XD) X, 7] + E[h“)(X;)TT] + EE[h@(X;)XiT] + Errors p,

2
Xir . 1
Errors ;, =E[h"(X7)(X7 Z #)] + 5E[h@)(x}’)(XT - X} - X1.0)(Xr — X§ + X1.7)]
=0

(1-n)?
3 dn],

1
E[(Xr - X7)° f WX +n(Xr - X7)
0
with the convention X = X9 = X, 7. Then we transform the terms E[x‘V(X2)X; 7], E[AV(XP) X”] and
%E[h(z)(X;)XiT] into a weighted sum of sensitivities. To achieve this transformation, we apply a key
lemma which proof is postponed to Appendix A.2:

Lemma 2.3.1. Let ¢ be a C§(R) function and (f); be a measurable and bounded deterministic function.
Let N > 1 be fixed, and consider measurable and bounded deterministic functions t — l;, for i =
1,...,N. Then, using the convention dW,O = dy, th1 = dW; and thz = dBy, for any (I1,...,1Iy) €
{0, 1,2}V we have:

((p( f fdW,) f Iy f IN-Liy—1 - - f zl,hdwt’;...dwt’g;dw,’g)

= (i, ... NGy 20/ f fdW)), 2.11)

. It fli=0
where ly; =19 filks ifly =1,
Sy Yl =2



Details of the complete derivation of the corrective terms appearing in (2.2) is given in Appendix
A.2. Remind that these weighted sensitivities are well defined even if / is not smooth.
Last but not least, one has to estimate the residual term. In the smooth case, owing to (2.10), it is
i
X:
sufficient to estimate the L” norms of the residual processes X7 — ZL‘T for i € {1,2}. Under the sole
4 j!
j=0
assumption that z € Lipp(R), the reflex is to regularize 4 and to try to employ some Malliavin integration
by parts formulas like in [BGM10b]. But a straightforward application of this methodology using the
representation (2.10) fails because the random variable XIT) +n(X7 — X;) does not belong to the space D™
forn #0:

e The coeflicient function of the square root model do not satisfy the standard assumptions. Malli-
avin differentiability is studied by hand in [AE08] up to the second order.

e There are moments explosion for processes having a stochastic volatility part and a local volatility
function at least linear. See for instance the Heston model in [AP06].

To overcome this difficulty, the trick is to replace X7 by the smooth random variable (in Malliavin sense)
X;’ +X1 17+ % close to X7 in L. Considering a regularization A of & (which will be specified in (3.17)),

we can write:

2 1 2
X X X;
Elhs(Xp)] =Elhs(X§ + X171 + =0)] + E[(Xr - )| =25) f KO =) Y =+ X )dn]
2 = 7t Jo A

X, 1
=E[hs(XD)] + B[R (XD) (X117 + TT)] + EE[h?)(X’T))XiT] + Errors j,, (2.12)
2 1 2 2
X7 X7 1 X,
Errors ;,, =E[(X7 — Z #)fo‘ hS)((l -1 Z # +nXr)dn] + EE[hgl)(X;))(Xl,TXLT + TT)]
=0 7 =0 7
Xo, b1 -n? X,
+E[(X1r + TT)3 f 2" WOXE + X r + TT))dn]. 2.13)
0

As h is supposed Lipschitz bounded, the first term of (2.13) which involves only the first derivative of /s
can be handled without Malliavin calculus. The two last terms of (2.13) contain higher derivatives of hs
with the random variables X}J , X1,7 and X, 7 belonging to D* but X; +n(X1r+ %) suffers from degen-
eracy (in the Malliavin sense) for  # 0. To fix this last problem, we use a standard Malliavin Calculus
routine which consists in adding a small noise perturbation (see for instance [GMO5] or [GM11]).

The complete analyse of the error is given in the below subsection.

3 Error analysis
We establish the estimate (2.3) in several steps:
1. L? norms estimates of the residuals processes,

2. small noise perturbation to smooth the function 4,

3. careful use of Malliavin integration by parts formulas to achieve the proof.



3.1 Approximation of X, V, A and error estimates

Approximation of V, A and error estimates

Definition 3.1.1. Assume (P). We introduce for i € {0, 1,2} the A-residual processes defined by

1
A .
A Jt
(R, = A — ZT)ze[O,T]
=0

where by convention Ao, = A; and the corrective processes ((A j,t)tE[O,T])je{l,z} are defined in (2.6)-(2.9).

Replacing A by V, we define similarly the V-residual processes using the notation RV .

Proposition 3.1.1. Assume (P). Then for any p > 1, we have:

\/% < Aint < /lsup < VYo + Tasupa (3.1)

sup [IAill, <c (Gap VT, Vi € {1,2}, (32)
1€[0,T]
sup RN <c (Gup VT)'™', Vi € {0,1,2). (3.3)
oty P
Proof. (3.1) is obvious in view of (2.1). The proofs of (3.2) and (3.3) can be found in [BGM10b,
Propositions 4.6, 4.7 and 4.8 ] replacing in the original paper k by zero and «6; by «;. O

Corollary 3.1.1. Assume (P). Then one has for any p > 1:

Vo < Vinf < Vsup <Vo + T syp, 3.4
sup [[Vill, <c1 + vo, (3.5)
t€[0,T]
sup [|Vill, <c(ap VT, Vi € {1,2}, (3.6)
t€[0,T]
sup IRV Nl < (&wp V)™, Vi€ {0, 1,2). (3.7)
efor; P

Proof. The proof of (3.4) and (3.5) are easy. (3.6) are obtained readily with (2.5), (2.8) and (3.2). Proofs
of (3.7) are available in [BGM10b, Corollary 4.9] replacing in the original paper « by zero and «6; by a;.
O

Approximation of X and error estimates.

Definition 3.1.2. Assume (H,,). We introduce for i € {0, 1,2} the X-residual processes defined by
i
X .
(R, = X, - ij;t)ze[o,ﬂ
=R

where by convention Xo; = X? = X,P and the corrective processes (X j,t)te[o,T]) jel12) are defined in (2.4)-
(2.7). When writing a Taylor expansion of o(.) at x = X, around x = xo, we denote by R, +(X;) the n'h
Taylor residual:
. .
(Xr —x0)'
Ruo(X) = (X)) = ) ===, (3.8)
pary i!

Replacing o by 02, we use the similar notation R, -2 (X))

10



Standard computations involving Burkholder-Davis-Gundy and Holder inequalities yield:

! !
p_ p —
11X, = xollpy <27 f llos(X) YVl ds + 77! f o2 (X Vil ds
0 0
! A
<ct2 Mol f E[V!)ds + ol f E[V!1ds < (o7l VTP, (3.9)
0 0

for any p > 2, where we have applied the estimate (3.5) at the last line. We now intend to handle
X-residual processes, and the next results are intermediate steps. In the below Lemma, we provide L?
estimates of Xf — x0, X1, and X5 ;.

Lemma 3.1.1. Assume (Hy,) and (P). For any p > 1:

sup [1X} = xoll, <cloleo VT, (3.10)
t€[0,T]
. i ﬂ .
sup 1Xidll,, Sclorleo[Eyp + Mi(@)Mo(0) + Equp) 1T, Vi € {1,2). (3.11)
te

Proof. (3.10) is similar to (3.9). For (3.11) i = 1: starting from (2.4), the same computations as before
give:

I1X1 411, <e Mi(@) VT (1 + Mo(a) VT) sup [IXF = xoll, + [leo VT (1 + Mo(o) VT) sup [Vl

1€[0,T] t€[0,T]

We conclude using (3.10) and (3.6). For (3.11) i = 2, one has from (2.7):

X211, <cMi (@) VT (1 + Mo(o) VT)( sup [|(XF — xo)? ||,,+ sup 1X1.4ll,) + [oleo VT(1 + Mo(o) VT) sup IVl

t€[0,T] te[0
+|0leo VT sup (V3 Il, + Mi(o) VT(1 + Mo(o) «/— T) sup [IX/ - xolly sup IViAll2p-
t€[0,T] t€[0,T]
We conclude using (3.10), (3.11) i = 1 and (3.6). O

We give in the following Lemma the explicit equations solved by the X-residual processes:

Lemma 3.1.2. Assume (Hy,) and (P). One has:

1
iR, -2(X) + o7 (X)Ry 1dt, R =0, (3.12)

dRY, =[AR1.0(X)) + A1 Roo (X)) + o X)RY, + Aot 'Ry 1AW,

dRy, =[A:Roo(X,) + o1(X)RG JAW; —

1
- 5[v,Rl,(,z(x,) + ViRo 2 (X)) + 07 (X)RY , + 2v,0t0'(1)RX 1dt, RY =0, (3.13)

(2)
Ay,
dRY, =[R20 (X)) + ApR1 (X)) + TRO (X)) + T (X)ORY, + 4,0 VR, + AI—RX,<X, +XxP)

1%
+ A, ,a“)RX 1dw, — E[vtR2 o2 (X)) + ViR 2(X)) + %Ro 2(X) + TT(X)RY, + 2v,a,at”RX

+ (™) + P o )R (X, + XD) + 2V 000 RY 1dt, RY ) = 0. (3.14)

11



Proof. The verification of these identities is tedious but without mathematical difficulties. For conve-
nience, we detail some computations. To obtain (3.12), start from (1.1) and (1.4) and write:
1
ARy, =[oi (XA, = 4 1AW; = S[o7(X)V, = o ]dr

1
=[A(0(X)) — o)) + T (X )(A, — A)1dW, — E[v,«r%(xt) — 0?2) + T2 (X)(V, — v)]dt
1
=R, (X,) + U (XORY JAWs = S [ViR (X)) + 077 (X))Rg 1dz.

Similarly for (3.13), using (3.12) and (2.4), we get:
dRY, =dR), — dX1,

=[ARo.o(Xy) + o(X)RGy, 1AW, — %[V,Ro,o_z (X)) + o7 (X)Ry Jdt
—[(XF = x4 + Ao )@W, — 0, ,d0)

=[A4Ro.o(X;) + A1 Ro.o (X)) + o/ (X)RY 1AW, — %[vtRo’o_z (X)) + ViiRy o2 (X)) + o7 (X)RY Jdt
— (XP = x0)r P A,(dW; - o, 4,d0)

=[4R1 (X)) + A1Ro.o (X)) + Ti(X)RY, + Lo\ "R 1AW,
- %[VIRLJZ (X)) + ViiRo 2 (X)) + 0Z(X)RY, + 2v,oroVRY 1d1.

Now consider (3.14). Start from (3.13)-(2.7) and write:

1
X X
dR;, =dRY, - 5dXa,
=[AR1 (X)) + A1Ro.o (X)) + Ti(XORY, + Lo R 1AW,

1
= SR (X)) + ViR 2(X,) + T (X)RY, + 2v,o 0\ VRY 1t

1
- E{A,[(Xf — x0)%0® + 200X, 1 + 2(XF = x0)A 1PV} AW, — o7, 4,d0)
1 2
— ~{ Ao dW, = [(XF = xo) V1,0V 0 + (X = x0) 2 V), + TIO-?]dt}
As
=LUR1 £ (X0) + A1 Rog (X)) + —*Roo (X)) + o(X)RY, + Loy Ry 1AW,

1 Vo,
— ~[ViRy 2 (Xp) + ViR 2 (X)) + TfRO,(,Q (X,) + af(xt)R{ o 2v,a'ta-§1>Rf 1dt

1
(X = %0020 + 2(XF = x0)A 1,0V} AW, — o A,d0)

2
1
+ 1 = 2oV o+ (XF = x0)(0)Pvilde
Aoy 1 ot
=[R2, 7 (X0) + A1 R0 o (X) + = Roo(X0) + TuX0RY, + 4,0y Ry + =Ry (Xi + X)W,

1 Vo,
= SRy 2 (X0) + ViR g2(X0) + T’RO,(,Z (X)) + O XIRY, + () + e P o )R (X, + XP)

1
+ 2v,o0 RY Jdt = (XF = xo)A 1,0 (@AW, — o A,d) + E(Xf — xo)Vi 0 orde

12



@
_ A Ags 1) pX X P
=[ARy (X)) + ARy (X)) + > Roo(X:) + O-I(XI)R + A0 R . T /1t_2 Ro X+ X))

1 V.
+ A R JAW; = S 1R, (K1) + ViRy 2(X0) + =Ry 2 (X0) + o7 (XORS, + v RY,
+ () + P )RY (X, + XP) + 2V 0,0 VRS 1.
O

An intermediate result is the estimates of R, (X;) and R, ,2(X;). Assuming (H,,), from the Taylor-
Lagrange inequality, we have |R, »(X)| <. |X;—xo/"*! M (c) and IR, 2 (X)) <¢ 1X, —xo" ! Mo(o) M (o).
Combined with (3.9), this readily gives Vp > 2 and Vj € {0, .., 2}:

sup IR (XD, <c (oo VY Mi(@), sup [IR;o2(Xill, <c (oo VD Mo(@IMy (). (3.15)

1€[0,T] 1€[0,T]
We now state the result related to the estimates of the residuals processes:

Proposition 3.1.2. Assume that (Hy,) and (P) hold. Then for any p > 1, we have:

Sgp ”RJ[” <c |0—|oo{ sup +M1(U)(MO(O_) +§sup)]}T2+1 vj€{0,1,2}. (3.16)
te[0,T]

Proof. We leverage the explicit equation solved by the residuals (ijt)te[o,T] (see Lemma 3.1.2). We begin
with R(’)( . Starting from (3.12) and using standard inequalities, it readily follows:

IRS,I| <c VT[sup IR0 (X, + lokosup IR, I 1+ TTsup IRy 2 (Xl + 17l supl[Rg,Il 1
t<T t<T t<T t<T

We conclude using (3.15)-(3.3)-(3.7). Similarly for R’f,t given in (3.13), we obtain:

IR, < < VT {sup IR, +(X)l, + sup A1 Ro (XD, +|o-|oosup||R A, + Mi(@)suplIRg, Il )

t<T t<T t<T

T{suplIR; 2 (X)), + SUPHVltRo(ﬂ(Xt)” +|a|2 suan I +|cr|ooM1<<r>sup||R3{,||p}.
t<T

t<T

Then, plugging in the above upper bound the estimates (3.2)-(3.3)-(3.6)-(3.7)-(3.15)-(3.16) i = 0, we
complete the proof of (3.16) for i = 1. Finally for RX .» starting from (3.14), we readily have:

IR, <e NT(Sup IR (X0l + SUp AL R1o X, + SUp A2 Ror (XD, + loreosup IR,

t<T
+ Mi(o)sup [IRY Al +M1((T)SUPIIR (X + XP)II +M1(0)SUPIIA11R0tII}
1<T t<T 1<T
T{sup IRy 2 (Xl , + SuplquRmz(Xt)ll + Sup||V2tROa-2(Xt)|| + o2, SuPIIR il
1<T

+lol Mi(@)sup IR] I, + Mi(@) Mo(o)sup 1Ry <X,+Xf)||p + |a|ooM1<v)sup||v1,,Ré{t||p}.
t<T

The proof is completed as before using (3.2)-(3.3)-(3.6)-(3.7)-(3.15)-(3.16) i = 0 and 1. O
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3.2 Regularization of the function /2 by adding a small noise perturbation

To overcome some problems of degeneracy in the Malliavin sense and to compensate the lack of smooth-
ness of the payoff function 4, we introduce an extra scalar Brownian motion W independent of W and B
even if it’s mean enlarge the initial filtration and sigma field. Then we define:

hs(x) = E[h(x + SW71)]. 3.17)

for a small parameter § > 0. Clearly the function /s is of class C*(R) thanks to the smoothness of the
Gaussian density and remarkably we can notice that using a conditioning:

hs(x) = ]E[hé/\/j(x-i-éWg)]. (3.18)

In addition 2 € Lipy(R) = h;s € Lipy(R) with Cp; = Cj, and Ly, = Lj. The next Lemma estimate the
error in terms of ¢ induced by considering /s instead of /4 in the calculus of expectations and sensitivities
which appear in the Theorem 2.2.1.

Lemma 3.2.1. Let § > 0. Assume that h € Lipy(R) and that (Hy,) is satisfied. Then we have:

[ELlh(X1)] = Elhs(X1)]| + [EIR(XI)] - Blhs(X)]| <cLid VT,
. , oNT
|0 ELRXT + 0)llx=o — 0, Elhs(X7 + 0)]ls=o] scLhT—‘/_, Vi1,
2 i/2
(J, ovdr)
Proof. The first estimate is obvious using the lipschitzianity of /4 and classical estimates for the auxiliary

Brownian motion. For the second write:
__o=x?

T 5 i
gy dl‘ _ 2f0 a'lzwdt
J(;—’[ + (5WT)]e—dy,

27 foT vt

Elhs(Xf + x)] = f Elh(y -
R

to obtain:

8 BIMXT + x)li=0 — 8 Blhs(XT + x)]li=0

T
osvdt |
h A

2
t vVt
2 A2 fOT Utzv,dt

Then we complete the proof using again the lipschitzianity of 4 and standard upper bounds for the
derivatives of the Gaussian density. O

__G=v?
e 2 fOT (rtz vedt

2

T
i _
:fE[h(y——fo (Tz’vt L W) — h(y
R

}|x:0dy'

In view of the magnitude of the coefficients Cf r» Clpand C ll.ST defined in Theorem 2.2.1, applying
Lemma 3.2.1, we readily obtain :

6
[Errors 5| =[E[A(X7)] -~ EIR(XD)] = " nirGHXD)|
i=1
<[E[h(X1)] - Elhs(X7)]| + [Elhs(XP)] — E[(XP)]|

6
+ > mirl| G D) - G (XD)| + [Errors 1
i=1
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<Lpé ﬁ + |EI‘I’OI‘3’h6|.

Assume now without loss of generality that M; (o) + &p # 0. We prove the estimate (2.3) if we choose
as value for 6:

§ = |01l + M@ Mo(0) + Equp)?] T3 (3.19)
and establish that:
[Errors ;| <c Luloleo[€2yp + Mi(a)(Mo(0) + &)’ 1T, (3.20)

This is the purpose of the next subsection.

3.3 Malliavin integration by part formula and proof of estimate (3.20)

We write W, = fot psdB; + fot V1 - p2dBt where (B})o<i<r is a Brownian motion independent of
B; and we consider the calculus of stochastic variations w.r.t. the three-dimensional Brownian mo-
tion (B, B+, W), the Malliavin derivative operator w.rt. B, B- and W being respectively denoted by
D() = (Dtl(.)),e[o,ﬂ, (D,Z(.))te[o,r], (D?(.)),e[o,r]. For the second derivatives, we use the obvious notation
(D™ (:Ds.er0.17 for i, j € {1,2,3} and so on for the higher derivatives. We freely adopt the notations of
[Nua06] for the Sobolev space DkP associated to the norm Ik, p-

In the following Lemma, we provide estimates of the Malliavin derivatives of (XtP )ie10.71> (X1,)ref0,77 and

(X2, )iel0,7]-

Lemma 3.3.1. Assume that (Hy,) and (P) hold. Then, ¥t € [0,T], X", X1, X2, Vi, and Va, € D>,
Moreover, we have the following estimates, Yp > 1, uniformly in q,r, s,t € [0, T]:

IDSXLN, +1ID3XT N, <c lole, 3.21)
D A, + DVl <c €8,T°7 . Vn € (1,2}, (3.22)
D3 Xl + 1D Xl e 10leol iy + Mi(@)(Mo(0) + wup)" ™' 1T, Yn € {1,2) (3.23)
IDy5 Aagll, +1D35 Vaull, <c Exps (3.24)
T IDEX ], <c 101lEly + Mi@)NMo(0) + )™ IT*T, Yn € (1,2}, (3.25)

i,je{1,2}
DU IDEEX I, < lolol€2, + Mi (@) (Mo(0) + Eap)]. (3.26)

i,j,ke{1,2}

Proof. Tt is obvious that all the variables are in D> because by construction we take face to multiple
Wiener integrals and temporal integrals of multiple Wiener integrals (see (1.4)-(2.4)-(2.7)-(2.5)-(2.8)).
Then the calculus of the derivatives and the L”-estimates is classical so we skip details. In particular, all
the derivatives w.r.t. the third Brownian motion W are null as well as the derivatives of Vis Ay, Vo and
Aoy Wrt. B+ O

We now state the result related to integration by parts formulas which is proven later:

Lemma 3.3.2. Assume (H,,) and (P). For any n € [0, 1], we define the random variable Gg = XITJ +
nXir + %) + 6Wr ). Then for any Y in D', there exist random variables Yo, and Y3, in Ny LP
such that Vi € {2,3}:

E[th/) G =E[Y;;h') (GD)], (3.27)

vl s/V2
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where for any p > 1 and any i € {2,3}:

sup 1¥islly <c V11,4 f o2udn . (3.28)
n€l0,1]

We are now in position to achieve the proof of (3.20). Consider Errors j, explicitly written in (2.13).
The first term of (2.13) is handled easily using (3 16) i = 3. For the second term of (2.13), using (3.18),
applying the Lemma 3.3.2 with Y = X| 7 X5 1 + L and using (3.11)-(3.23), we obtain:

2 2

X X
U XD X0 Xor + —0)| =[BRS (Goa) X1 Xar + =01 = [BU) S(Goo)Y10]l

<cLallYll1.2( f viofd ™2 <o Llorleal €y + Mi(@)(Mo(0) + Eqip)* 1T

The last term of (2.13) is handled similarly; apply the Lemma 3.3.2 with ¥ = (X; 1 + X )3 and use
(3.11)-(3.23)-(3.25)-(3.26) to obtain the announced result. To complete the proof, it remams to establish
the Lemma 3.3.2. This is done in the below subsection.

3.4 Proof of Lemma 3.3.2

X7 P is a non degenerate random Varlable with Malliavin covariance matrix equal to fo o?v,dt > 0 thanks

to (Hy,) but G = XP + n(X1.r + X ) is degenerate for 7 > 0 and this is the second reason to have
introduced the small perturbation 6WT/2. Consider the random variable Gg G+ 6WT/2 defined in
Lemma 3.3.2: clearly it belongs to D** with Malliavin covariance matrix obviously invertible:

2 T T T T

_ i ~\2 2- 2 27
Yo! = Elfo(D,G)dt+6 > —yGn+6—2 >0 > > 0.
1=

Then with (3.19)-(3.21)-(3.23)-(3.25)-(3.26) it readily comes for any i € {1,2} and any p > 1:
I(D'GY, D*GY, DG p <clorlo VT (3.29)

Hence, applying [Nua06, Proposition 1.5.6 and Proposition 2.1.4] and using (3.29) we get the existence
of Y5, and Y3, such that for any i € {2,3} and any p > 1:

Winllp <cll¥lliy i1 IDGII (3.30)

i—1,2i1 p(2p+1)”7 ”1 1,21 p2p+1)

Sell¥ll oy (e VO lygallisy

i-1,p+ i-1,251p2p+1)°

It remains to finely estimate the norms related to the inverse of the Malliavin covariance matrix Y6l

First notice that using the definitions of G” and yg» we have:

Yer ZYXITJ * yﬂ(Xl,T+&TT)

T 2 T Xor 5 (T ; Xor
= fo o2v,dt + 7 Z fo [Di(X1 1 + T’)]zdt + 2;72 fo owD(Xir + —=)de
i=1 i=1

2 T
; i XZ,T
+2n7 ) fo DiXDD|(Xi.r + —5-)di
i=1
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and hence estimates (3.21)-(3.23), (H,,) and (P) easily yield to:
T
3
sup ||7G'7 - f O-tzvtdt”p <c |0'|go(fsup + Mi(o)T?, (3.31)
nel0,1] 0
for any p > 1. This intermediate estimate allows to prove the below Lemma:

Lemma 3.4.1. Assume (Hy,) and (P). Then ()/Gg)_l € D> and we have for any p > 1:

T
sup ||(7’G") ||p Sc(f Uzzvtdt)_l, (3.32)
nelo, 0
| T
sup Z ||D;(’}’GZ)_1 “p Sc(Ml(o-) + fsup)(f O_IZtht)_l R (333)
t€l0.T], nel0.1] ;&7 O

.. T
sup DD My <€y + Mi@)(Mo(a) + Ewp) f orvdn (3.34)
s.1€[0.T1, nel0.11; i 5 0

Proof. For the sake of brevity, we only prove (3.32) and (3.33) because there is no extra difficulties for
(3.34). For (3.32), we have forany p > 1 and ¢ > 1:

Bl(yg) ™1 =BG ™L, 1 (7 o, 0] + ELOG) ™ ]

1 (T 2
YG 7]< :7>§j(‘) O'tvtdt

T o vdt 1 T B
< (625)—1’}1»( f o2vdt = ygn = IOT”) +(5 f o2y, dr)?
0 0

T T T
<. (8*T)™"( f atzvtdt)_qHyGn— f atzvtdtHZ+( f O'tzvtdt)_p
0 0 0
T T T
< ( f opvidr) [ T)7( f apvedt) | lygr ~ f otvidi][11+1],
0 0 0

where we have used the Markov inequality at the second inequality. Then choosing ¢ = 6p and using
(3.19)-(3.31), we readily obtain:

T
I
X [ € + Mi(@)(Mo(0) + Equp)* 1T 2Tl 2) > (2 [Esup + Mi(@)IT 3 + 1]

< (f o vtdt)_

(3.33) is a straightforward application of [Nua06, Lemma 2.1.6]; we have ¥Vt € [0, T], Vi € {1,2}:

. Diygn fo [DLG"D!\G" + DG Dy2G"du.
Di(yg))™' = ——5— =

NGy 2
Yor Yo

Then using (3.21)-(3.23)-(3.25)-(3.32) we get readily Vp > 1:

sup IID’()'GW)_ lp <e Tlol2 (M (o) +é’sup)(f orvdn)~?,
1€[0,T7]

which leads to the announced result. m]

Now plug (3.32)-(3.33)-(3.34) in (3.30) to complete the proof.
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4 Expansion formulas for the implied volatility

In this section we apply our third approximation formula to the particular payoff function A(x) =
(e* — K),, i.e. a Call payoff function with strike K for which the expansion remains valid (see Sub-
section 2.3). The risk-free rate and the dividend yield” are set to 0. In order to obtain more tractable
and accurate formulas, we aim at extracting implied volatility expansions from the price approximation
formula. It has been shown in [BG12] that, in addition to their simplicity, direct implied volatility ex-
pansions are more accurate than the corresponding price formulas.

Notations.
> Call options. We denote by Call(S, 7, K) the price at time O of a Call option with spot Sg = €™,
maturity 7 and strike K, written on the asset S = e that is Call(Sq, 7, K) = E(eX” — K),. As usual,
ATM (At The Money) Call refers to S ~ K, ITM (In The Money) to §¢ > K, OTM (Out The Money)
toSo <« K.

> Black-Scholes Call price function. For the sake of completeness, we give the Black-Scholes Call
price function depending on log-spot x, total variance y and log-strike k:

CallBS(x, y, k) = e*N(dy(x, y, k) — € N(da(x, y, k) @y
where:
N(x) = % o= x—k 1 B
x) —f_wN (wdu, N'(u) = ok di(x,y,k) v *+5 Y, da(x,y, k) =dy (x,y, k) — .

In the following, xo = log(S¢) will represent the log-spot, k = log(K) the log-strike, x4, = (x0 + k)/2 =
log( VS oK) the mid-point between the log-spot and the log-strike, m = xo — k = log(So/K) the log-
moneyness. The value Call®S (xo, fOT vt k) = E[(eX7 — ¢k),] equals Call(So, T, K) = E[(eXT — K).]
when M (o) = &yp = 0. For (x, T, k) given, the implied Black-Scholes volatility of a price Call(e*, T, )
is the unique non-negative volatility parameter oy(x, T, k) such that:

Call®S(x, 03 (x, T, k)T, k) = Call(e*, T, e*). (4.2)

The reader can find in Proposition A.3.2 the definition of Vega®S and Vomma®® which are the first two
derivatives of Call®® w.r.t. the volatility parameter.

>Quadratic mean of the volatility on [0, T]. For any spatial point z € R, we denote by o, the quadratic
mean on [0, T'] of (074(z) v/vi)ref0,r] defined by:

1 T
7= \7 fo o2 (2)v,dt. (4.3)

This notation is frequently used for the points xo and x,,,. When applied in xo, we simply write & if
unambiguous.

2 Adaptation of the results for non-zero but deterministic risk-free rate and dividend yield is straightforward by considering
the discounted asset.
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4.1 Implied volatility expansions at spot

We introduce new corrective coeflicients useful for the implied volatility expansions:

Definition 4.1.1. Assume (H,,). We define the following corrective coefficients:

CS
Y0a,T =0 + #
’ 45T
i I I 2
C9,T CIO,T 3C10,T C;,T C;,T Cg,T C§,T 3(CiT)

= - - + - - - +
YOOI =5372 T 45372~ G373 ' 80T  253T2  160T  453T2 ' 85373
1 1 s [ [ [ [ S 1 K
n CSTT _ C4§T _ 3C4S,T _ C;T _ C;T _ C6fT n (CI,TCE,T) " 3(C1,TCE,T)
o3T? 86T 25372 83T 253T% 25372 85372 25573

’

l o
G Gy
YiaT =7 55712 7 25372
S K 2 s IK IK [ [ K
_ C;,T 4 3(C1Y,T) _ CZ‘,T + C3§T _ C4§T _ C6fT " 3(C1,TC1Y,T)
YIbT == 55572 T g5 25372 25372 45377 45573
[ [ ) K S 2 Is 1
G 3Gy N 6C10,T Cr Cir i 3C )7 G+ C3y
VT =55 T s T FTE T 25573 T 45T 400TA 7573
s l 1 [ 3
3C4b,T " CSMTT + CﬁfT _ 3(C1,TC{,T)
255T3 25573 25573 bl IR

where (C,{T)1sis4-(CzT)1gisa-(CfST)lsis6 are defined in Theorem 2.2.1 and Cé T—CIIOT-CéST are defined
by:

C19’T :w(a'zv, ((0'(1))2 + 0'0'(2))\/, o-zv)g, CéO,T :w(a'zv, oM (l)v, a'zv)g,

(1)

v, 00

CéfT =w(péov, oo ,o-zv)g.

To obtain implied volatility expansions, we use the relations between the Greeks w.r.t. the log-spot
which naturally appear when applying the expansion of Theorem 2.2.1 and the sensitivities w.r.t. the
volatility parameter. These relations are available on Appendix A.3. Applying Proposition A.3.3, the
third order approximation formula (2.2) can be transformed into:

Call(So, T, K) 4.4)
[ [ [ [ [ [
CI,T m4 CZ,T _ C3,T i C3,T m2 _ C4,T _ 3C4,T
o372 20T 37?2 &573 46T &3T?

1 [ 2 [ 2 [ 2 ) g ¢
3C4,T mz " (CI,T) 4 3(CI,T) _ 3(C1,T) mz Ci,T _ Ci,T m+ C%,T _ CE,T _ C%,T m
5373 85372 25573 o'T4 46T 25372 8T 25372 25372

Cr CGr CGr Gy 3Cp* 3G _ 3(Cy p)° CPr

=Call® (xo, 7T, k) + Vega® (xo, T, k)| —

2 2 2
+ - - + + + +
25573 T 165T 40372 " 4T3 T 8eST3 | 85T L agiTd T T
1 1 1 1s 1 IX Is IX 1s 1
~ (5 +C5p) B (G + CSTT)m N (C3p + C3fr)m2 B Cor ~ 3Cr _ Cir - 3Cr 2
5372 25372 373 86T 25372 25372 25573
1 1 [ l 1 l [ Y [ 3
_ CSfT _ C;T " CSTT m2 _ C6S,T _ C(;TT m+ C63:T m2 (Cl,Tci,T) 3(C1,Tci§,T)
8T 253T? 25573 26372 45372 26573 85372 26573
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l S / y
3(C1,TC;,T)m B 3(Cr i,T)mz]
45°T3 a'T4
I
1 BS ) LT 2 2 s \2 m I 5 [ s m’ m
+ EVomma ()C(),O' T, k)[((j'3T2) m- + (Cl,T) (—ﬁ + 45'_T) + (Cl,Tcl,T)(W — W}]

+ O(K [0]oo[£3yp + Mi(@)Mo(0) + Equp)’1 T2).

Using the below relations easy to establish:

('t )?
C?,T“’(O'Z")g :Cés,T + Cés,T + Cés,T’ Clz,Tw(O' 2")5 :Cé,T + 2Cé,T’ Ci,T“)(O'ZV)g :CIIO,T + 2 ;
we can write that:
I ! i i i ! !
Cir _ CortCGr  Cer Gr Gr _ Cor
oT o372 o372’ 20T &3T? 26537
I I 12 ! I 12 i i i Y i i
_C4,T [CI,T] 3 3C4,T 3[Cl,T] _ CIO,T 3 3C10,T C4,T B 3[C1,T] _ 3C4,T N CIO,T
45T 83372 &3T? 25573  433T2  &573° ~&513  &'14 573 T4

and finally obtain for (4.4):

Call(So, T, K)

=Call®®(xo, 3°T, k) + Vega® (x0, 7T, O)[(Yoar + Yob.1) = T + (V1ax + yin)Im + yorm’]
+ %VommaBSuo, FT.Y0ar — & + Yiarml® + OK |olel£3yy + Mi(@)Mo(0) + Eap)’1 T?)
~Call®S (xo, [(Yoar +Yoo.1) + Viar + Vibr)m + yorm* T, k),
This reads as an expansion of the implied volatility and proves the below Theorem:

Theorem 4.1.1. (3rd order expansion of the implied volatility). Assume (H,,) and (P). We have:

a1(x0, T, k) =You1 + Yobo.r + ViaT + YibT)M + Y2rm* + EffOfIg,xO. 4.5)

At fixed maturity T, the implied volatility approximation is written as a quadratic function w.r.t. the
log-moneyness m with the coefficients y defined in Definition 4.1.1.

Corollaries of Theorem 4.1.1.

> Estimates of Erroré 1+ In addition to the above implied volatility expansion, one can under additional

technical assumptions upper bound the residual terms. Assume that [m| < C,,|07|o VT for a given Cp, > 0
and that M (o), Mo(0), &up and T are globally small enough to ensure that y = you, 7 + Yob,r + (V1,7 +
YibT)m + yz,Tm2 > (. Under these assumptions, one can prove that:

[Error}, | = O(lolwl€ + Mi(@)(Mo(e) + Eup)?1T?),

where the generic constant depends in an increasing way on C,,, what justifies the label of third order
expansion. Although tedious to write, the proof does not contain huge mathematical difficulties and is
performed in [BG12, Subsection 3.4] in the case of pure local volatility models for the second order. For
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the sake of brevity we leave it as an exercise to the reader giving only the outline: perform a second
order expansion of o — CallBS(xo, o’T, k) at y around &, a zero order expansion at o(xg, T, k) around
v, apply Theorem 2.2.1, use classical estimates for égnCallBs(xo,O'zT, k) forn = 1,2,3 (see [BG12,
Corollary 33]) and carefully gather terms and evaluate their magnitude.

>>Short maturity skew and smile behaviours. We analyse the behaviour of the approximation formula

(4.5) at the money (i.e. m ~ 0) and for short maturity (i.e. 7 < 1). In view of (4.5) and the various

coefficients C!, C*, C* and v (see Definition 4.1.1 and Theorem 2.2.1), assuming that o, O';l) and 0'52)

are continuous at ¢ = 0, we obtain for the level, the slope and the curvature ATM:

[o1(x0, T, K)llk=xy *Y0a,T + Yobo,r = 00 V0,
(@Y)]
ALY N poéo

0 T k) k=xy = — - ~ - x s 4.6
klo1(xo Nlk=x, YiaT — Y167 & —Y1aT > W (4.6)
(2) (142 22 2
oy v Loy 1 Ao 50:¢, &
Olo1(x0, T ) llk=sy ¥2y27 = —— = —2 -0 4.7)
3 600 ) 2
240’0\10 120'0v0

where we have used the below estimate:

lYoa,r + Yoo,r — Tl + lyiprl <c T,

and consequently neglected these terms considered as maturity bias. We observe that:

1) In case of null correlation, our approximation coincides with [FJ12, Theorem 4.1]. Otherwise, we
notice that the mixt terms involving simultaneously pg, & and 0'5)1) vanish and that the slope of the
implied volatility is modified. The correlation is therefore interpreted as a skew parameter and there
might be a competition between 0'81) and p in the calibration procedures.

2) For pure local volatility models (i.e. &up = 0), we retrieve the results of [BG12, Theorem 22].

3) For pure Heston models (i.e. M;(0) = 0), we recover the expansion given in [FJ09, Theorem 2.5]. In
the case of zero correlation, the approximation formula (4.5) becomes for short maturity:

C: C: Cs 20T o2voT 2
oxo, Tk o — —o - 2L T 205 Lol %o +1]+ % .
166T 463T2? 45573 24\[vg 4 20ov?
0

We have retrieved that an uncorrelated Heston model induces symmetric smile w.r.t. the moneyness. The
implied volatility ATM is slightly smaller than the local volatility function ATM and becomes larger ITM
or OTM, the smile increasing with the volatility of volatility &. If we consider a negative correlation,
in view of (4.6) (the slope becomes negative and increases in absolute value with |pg|) and (4.7) (the
curvature is decreasing until reaching zero for |pg| = V2/5 ~ 0.63), the center of the short maturity smile
is shifted to the right and the smile changes from a symmetric shape to a negative skew. The converse is
realised for a positive correlation.

>>Calibration issues for time independent parameters. Generally the local volatility function is com-
pletely determined by a level and a slope parameters identified respectively with the local volatility and
its first derivative ATM. This is for instance the case of the CEV model (see (5.1)). For general local and
stochastic volatility models, the level of the volatility can be fixed throughout the local volatility function
whereas the stochastic variance process can be normalised with an initial value vy equal to 1. We have
seen that for an uncorrelated local and stochastic volatility model:

i) The level parameter of the local volatility is linked to the short time implied volatility ATM,
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ii) The skew parameter of the local volatility is relied to the short time slope of the implied volatility
ATM,

iii) Once the local volatility function is identified, the volatility of volatility parameter is linked to the
short time curvature of the implied volatility ATM.

These features allow us to suggest good surrogates for these three parameters in view of a calibration pro-
cedure by simply estimate the market implied volatility curve for short maturity. But we have observed
that the correlation modify the short term skew and it is well known that the mean reversion parameter of
a CIR process plays a similar role than the volatility of volatility but in the inverse way. Thus we can find
models having different parameters but reproducing the same smile for one maturity: like for the Heston
model, the calibration with a single maturity is an ill-posed problem.

4.2 Implied volatility expansions at mid-point

It has been empirically proven in [BG12] throughout exhaustive numerical experiments that for the pure
local volatility case, expansions with local volatility function frozen at mid-point x4, = (xo + k)/2 =
log( VS oK) give better results. First we introduce new notations and definitions.

Notations.

> Corrective coefficients frozen at mid-point. The coefficients C’, C¥, C'* and y was naturally defined
in Theorem 2.2.1 and Definition 4.1.1 for the local volatility function o at log-spot xg. To consider the
same coeficients but with local volatility function frozen at point z where z is generally equal to x4, Or
Xo, we use the notations Cf’T(z), (o T(z),CffT(z) and y; 7(2).

> New ellipticity assumption at x,,,. We define similarly (H,,,) and (#,,) by replacing xo by Xay,

The generic constant in the further estimates will depend in an increasing way on sz(—)d.
o 7 (Xavg)vedt

> Time reversal. For the coeflicients CfT(xavg), we introduce the notation Ef.T(xan) which
means that we have inverted the order of integration of the integrands. For example 54 7 (Xavg) =
w(o_(xavg)o—(l)(xavg)v, Uz(xavg)v)g instead of Cll,T(xavg) = w(o-z(xavg)va O'(Xavg)o-(l)(xavg)v)g-

Definition 4.2.1. Assume (H,, ). We define the following corrective coefficients:

avg
T0a,T (xavg) =Y0a,T (xavg),
TTob,T (xavg) =Y0b,T (xavg)a

6:ll,T(xaVé’) - Cll,T(xavg) B Cf’T(xavg)

ﬂ'la,T(xavg) =

253 T2 253 T2’
Xavg Xavg
Is K l I l
( ) ( ) CliT(xavg) CéiT(xavg) C4fT(xavg) + C5S’T(xavg) + CISO’T(xavg)
16,7 (Xavg) =Y1b,17(Xavg) + — - - 3 s
45, v 87y, T 8 73 T2

(t:g’T(xavg) + Cé’T(xavg) 3(5i’7~(xavg) + CAILT(xan)) Cé,T(xuvg) Cé’T(xavg)
7T2,T(xavg) = - —

_5 =5 0 53 2
263, T3 20'Xang3 8T e I 473, T
1 2 1 l
N 6C10’T(xavg) CS’T(xavg) C;T(xavg) _ 3(CT’T(xavg)) CZS,T(xavg) + C3fT(xavg)
gl T4 263 T3 453 T3 457 T4 ay T3
avg avg avg avg avg
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3CiS’T(Xan) CéfT (Xavg) CéfT(xavg) 3(C11 ,TCiT)(xavg) CllfT (Xavg) Cés’T (Xavg)
253, 1% 203, 1% 203, T° T e T 203, T> 403, T?
3 CZT(xavg) + Céé;T(xavg) + C%’T(xavg)

5
453, T3

’

where C é’T(xavg), C é’T(xavg), CéfT(xavg) and CZISO’T(xan) are defined by:

Cl 1 (Xavg) =0((0 D) + 0N Xayg )G, Ch7(Xavg) =0(T (X)) (Xang )V, T (Xang) P (XangV)G
Coir(Yavg) =w(PET ) (Xayg )V, 7 (Xan))§ s Clty 1 (Yavg) =(0 (Xarg) D (Xavg)V, 0ET (Xang)V, 02 (Xang))g -

To obtain a new implied volatility approximation, we consider the formula 4.5 and we perform a
Taylor expansion around the mid-point. First we analyse the leading term &, of 4.5:

Lemma 4.2.1. Assume (H,y,)-(H,

avg

) and suppose that |m| < Cplole VT for a given C,, > 0. Then we

have:
(o) (xaeV) C é rGag) € é r(Xavg) 3
= _= " ; _ > + O(|0 o 2 T2), (4.8
Txp =0 x4, 25+, T o 43, 17 m (|oleoMo(0)" My ()T 2), (4.8)

where Cé’T and Cé’T are defined in Definition 4.2.1.

Proof. First notice that (H,)-(H,,, ) implies the strict positivity of uﬁfm +(1- u)(?iavg for any u € [0, 1].

avg
2 T
Then apply the Taylor formula twice: firstly for the function y — +fy aty = m around y =
2 T
% and secondly for the function x — 0't2(x) at x = xo around x = Xg, for any t € [0, T]. It

gives:

i w(@(xoW) w0 (xW) — (@ (XangV)p  [w(0 (x0)V)E = (02 (Xang V)]
Ow=\———— =0x,, + — - = 3 + R
T ZO-Xavg T SO—Xavg T

(o) (xaeV)E - (M) + 0 @) (xang V)] o [w(TT D) (Xang V)T ]2m2

=0 Xavg +

25-Xavg T 80_-xavg T So__iavg TZ
+ Rl + R2 + R3,
where:
2 T 2 T3 1 3 (1 ~ u)2
Ry =l (xO)V)O A (xavg)V)o) 3, =2 —2 |3 2 du,
0 8T3(uoy, + (1 —uoy, )
3 1 )
= (1 —u
R2 = W 0 ai} (w(o-z(x)v)g)l)C:MXO-{—(l—u)xavg Tdu’
_ (w((ﬂ(xo)\/)g - w(o-Z(xavg)v)g + mw((o-o-(l))(xavg)v)g) "iz
3 8(5’3’%‘1% T2 4

1
x f (I syt (1 — )t
0

Next remark that w(((c1)? + 00 P) (xaug)V)h = CL 1 (Xavg) and that [w((co D) (xaye )1 = 2CL 1 (Xavg).
Then we readily obtain with the assumption on m and (Hy,)-(H,,,) that Ry + Ry + Ry =

O(|lee Mo(0)2 My ()T ). o
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Second we analyse the corrective terms:

Lemma 4.2.2. Assume (H,,)-(H,,,) and suppose that |m| < Cy|oeo VT for a given C,, > 0. Then we

Xavg
have:
Y0a,7(X0) = Txy + Yia1(X0)M 4.9)
_ CéfT(xavg) + ZCIIS’T(xavg) w(o'(xavg)o'(1)(xavg)v)gcfj(xavg)
=Y0a.1(Xavg) — O xgye T 85. T m— 353 T2 m+ Yia,1(Xavg)M
Xavg Xavg
3 Cé’T(xavg) + ZCé’T(xavg) 2+ 3(‘)(O-(xavg)o—(1)(xavg)V)gCi,T(xavg)m2 B C(ljiT(xavg) + ZCZI‘TT(xavg)mz
253, T? 253, T3 40, T?
C‘)(o—(xavg)o—(l)(xavg)v)gciY T(xavg) 3
3 e 4 OllolalEy + M@ Mo(@) + Eap 1T,
Xavg

Yob.r(X0) + Y17 (¥0)m + yo,r (xo)m’ (4.10)

=007 (Xavg) + V15,7 Carg ) + ¥2,7 Farg I + Ol €y + MY Mo(0) + Exup)?1T).

Proof. The above expansions can be proved similarly than the expansion of Lemma 4.2.1 with long and
tedious computations. Since there is no extra difficulty, we skip further details. O

Lemmas 4.2.1 and 4.2.2 lead to the below Theorem:

Theorem 4.2.1. (3rd order expansion of the implied volatility at mid-point). Assume (Hy,) and (P).
We have:

2 1
O_I(XO’ T,k) =7TOa,T(xavg) + ”Ob,T(xavg) + (ﬂ'la,T(-xavg) + ﬂlb,T(xavg))m + ﬂZ,T(xavg)m + Error?a,xuvg’

4.11)
where the corrective coefficients  are defined in Definition 4.2.1.
Proof. We gather terms coming from Lemmas 4.2.1 and 4.2.2. First notice that:
‘U((O_O_(1))(xavg)v)gw(0—2(xavg)v)g = Cll,T(xavg) + Ell’T(xavg)-
to get:
(@I Clparg) ) pOxang) = € 1 (xae)
— Mm——s——m= o m. 4.12)
ZO-X‘WA’ T o-xavg T 2O-xavg T
Second remark that:
(0 (Xavg) D (XangV)§ € 7 (Xavg) =Chp(Xavg) + C5 1 (Xavg) + C1 7 (Xavg), (4.13)

(0 (Xavg )P KangV) €' 7 (Xavg) =2C} 7(Xavg) + (T D) (Xayg)V, 02 (Xang )V, (0T D) (Xarg)V)f . (4.14)
Then use the below relation easy to verify:

Cé’T(xavg)w(o—z(xavg)V)g N Cé’T(xavg)[w(o-z(xavg)v)g]z B Cé’T(xavg) + E:Té’T(xavg)
2 4 - 2 ’

Cé’T(xavg) -
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to write that:

Cé’T(xavg) 2 Cé’T(xavg) 2 Cé’T(xavg) 2 Cé’T(xavg) + Eé T(xavg) 5 CZS’T(Xan) 5
— m-— — m = m” = m- — —= m-. (4.15)
oy T3 25, T? 8T xp, I 253 T3 8T xpe I

Xavg Xavg

Next, take advantage of the identity:
w((o—o—(l))(xavg)v, a-z(xavg)va (O—G(l))(xavg)v)g - Cé,T(xavg)w(U_z(xavg)V)g = _[CQ’T(xavg) + CF‘Z’T(Xavg)],
to obtain:

i T(xavg) 3 [2C41;’T(xavg) + w((o—o—(l))(xavg)v’ O—z(xavg)va (0_0—(1))(xavg)v)g]

a_—iavg T3 5 &iﬂ‘w T3
6 T(xavg) B I6T(4XGV8)
0_-)3Cuvg T2 O—iﬂ\g T2
__ GG + Ci Gl Car(tus) (4.16)
20_—)5c T3 40—x T?
avg avg

Finally sum the relations (4.8)-(4.9)-(4.10) and take into account the mathematical reductions (4.12)-
(4.13)-(4.14)-(4.15)-(4.16) to obtain the announced result. O

5 Numerical experiments

>>Model and benchmark. Here we give numerical examples of the accuracy of our implied volatility
approximation formula with local volatility at mid-point (see (4.11) in Theorem 4.2.1). We consider a
time-independent CEV-Heston model:
s, =uSP \JY,dw,, S¢ = e®, 5.1
dY, =«(0 - Y,)dt + \JY,£dB,, Yy = v,
(W, B); =pdt.
This model is applied directly to the asset price and we apply our various expansion results by considering

a fictive log-asset with local volatility function o(x) = ue’~Y*. Using Proposition A.4.2 in Appendix
A.4, the implied volatility formula (4.11) writes explicitly:

B-1
PERSOK) T RIT (B 1’p2(SoKP T | p2(SoK)™ VT

10, T2 ~u(SoK)'T V{1 + ——— > ) (52)
242 )2 2 15 27 ps 2 =
p?ET 3(RY) ST 1 &°TR; WS oK1

2 +R2( w2 [_ ]

1 SoK Rls Rs
\ PEB = DISoR)T L0 isokp T - 1)
v 48v
PR s kTS R_f_R_lzs So
+ﬂ(S0K)%2[ 7+ B DS KT (72 = 7o) og(50)

22 52 s 2
pET 3R Ry B-17 , So

2 3 ! (_)_ 2a g )
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e B RY
W2(S oK1 12 16v

2 ps
Hog? 52+ S5 10g2(30))
24u2(S o K)P-1v K

where the coefficients v, R}, R;, R; and Ré" are defined in Proposition A.4.1 of Appendix A.4. Note that
if the correlation is equal to zero, many terms vanish and the formula becomes very simple.

As a benchmark, we use Monte Carlo methods with a variance reduction technique. The simulated
random variable is (S — K); using an Euler scheme (see [Gla04, Section 3.4]) and in order to reduce
the statistical error, we use the Heston control variate (S IT{ - K), — E[(SI;I — K).] where (S fl )rel0.7]
follows (5.1) with g fixed at 1. The latter expectation is computed using the Lewis formula [Lew00]. In
[BGM10b], the authors have studied the numerical accuracy of price approximations w.r.t. , 6, & and p
in the context of Heston models whereas the influence of the parameters § and u has been considered in
details in [BG12] in the case of pure local volatility models. This is the reason why we decide to freeze
at realistic values the set of model parameters (with an important negative skew) and allow the maturity
and the strike to vary in order to see the global accuracy. In all the tests we use the values:

So=1, u=025 g=05 vo=1, =12, x=3, £€=15 p=-70%, (5.3)

and we execute the Monte Carlo simulations with 107 sample paths and a time discretization of 300
steps by year. Using the Heston control variate, this number of simulations allows to obtain confidence
intervals with width reduced to a few bps> for a large range of strikes and maturities. All the following
computations are performed using C++ on a Intel(R) Core(TM) i5 CPU@2.40GHz with 4 GB of ram.

>>Accuracy of the implied volatility formula (4.11). In Tables 1, 2, 3, 4, 5 and 6 (corresponding to the
maturities 6M, 1Y, 2Y, 3Y, 5Y and 10Y) we give for various strikes the Black-Scholes implied volatilities
estimated by Monte Carlo (MC), the bounds of the 95%-confidence interval of the Monte Carlo estimator
(MC- and MC+) and the implied volatilities given by the approximation formula (5.2) (AF(x4,)). We

use the parameters as in (5.3) and the strikes are chosen to be approximately equal to S Oeq’“/ﬁ where
q takes the value of various quantiles of the standard Gaussian law (1%-5%-10%-20%-30%-40%-50%-
60%-70%-80%-90%-95%-99%) which allows to cover far ITM and far OTM options. For the sake of
completeness, we indicate the computational time to perform the Monte Carlo simulations.

Regarding the results, we see that our approximation formula (5.2) is very accurate, giving errors on
implied volatilities smaller than 20 bps for a large range of strikes and maturities. The results for ATM
options are truly excellent but we nevertheless observe inaccuracies for extreme strikes, especially for
OTM options (however for such strikes the accuracy of the Monte Carlo estimates is less good) and for
short maturity. This asymmetry in the errors is probably due to the important correlation. Higher errors
for short maturities is a counterintuitive fact with our error estimate (2.3) which was already observed in
[BGM10b] for Heston models. This could be explained by the convergence of the stochastic variance to
its stationary regime for long maturities whereas the skew is very important for short maturities owing
to the correlation. Thus we observe a maximal error for the whole range of strikes and maturities of
approximately 150 bps in Table 1 realized for the maturity 3M and the extreme strike 0.65. For long
maturities (3Y, 5Y and 10Y), errors on implied volatility are smaller than 15 bps if we except the largest
strike for which the Monte Carlo estimate is questionable because of the very large confidence interval.
For instance we report ND in the tabulars corresponding to the maturities 5Y and 10Y meaning that the
corresponding prices are outside the arbitrage bounds.

Last but not least, regarding the computational cost, we observe that we need approximately 2m30s per
month of the maturity for the Monte Carlo simulations (4h54m27s for the maturity 10Y!), whereas the

31 bp (basis point) is equal to 0.01%.
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whole set of implied volatilities is computed in less than 1 ms with the implied volatility approximation
formula. This is a very significant advantage allowing real-time calibration procedures.

As a conclusion our implied volatility approximation provides very good accuracy with a computational
cost close to real-time and is able to deal naturally with general time-dependent local volatility functions.

Table 1: Implied Black Scholes volatilities (%) for the Monte Carlo simulations (execution time:
17m02s) and the approximation AF(x,,,) expressed as a function of strikes for T = 6 M.

Strikes 0.65 0.75 0.80 0.85 0.90 0.95 1 1.05 1.10 1.20 1.25 1.35 1.50

MC 3486 31.86 3049 29.18 2794 26774 2561 2452 2350 21.64 2082 1945 18.01
MC- 3485 31.86 3049 29.18 2793 2674 2561 2452 2350 21.64 2082 1944 1795
MC+ 3487 31.87 3049 29.18 2794 2675 2561 2453 2350 21.64 2083 1946 18.07
AF(x,,) 3504 3193 3052 29.19 2793 2674 2560 2452 2348 2153 20.61 18.86 1645

Table 2: Implied Black-Scholes volatilities (%) for the Monte Carlo simulations (execution time:
31m33s) and the approximation AF(x,,,) expressed as a function of strikes for 7 = 1Y.

Strikes 0.55 065 075 0.80 090 095 1 1.05 1.15 1.25 1.40 1.50 1.80

MC 3636 3349 31.01 29.890 27.85 2691 26.02 2517 23.61 2222 2043 1944 17.32
MC- 36.34 3348 31.01 29.89 27.84 2690 2601 2517 2361 2222 2043 1943 17.16
MC+ 36.37 3349 31.02 2990 2785 2691 2602 2517 23.62 2223 2044 1945 17.47
AF(x,,) 36.56 3358 31.05 2992 2785 2690 26.00 2515 2357 2212 20.16 1897 15.83

Table 3: Implied Black-Scholes volatilities (%) for the Monte Carlo simulations (execution time:
1h4m11s) and the approximation AF(x,,¢) expressed as a function of strikes for 7' = 2Y.

Strikes 045 055 065 075 085 090 1 1.10 1.20 1.35 1.55 1.80 230

MC 37.22 3446 32.19 3026 2859 2783 2644 2520 24.07 2258 2089 19.16 16.72
MC- 3720 3445 32.18 3026 28.59 27.83 2644 2519 24.07 2258 20.88 19.14 16.26
MC+ 37.24 3447 3220 3027 28.60 27.84 2645 2520 24.08 2259 2089 19.18 17.05
AF(x,,,) 3732 3452 3222 3028 28.59 27.83 2643 2518 2404 2252 2076 1887 15.84

A Appendix

A.1 Change of model

In this section, we justify why we work without loss of generality with the model (1.1)-(1.2). If we
consider a general time-dependent CIR process, the formulation becomes:

X(t, X) VY:
2

dX, =2(t, X,) \JY:(dW, — dr), Xo = xo,
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Table 4: Implied Black-Scholes volatilities (%) for the Monte Carlo simulations (execution time:
1h31m44s) and the approximation AF(x,,¢) expressed as a function of strikes for 7' = 3Y.

Strikes 0.35 0.50  0.55 0.70  0.80  0.90 1 1.10 1.25 1.45 1.75 2.05 2.70

MC 39.08 3473 3359 3074 29.19 27.84 26.65 2557 24.16 2255 2057 1897 16.32
MC- 39.04 3471 3358 30.74 29.19 2784 2664 2557 2415 2254 2055 1894 15.58
MC+ 39.11 3474 3360 3075 2920 2785 2665 2558 2416 2255 2058 19.00 16.79
AF(x4,) 39.13 3476 3362 30.76 29.20 27.85 26.65 2558 24.15 2252 2049 1882 1597

Table 5: Implied Black-Scholes volatilities (%) for the Monte Carlo simulations (execution time:
2h29m18s) and the approximation AF(x,,,) expressed as a function of strikes for 7 = 5Y.

Strikes 025 040 050 060 0.75 0.85 1 1.15 1.35 1.60  2.05 250  3.60

MC 41.27 36.15 33.81 3193 29.68 2844 26.86 2552 2401 2245 20.25 18.53 15.59
MC- 4121 36.12 3379 3191 29.67 2843 26.85 2551 24.01 2245 2023 1848 ND

MC+ 4133 36.18 33.82 31.94 29.69 2845 26.86 2553 24.02 2246 2027 1857 16.76
AF(x,,) 4127 36.16 3382 3194 29.69 2845 26.87 2553 2403 2246 2024 1851 1544

dYt =Kt(9t - Yt)dt + 7] \/?tdBty Y() =Vvy > O,

with a correlation (p;)seq0,71 between W and B. We assume the below hypothesis:
(P)’: k, @ and y are positive, measurable and bounded on [0, 7'] with v;,,s > 0, and 2(X¢);,s > 1. Now set
/ Y

V, = eho ksds Y;. A direct application of the Itd formula leads to:
AV, = (b “S8)dr + (2 b)) \VidB,, Vo = vo > 0,
while the dynamic of X becomes:

S, X,)e 3 b <sds 7,

dX; = (1, X)e 3 b8V, dw, - p

dr), Xy = xo.

Setting a; = ef(; %450, and & = ez b %45y, for any r € [0, T], o(t, x) = 31, x)e_% Jysds for any (¢, x) €
[0, T] xR, we obtain a formulation equivalent to (1.1)-(1.2). Observe that (P’) < (P) and that the local
volatility functions o and X have the same space regularity.

A.2 Explicit computation of the corrective terms of Theorem 2.2.1

We give the full derivation of the corrective terms in the approximation (2.2) of Theorem 2.2.1. We begin
with the proof of Lemma 2.3.1 and next we give the details of the computation of the corrective terms.

A.2.1 Proof of Lemma 2.3.1

We proceed by induction. One needs the following technical result:
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Table 6: Implied Black-Scholes volatilities (%) for the Monte Carlo simulations (execution time:
4h54m27s) and the approximation AF(x,,¢) expressed as a function of strikes for 7 = 10Y.

Strikes 0.15 025 035 0.50  0.65 0.80 1 1.20 1.50 1.95 2.75 3.65 6.30

MC 4471 39.62 3640 33.11 30.77 2897 27.09 2559 2381 21.79 19.28 17.33 15.31
MC- 44.60 39.56 3636 33.08 30.75 2895 27.07 2558 23.80 21.78 19.25 17.22 ND
MC+ 4483 39.69 3644 33.14 30.79 2898 27.10 25.60 23.82 21.81 1931 1743 16.28
AF(x,,) 44.69 39.63 36.41 33.12 30.78 2898 27.10 25.61 2383 21.81 19.28 1730 13.70

Lemma A.2.1. Let (M;)ic[0,1] be a square integrable and predictable process, (fi)icjo,1] be a measurable
and bounded deterministic function and ¢ € Cy(R). Then, we have:

T T T T
e[ sawy [ maw) =5 pawy [ i)

T T T T
e[ sawy [ mas) =B [ paw [ o)

Proof. These results directly come from the duality relationship of the Malliavin calculus (see Lemma
1.2.1 in [Nua06]). o

If N =1 and Iy = 0, there is nothing to prove. If N = 1 and Iy € {1, 2}, Lemma A.2.1 is a particular
case of Lemma 2.3.1 noting that Vi € N, E(go(i)( fOT f,dW,)) = Q‘f( fOT J:dW;), thanks to the regularity of
. Suppose that the formula (2.11) is true for N > 2. Then apply Lemma A.2.1 if Iy, € {1, 2} to obtain:

T T IN+1 53 / / !
E(g( f fdW)) f IN+ Ly, f INgy - - f L dW,h . AW dw,1)
0 0 0 0

T T__ IN+1 N ) I /
:E((,D(IL[N+1¢O)(f ﬁth) f lN+1s[N+l f ZNJN f cen f ll’tl thll ISP th}ydtN_'_l)
0 0 0 0 0
T T TA N %) I J
:E((,D(IL[NJrl#O)(f ﬁth) f (le[N f lN+1,st)f [N f ll’tlthll [N dWl}C’)’
0 0 N 0 0

where at the last equality we have used the fact that fOT g:Zdt = fOT( ftT gsds)dZ, for any continuous
semi-martingale Z starting from 0 and any measurable and bounded deterministic function g (apply the

Itd formula to the product ( fl ! 8sds)Z;). We conclude without difficulty with the induction hypothesis
and leave the details to the reader.

A.2.2 Calculus of the corrective terms

We recall our order 3 approximation:
P () yP WP X2T, Lo o) vpiy2
E[A(X7)] + E[A(X7) X1 7] + Elh (XT)T] + EEUL X)X 7l

We compute each correction term separately, and pay attention to the different nature contributions in
these corrections (pure local volatility part, pure stochastic volatility part and both local and stochastic
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part).
>>Step 1: contribution with X; 7. Apply the Lemma 2.3.1 to ¢(-) = hD(xp — 1 fOT ol dt +), fi = o4,
and:

T %) o A
X7 = f (a,z)a,z f oy Ay (@AW, — T4y + f f,l/l,ldBtl)(dW,z ondndh), (A
0 0 2 2/1[2

to get:

N

3 1 ¢
BUXDX1r] = C) 71GAXT) — 563X + 561X + —HIGHXD) ~GAXD)L (A2)
where:
Cl 1 = w(péav, 0-2)5, Cll’T = w(o?v, O'O'(I)V)g.

>Step 2: contribution with X, 7. In view of (2.7)-(2.5)-(2.6)-(2.8)-(2.9), we have:

)

= _1 ! P_ 2,2 q)) 0'_
2 —2 /1[[(Xt X()) O-t + 2X1 ,O’t ](dW[ O_t/ltdt) + (X xo)Vl 1 (th 20—[/l[dt)
0

lfT(XP Yo D)? dt+1fT Vas AW, — o, ,d?) 1fT Vi, aw,
Y t —X0) O ") vy " — 01 t— oAl — = —3 0 AWy,

where applying the Itd formula:

(XP_XO)Z 11 Ay lz Ay, )
— f f iy e (AW, — dr))or, Ay (AW, — d) + = f o2vad,  (A3)
0

oA
xF - x)Vi, = f ( f &5, A5 dBy, Yoy, Ay (AW, — ”2 2 dty)
0 0

! 153 oy /lt f
+f (f O-tlﬁtl (thl - ! ldl’l))gsz/lsdesz +f é‘:[lptlo'tlvtldtl, (A4)
o Jo 2 0
Vg,,:f (fzfsl/lslstl)gﬁdBm. (A.5)
0o Jo As,
(A.1)-(A.3)-(A.4)-(A.5) and applications of Lemma 2.3.1 allow to obtain:
T V2
E[h(l)(XIT))@]wLlE[h(z)(XIT))f ﬁoyzdt] (A.6)
2 8 0 Vi
sghxh) ghaxb G
=Cy,7IGHXT) ~ 263X]) + =2 - =]+ 2”[9”0(”) G (xh)]
564(xP) Gh(xP) g( ) Gh(xP)
+ CorlGi(XD) - === +2G3(X]) - =1+ Ol =5 - GA(XD) + =)
h XP 5 h XP h XP h
(D 2B T T b - GIxD
Gk C, C3
+ Chyr [=GAXD) + GAXT) = =] = =S5 GI(XD) + — G ~ GAXDI,
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where:

Céa’T = w(o-zv (o'(l))zv)g, CébT = w(o-zv 0'0'(2)v)T Céa’T = w(o-zv, o’zv, (0'(1))2v)g,

Gy r = w(péov, péa, O'Z)g,

Cé‘fT = w(o?v, péov, 0'0'(1))3,

CébT w((T v, v, O'O'(Z)V)g, C4T = a)(O' v, oDy, O'O'(I)V)g,
CIIV’T = w(péov, 0'0'(1))0, CZZTT = w(péoav, a2y, 0'0'(1))0,

CffT = w(péov, o2, O'O'(I)V)g.

>>Step 3: contribution with X %’T. Starting from (2.7) and applying the Itd formula we have:

1 T V1
§X12,T - f XX = )V, + 2 ’)(th o ,dr) (A7)
0
I 1 | 17 Vlz /
+ = f (XF = x0?(0")v + (XF = x)Vio0tDyde + = | —Lo?dy,
2 0 8 0 Vi

where:

! (XP - XO)Vl,t o
X1 ,(XP — x0) = f [(XF - x0)% 0t 2y, + — o (AW, - o Ay diy)
0 1

! oy Ay, ' (1 Vi
+ letl O-tl/ltl (dW,l - 2 dtl) + [( - X())O'IIO' V[l + T tl]dtl’ (AS)
0

T V2 ¢
1,
Xl,tVl,t :f [(X; - x0)V1 t10' /ltl 2?1 ](thl O'zl/ltldll)"‘fXl,tlftl/ltldBtl
0 t 0

t
Vino
f ptlftl (th _ xO)O'(l)V;I I Y ll 1 ]d 1s

(A.9)
Vi, =2 fo ( fo &4, dBy))é,A,dB,, + j; & v,dt (A.10)
From Lemma 2.3.1 and (A.8)-(A.3)-(A.1)-(A.4) it follows that:
E[AP(XP) fo ' X1.,(XF = x0)a VA, dW, — o, ,d)] (A.11)
=Clia712G6(X7) = 6G5(X7) + g};( D gy 9D CirlGiXT) = 2G3(XT) + G5 (XD)]
L aC angh(XP) sg’;ixi) L GhKE) - gh<4 2 CifT[gh( 7 Gy ggg@)]
+ €l TG — 36D + 13@2@?) ) 3@’3’;?(5) . QZZXi)] Lt g2<2X$> ) 5§§§X§’> L G
- QQZX;)] + CyrlG4(X7) - 39;5(5) + QZ(ZX;)] + Cg’T [G3X7) - G5 (XD)1.
where:

Cllla r= a)(0'2v, v, (0'0'(1))\/, (0'0'(1))\/)5, Cl“b,T = a)(0'2v, (0'0'(1))\/, v, (0'0'(1))1/)3,

Césa r = w(péov, 0'2v, 0'2, O'O'(l)v)g, CéSb’T = w(o-zv,pfav, 0'2, O'O'(l)v)g,

CéScT = w(péov, 0'2,0'2\/, O'O'(l)v)g.
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Similarly, using Lemma 2.3.1 and (A.9)-(A.4)-(A.10)-(A.1), we have:

T
%E[h@(xi) fo W(dw, — o 4,d0)] (A.12)
Ghxty 5Guxh) Gh(xh) Ghxrt Ghxt
_(C7dT Cése,T)[ 62 T/ 54 T +QZ(X$)_ 34 T ]+C?,T[ 42 T _gh(XP) 22 T ]
S CS
SIGHX) ~ 265XT) + GUXD] + —IGHXD) ~ 264X + GHXD)]
Ghxty 5Guxh) Gixby G
+ CéffT[ o + G — =]+ G — 2G4XT) + GY(XD)]
Qh(XP) 3ghxh)  Ghxhy G
+ b S+ S G ~ GADL.
where:
G5 r = w(péov, péa, 0'2)5, Cir = w(&v, 0'2,0'2)5, Cior = W(péov,épvo, 0'2,0'2)5,
C4bT w(pévo, o ,p.fO'V o )0, CéfT = w(péov, ocoDy, 0'2)(7;, Clg;T = a)((rzv,pfcr(l)v, O'z)g,

I 2 ) i 2 1 ONT 1 2 1 INT
C7Sd,T = w(péov, oV, ooy, o )0, Cfe,T = w(ov, péov, ooy, o )0 C7Yf’T = w(ocv, ool )v,p.fa'v,O' )o -

Then using again Lemma 2.3.1 and (A.3)-(A.4) it comes:

~E[h®(xD) f (XP = 02", + (XP = x0)V100P)di] (A.13)
=C}, 7IGH(X]) - GA(X]) + g 3(4 5)] + Cé”gh(X”) +(Cyr + C?T)[gh(xp) g I;;X;)] + C§T93<x$).
Finally, we sum the contributions (A.1 1)—(A.12)—(A.13) to obtain in view of (A.7):

E['®(XD)XT 11— <E[RP (X)) f —o-,zdt (A.14)
Ll + €y G — 3GAKD) + 13@4(#’) 3@25(?) . QZZX%]
+Cl 2650 - 9 %X;) 2 %Xi)] CirIGHXT) - 9 %Xi) +g 3(2)(5)]
+ (Ch o+ Ch o+ Ch o+ C  + C C?fj)[g’g(zxi) - Sg};iXP) +Gh(X7) - ggfﬁ) ]

g( 9) Ghxhy G o
+ 51— = GAXD) + =1+ — G — 2G4X) + GA(XD)] + — T IG4XT) ~ GAXD)]
. gh(XP) L Ghxp g Gl 3GhxD)  ghxd)
+(2C4aT+C4bT)[ 52T + 44T]+C16,T[ 42T _ 34 . 24T]
Gixh) G, gh(Xf’) G C
+C§a,T[gZ(X5>—g§(X‘T’>+ S+ S GAKD) + (Cp + Rl T+ SRGHXD.

>Step 4: some mathematical reductions. There are some relations between the expansion coefficients.
The reader can easily verify that:

(e T)2 , (Cll T)2
2 =2Cy,r + Cib,r’

Al
=2C\ 7 + Cllb T
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1 s _ s ls ls ls ls Is
CirCir =Crar + Copr + Coor + Crur + Coor + Cype

The first identity is proved in [BGM10b, section 5.4] and the others are similar. In addition we set

I _ ! I _ !
Cor = Coar + Copr ad Gy = i + e
>Final step. Taking advantage of the above simplifications and gathering the different contributions
(A.2)-(A.6)-(A.14) of steps 1 — 2 — 3, we obtain the announced formula (2.2), putting together the cor-
rective terms according to the order of the Greeks.

lBS

A.3 Computations of derivatives of Call”> w.r.t the log spot and the volatility

lBS

In the following Proposition, we give the derivatives at any order of Call®> w.r.t. x:

Proposition A.3.1. Let x,k € R andy > 0. For any integer n > 1, we have:

H; 1(di(x,y,k))
j bl

n—1
-1 .
P Call®S(x, y, k) =e N (i (%, 3, 5) + Lz €N (di (5,7, K)) )| (” j )(—1)1‘1
yi

x)l

j=1

where (H) jen are the Hermite polynomials defined by H j(x) = (-1)/ el 261 j(e_xz/ 2y v( J,x) e NXR

In the next Proposition, we provide the formulas of the Vega®® and the Vomma®3:
Proposition A.3.2. Let x,k € R, o> 0and T > 0. We have:
Vega®S(x, 02T, k) =0, Call®S (x, 02T, k) = e VTN’ (d) (x, 0T, k)),
VegaPS(x, 02T, k)
o

Vomma®S (x, 0T, k) =8, Vega®S(x, 0T, k) = di(x, 0T, k)da(x, T, k)

 Vega®S(x, 0T, k) (- k)? 0'2T]
B o o?T 4 -
We finally state relations (obtained with Mathematica) between the derivatives of Call® w.r.t. x and
the Vega®S and the Vomma®S:
Proposition A.3.3. Let x,k € R, o > 0and T > 0. We have:
Vi BS , 2T, k
(6 — 3)CallPS (x, 2T, k) = VBT 1)
* oT
3 1 (x—k)
@ - 5‘9)28 + 5a,()cauBS(x, 2T, k) = —Vega®S(x, 0T, k)W,
5 1 x-k? 1
(T =207 + 7075 = 700CAIP(x, T, k) = Vega™ (x, T, D] == = —1,
(x-k? 3 1

7 1
(303, — 60 + Eaiz - Eax)CallBs(x, 02T, k) = Vega®S(x, 0T, k)[3 I,

oST> o372 40T

1 3 13 3 1
50— 3% + 2Tk = J0% + SOCAl (1, T,
(x —k)? 1 3 1 (x — k)2
=Vega®S(x, o T, k)[ - 3 i T gt 20'5T3] + EVommaBS(x, a?T, k) o
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(x—k) 1

13 1., BS 2 BS 2
(56}(3 - Eﬁxz)Call (X,O' T, k) = Vega (X,O' T, k)[—m m],
1y 1.3 BS,. 2 _ BS,. 2 (x = k)? 1 1 (x = k)
(§8x4 - §8x3)Call (x,0°T, k) = Vega” (x,0°T, k)| 75573 + 80T 25372 20'3T2]’
(x — k)? 1 1

1 1 1
(0% = 500 + 70)Call™ (x, 0T k) = Vega™ (x, T, )| 1,

405T3  160T  403T2

(x —k)? 1 (x —k)
T3 T2 20972

3(x — k)? 3 (x — k) 1
205T3  203T2 20372 80T

3
2

1
(@ = 503 + 50)Call™ (x, 0T k) = Vega™ (x, T, b)[

3.4 5
(G0 = 5% + I2)Call™ (x, 0T, k) = Vega™(x, 0T, K)[

%agﬁ - ga; +0% - %a;)CauBS(x, )
(x — k)? 3 3(x —k) 1
STA 20573 T AT | 800T2
. VommaP®® (x, 02T, k) [(x -k (x- k)]
2 ooT4 204737

1
&5 + 30 CaAP (x, T, k)

I
(

=VegaBS (x, 02T, k)[-3 ]

1, 1
(§ax6 4
(x — k)? 3 3(x—k). Vomma®S(x, 2T, k)[ (x —k) 1

2
+ - )
407T4 80373 80573 2 20372 40T I

:VegaBs(x, T, k[-3

A.4 Applications of the implied volatility expansion at mid-point for time-independent
local and stochastic volatility models with CIR-type variance

We specify in this section the form of the implied volatility approximation at mid point when considering
the time-independent local and stochastic volatility model with CIR-type variance:

O—(Xt)\/?t
2 dr]

dX, = o(X,) VY, [dW; — fl,  Xo = xo,

dY; = k(0 — Y,)dr + £€/Y,dB;, Yy = vp,
d(W, B); = pdt.

In view of A.1, we can apply our different price and implied volatility expansion theorems by considering
in the various corrective coeflicients C (defined in Theorem 2.2.1 and Definitions 4.1.1 and 4.2.1) the
time dependent volatility function o (z, x) = o(x)e” 7, the time dependent deterministic variance function
v; = vo+0(e"' — 1) and the time-dependent volatility of volatility function & = fe%t. Thus the coefficients
are obtained by simple iterated integrations of exponential functions. Using Mathematica, we derive the
following explicit expressions:

Proposition A.4.1. For o(t,x) = o(xX)e 2, v = vy + 6 — 1), & = §ek7l and p; = p, one has:

T 3 D (2 T2
fo vie™dt =VT, Cl ) =TT 2(x)v :
2 (D[ V)? + e @) (v T2 @[V + co@) (v’ T3
Ch (%) = 5 . Chp(x) =Ch(x) = c :
() DRV T3 TS DV T
CZ,T(X) = 6 ’ CéO,T(x) = oy )
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o VP v T?

Cs 7 (x) =[(@)? + 0@ (2T, Cor(V) =—F—,
pfO'S(X)RSTZ p2§20'4(x)RST3
Clp() =————. C () =—————
(RT3 , , péa?(x)cV(x)RST?
Cr(0) ="———, Ciir(®) =C7(x) = R
péat(x)oD(x)RHT? péa(x)ocD(x)RET?

CHr(x) =C¥p(x) = ——— i) =Cgr() = Clyr(x) = E—
, , pért () (ORST?

Ciir(0) =Cyr(x) = —

where:
e T (—1 + e"T)
V== )" 40,
K

' e T (—2KT + 2T — 2) e T (2/<Te"T -2 4 2)

RS = (vo - 6) +6 ,

K2T? K2T?

) e (<3kT(KT +2) + 6T = 6) &7 (6T (kT - 2) + 64T + 12)

RS = (v —
2 (VO 9) K3 T3 + 0 K3 T3 B

Y e 2T (<6 TkT + 36T —3) 2T (127 + 36XT (2T - 3) - 3)

R} =(vo - ) =3 +6 e ,
3
ks :m{e_2KT(v0 — 0)(vo(3 + 2kT) — 6(5 + 2kT)) + 2“1 (6*(4 + kT(6 + kT))
K

— 0vo(=2 + KT (4 + KT)) — 2v%) + 6*(4kT — 13) + 46vg + v},
3
RY === e T (vg — 0% + e (6% (=4 + KT (=2 + KT)) — Ovo(=2 + KT (=4 + kT)) — 2kTV?)
K
+6%(5 + KT (=4 + KT)) + 26vo(=2 + kT) + v3},
Is _ 3
32373
+ @ (11 + 2kT (=4 + KT)) + 46vo(=2 + kT) + V).

(72T (vo — O)(vo(3 + 2kT) — O(5 + 2«T)) — 4e™T (vy — 26)*

We have in addition the relation:

RST2 (Rls +R1s +RIS)T3
T 12 =1 26 3 (A.15)

Using the relation (A.15), one gets without difficulty :

Cern) 3CP (0 CH(0  Cern)  3(C,C ) _(Ci,TCf’T)(x)

FT2 265372 253T 25372 20373 25313
G G (CpCipW G (€10 0W
85T  85,T 85317 87T 85312
(G CID@ G Cor() 3(C 00 Gl (€O )
207372 25372 46372 46573 463712 4373
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(Cp+Cyp(x)  3CF (0 CPr(x)  CPr(x)  3(C)C) () 0

G313 20573 25073 25373 G4 ’
CPir(x) . Coir(x) B Clr(0) + C2L(x0) + Cy (%) :(CII’TCf’T)(x)
45T = 87,T 86372 25973

_Cll‘fr(x) ) Cor(x)  Cip(0) + CEp(x) + Cfy 1(x) o

26372 45377 453713 '

Then the above mathematical reductions allow to obtain the following expressions for the coefficients y
and 7 defined in Definitions 4.1.1 and 4.2.1 :

Proposition A.4.2. For o(t,x) = O'(X)e_%t, vi=vo+ 0 —1) & = fe%t and p; = p, one has:

- (x0)R]T

Yoa.r(x0) =0(x0) V¥{1 + pf(r#},

_ 0'(1)()60) 3 PfRf
20(x0) Ao (xo)V*

YiaT(X0) =0 (x0) V¥

(2) 1 20xWwT
pPET 3(RY)? . 2xowT 1 ETRy 1 o2(xT
) [ — + 2( - =) ) [— + —]
v 32v 48 12 v 24 96
ls s
pto V)T R, RS RS
ez Y 1 T(—=2 - L
+ = [ g to (x0)v (483 32)]},
2 2T 3(RS)2 RS pfO'(l)(X )T RS Rls
o VP L PR N, pio Txo)T Ny Ky
Y1b,7(x0) =07(x0) VV{ 55 L =l + 31k
2) (1)y2 22 RS 3(RS)2 2Rs
Y2.1(x0) =0(x0) \/‘_—}{a' (o) (@ )2 (x0) e = B i =
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