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Abstract

This paper studies sparse spikes deconvolution over the space of mea-
sures. For non-degenerate sums of Diracs, we show that, when the signal-
to-noise ratio is large enough, total variation regularization (which the
natural extension of `1 norm of vector to the setting of measures) recovers
the exact same number of Diracs. We also show that both the locations
and the heights of these Diracs converge toward those of the input mea-
sure when the noise drops to zero. The exact speed of convergence is
governed by a specific dual certificate, which can be computed by solving
a linear system. Finally we draw connections between the performances
of sparse recovery on a continuous domain and on a discretized grid.

1 Introduction

1.1 Sparse Spikes Deconvolution

Super-resolution is a central problem in imaging science, and loosely speak-
ing corresponds to recover fine scale details from a possibly noisy input signal
or image. This thus encompasses the problems of data interpolation (recovering
missing sampling values on a regular grid) and deconvolution (removing acqui-
sition blur). We refer to the review articles [25, 22] and the references therein
for an overview of these problems.

We consider in our article an idealized super-resolution problem, known as
sparse spikes deconvolution. It corresponds to recovering 1-D spikes (i.e. both
their positions and amplitudes) from blurry and noisy measurements. These
measurements are obtained by a convolution of the spike train against a known
kernel. This setup can be seen as an approximation of several imaging devices.
A method of choice to perform this recovery is to introduce a sparsity-enforcing
prior, among which the most popular is a `1-type norm, which favors the emer-
gence of spikes in the solution.
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1.2 Previous Works

Discrete `1 regularization. `1-type technics were initially proposed in geo-
physics [9, 26, 21] to recover the location of density changes in the underground
for seismic exploration. They were later studied in depth by David Donoho
and co-workers, see for instance [12]. Their popularity in signal processing and
statistics can be traced back to the development of the basis pursuit method [8]
for approximation in redundant dictionaries and the Lasso method [29] for sta-
tistical estimation.

The theoretical analysis of the `1-regularized deconvolution was initiated by
Donoho [12], see also [28]. Assessing the performance of discrete `1 regulariza-
tion methods is challenging and requires to take into account both the specific
properties of the operator to invert and of the signal that is aimed at being
recovered. A popular approach is to assess the recovery of the positions of the
non-zero coefficients. This requires to impose a well-conditioning constraint
that depends on the signal of interest, as initially introduced by Fuchs [18],
and studied in the statistics community under the name of “irrepresentability
condition”, see [32]. A similar approach is used by Dossal and Mallat in [13] to
study the problem of support stability over a discrete grid.

Imposing the exact recovery of the support of the signal to recover might
be a too strong assumption. The inverse problem community rather focuses on
the L2 recovery error, which typically leads to a linear convergence rate with
respect to the noise amplitude. The seminal paper of Grasmair et al. [19] gives
a necessary and sufficient condition for such a convergence, which corresponds
to the existence of a non-saturating dual certificate (see Section 2 for a precise
definition of certificates). This can be understood as an abstract condition,
which is often difficult to check on practical problems such as deconvolution.
We draw connections between our work and result on deconvolution on discrete
grids in Section 6.

Let us note that, although we focus here on `1-based methods, there is a
vast literature on various non-linear super-resolution schemes. This includes for
instance greedy [24, 23], root finding [2], matrix pencils [11] and compressed
sensing [16, 14] approaches.

Inverse problems regularization with measures. Working over a discrete
grid makes the mathematical analysis difficult and leads to overly pessimistic
performance guarantees. Following recent proposals [10, 3, 7], we consider here
this sparse deconvolution over a continuous domain, i.e. in a grid-free setting.
This shift from the traditional discrete domain to a continuous one offers con-
siderable advantages in term of mathematical analysis, allowing for the first
time the emergence of almost sharp signal-dependent criteria for stable spikes
recovery (see references below). Note that while the corresponding continuous
recovery problem is infinite dimensional in nature, it is possible to find its so-
lution using either provably convergent algorithms [3] or root finding methods
for ideal low pass filters [7].

Inverse problem regularization over the space of measures is now well under-
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stood (see for instance [27, 3]), and requires to perform variational analysis over
a non-reflexive Banach space (as in [20]), which leads to some mathematical
technicalities. We capitalize on these earlier works to build our analysis of the
recovery performance.

Theoretical analysis of deconvolution over the space of measures. For
deconvolution from ideal low-pass measurements, the ground-breaking paper [7]
shows that it is indeed possible to construct a dual certificate by solving a linear
system when the input Diracs are well-separated. This work is further refined
in [6] that studies the robustness to noise. In our work, we use a different
certificate to assess the exact recovery of the spikes when the noise is small
enough.

In view of the applications of superresolution, it is crucial to understand the
precise location of the recovered Diracs locations. Partial answers to this ques-
tions are given in [17] and [1], where it is shown (under different conditions on
the signal-to-noise level) that the recovered spikes are clustered tightly around
the initial measure’s Diracs. In this article, we fully answer to the question of
the position of the recovered Diracs in the setting where the signal-to-noise ratio
it large enough.

1.3 Formulation of the Problem and Contributions

Let m0 =
∑N
i=1 a0,iδx0,i be a discrete measure defined on the torus T = R/Z,

where a0 ∈ RN and x0 ∈ TN . We assume we are given some low-pass filtered
observation y = Φm0 ∈ L2(T). Here Φ denotes a convolution operator with
some kernel ϕ ∈ C2(T). The observation might be noisy, in which case we are
given y + w = Φm0 + w, with w ∈ L2(T), instead of y.

Following [7, 10], we hope to recover m0 by solving the problem

min
Φm=y

||m||TV. (P0(y))

among all Radon measures, where ||m||TV refers to the total variation (defined
below) of m. Note that in our setting, the total variation is the natural extension
of the `1 norm of finite dimensional vectors to the setting of Radon measures,
and it should not be mistaken for the total variation of functions, which is
routinely use to recover signals or images.

We may also consider reconstructing m0 by solving the following penalized
problem (see for instance [1]) for λ > 0

min
m

1

2
||Φm− y||2 + λ||m||TV. (Pλ(y))

This is especially useful if the observation is noisy, in which case y should be
replaced with y + w.

Three questions immediately arise:

1. Does the resolution of (P0(y)) for y = Φm0 actually recovers interesting
measures m0?
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2. How close is the solution of (Pλ(y)) to the solution of (P0(y)) when λ is
small enough?

3. How close is the solution of (Pλ(y + w)) to the solution of (Pλ(y)) when
both λ and w/λ are small enough?

The first question is addressed in the landmark paper [7] in the case of
ideal low-pass filtering: measures m0 whose spikes are separated enough are
the unique solution of (P0(y)) (for data y = Φm0). Several other cases (using
observations different from convolutions) are also tackled in [10], particularly in
the case of non-negative measures.

The second and third questions receive partial answers in [3, 1, 17]. In [3]
it is shown that if the solution of (P0(y)) is unique, the measures recovered
by (Pλ(y + w)) converge to the solution of (P0(y)) in the sense of the weak-*

convergence when λ → 0 and
||w||22
λ → 0. In [1], error bounds are derived from

the amplitudes of the reconstructed measure. In [17], bounds are given in terms
of the original measure.

However, those works provide little information about the structure of the
measures recovered by (Pλ(y+w)): are they made of less spikes than m0 or, in
the contrary, do they present lots of parasitic spikes?

Contributions The present paper focuses on the problem of studying the
structure of the recovered measure. We show that under mild assumptions on
m0, for λ and ||w||2/λ small enough, the reconstructed measure has exactly the
same number of spikes as the original measure and that their locations and
amplitudes converge smoothly to those of the original one. Moreover, we show
that the errors in the amplitudes and locations decay linearly with respect to
the noise level. To this end, we introduce the Non Degenerate Source Condition,
a variant of the so-called source condition which involves the second derivatives
of a specific dual certificate. Moreover, we show that if the original measure
is known, the corresponding dual certificate can be computed numerically by
solving a simple linear system, without handling the difficult constraint that it
should belong to the L∞ unit ball. We apply these results to the case of the
ideal low-pass filter, and show how our results can also be used to study the
recovery on a discrete grid.

Outline of the paper Section 2 defines the framework for the recovery of
Radon measures using total variation minimization. We also expose basic re-
sults that are used throughout the paper. Section 3 is devoted to the main result
of the paper: we define the Non Degenerate Source Condition and we show that
it implies the robustness of the reconstruction using (Pλ(y + w)). In Section 4
we show how the specific dual certificate involved in the Non Degenerate Source
Condition can be computed numerically by solving a linear system. The partic-
ular example of the ideal low-pass filter is treated in Section 5. Lastly, Section 6
shows that this framework can also be used to study the recovery on a discrete
grid.
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Notations For a ∈ RN , x ∈ TN we write ma,x =
∑N
i=1 aiδxi , with the implicit

assumption that ai 6= 0 and xi 6= xj for all 1 6 i, j 6 N . Given a convolution
operator Φ with kernel t 7→ ϕ(−t), we define Φx : RN → L2(T) (resp. Φ′x, Φ′′x)
by

∀a ∈ RN , Φx(a) = Φ(ma,x) =

N∑
i=1

aiϕ(xi − ·),

Φ′x(a) = (Φx(a))′ =

N∑
i=1

aiϕ
′(xi − ·),

Φ′′x(a) = (Φx(a))′′ =

N∑
i=1

aiϕ
′′(xi − ·).

We define

Γx = (Φx,Φ
′
x) : (u, v) ∈ RN × RN 7→ Φxu+ Φ′xv ∈ L2(T), (1)

Γ′x = (Φ′x,Φ
′′
x) : (u, v) ∈ RN × RN 7→ Φ′xu+ Φ′′xv ∈ L2(T). (2)

We denote by supp(m) the support of a measure.

2 Preliminaries

In this section, we precise the framework and we state the basic results
needed in the next sections. We refer to [4] for aspects regarding functional
analysis and to [15] as far as duality in optimization is concerned.

2.1 Topology of Radon Measures

Since T is compact, the space of Radon measuresM(T) can be defined as the
dual of the space C(T) of continuous functions on T, endowed with the uniform
norm. It is naturally a Banach space when endowed with the dual norm (also
known as the total variation), defined as

∀m ∈M(T), ||m||TV = sup

{ ∫
ψdm ; ψ ∈ C(T), ||ψ||∞ 6 1

}
. (3)

In that case, the dual of M(T) is a complicated space, and it is strictly larger
than C(T) as C(T) is not reflexive.

However, if we endowM(T) with its weak-* topology (i.e. the coarsest topol-
ogy such that the elements of C(T) define continuous linear forms on M(T)),
then M(T) is a locally convex space whose dual is C(T).

In the following, we endow C(T) (respectively M(T)) with its weak (re-
spectively its weak-*) topology so that both have symmetrical roles: one is the
dual of the other, and conversely. Moreover, since C(T) is separable, the set
{m ∈M(T) ; ||m||TV 6 1} endowed with the weak-* topology is metrizable.
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Given a function ϕ ∈ C2(T,R), we define an operator Φ :M(T)→ L2(T) as

∀m ∈M(T), Φ(m) : t 7→
∫
T
ϕ(x− t)dm(x).

It can be shown using Fubini’s theorem that Φ is weak-* to weak continuous.
Moreover, its adjoint operator Φ∗ : L2(T)→ C(T) is defined as

∀ y ∈ L2(T), Φ∗(y) : t 7→
∫
T
ϕ(t− x)y(x)dx.

2.2 Subdifferential of the Total Variation

It is clear from the definition of the total variation in (3) that it is convex
lower semi-continuous with respect to the weak-* topology. Its subdifferential
is therefore nonempty and defined as

∂||m||TV =

{
η ∈ C(T) ; ∀m̃ ∈M(T), ||m̃||TV > ||m||TV +

∫
η d(m̃−m)

}
, (4)

for any m ∈M(T) such that ||m||TV < +∞.
Since the total variation is a sublinear function, its subgradient has a special

structure. One may show (see Proposition 7 in Appendix) that

∂||m||TV =

{
η ∈ C(T) ; ||η||∞ 6 1 and

∫
η dm = ||m||TV

}
. (5)

In particular, when m is a measure with finite support, i.e. m =
∑N
i=1 aiδxi

for some N ∈ N and distinct (xi)16i6N ∈ TN

∂||m||TV = {η ∈ C(T) ; ||η||∞ 6 1 and ∀ i = 1, . . . , N, η(xi) = sign(ai)} .
(6)

2.3 Primal and Dual problems

Given an observation y = Φm0 ∈ L2(T) for some m0 ∈ M(T), we consider
reconstructing m0 by solving either the relaxed problem for λ > 0

min
m∈M(T)

1

2
||Φ(m)− y||2 + λ||m||TV, (Pλ(y))

or the constrained problem
min

Φ(m)=y
||m||TV. (P0(y))

In the case where the observation is noisy (i.e. the observation y is replaced
with y+w for w ∈ L2(T)), we attempt to reconstruct m0 by solving Pλ(y+w).

Existence of solutions for (Pλ(y)) is shown in [3], and existence of solutions
for (P0(y)) can be checked using the direct method of the calculus of variations
(recall that for (P0(y)), we assume that the observation is y = Φm0).
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A straightforward approach to studying the solutions of Problem (Pλ(y)) is

then to apply Fermat’s rule: a discrete measure m =
∑N
i=1 aiδxi is a solution of

(Pλ(y)) if and only if there exists η ∈ C(T) such that

Φ∗(Φm− y) + λη = 0,

with ||η||∞ 6 1 and η(xi) = sign(ai) for 1 6 i 6 N .
Another source of information for the study of Problems (Pλ(y)) and (P0(y))

is given by their associated dual problems. In the case of the ideal low-pass filter,
this approach is also the key to the numerical algorithms used in [7, 1]: the dual
problem can be recast into a finite-dimensional problem.

The Fenchel dual problem to (Pλ(y)) is given by

max
||Φ∗p||∞61

〈y, p〉 − λ

2
||p||22, (Dλ(y))

which may be reformulated as a projection on a closed convex set (see [3, 1])

min
||Φ∗p||∞61

|| y
λ
− p||22. (D′λ(y))

This formulation immediately yields existence and uniqueness of a solution
to (Dλ(y)).

The dual problem to (P0(y)) is given by

sup
||Φ∗p||∞61

〈y, p〉. (D0(y))

Contrary to (Dλ(y)), the existence of a solution to (D0(y)) is not always guar-
anteed, so that in the following (see Definition 3) we make this assumption.

Existence is guaranteed when for instance Im Φ∗ is finite-dimensional (as is
the case in the framework of [7]). If a solution to (D0(y)) exists, the unique
solution of (Dλ(y)) converges to a certain solution of (D0(y)) for λ → 0+ as
shown in Proposition 1 below.

2.4 Dual Certificates

The strong duality between (Pλ(y)) and (Dλ(y)) is proved in [3, Prop. 2]
by seeing (D′λ(y)) as a predual problem for (Pλ(y)). As a consequence, both
problems have the same value and any solution mλ of (Pλ(y)) is linked with the
unique solution pλ of (Dλ(y)) by the extremality condition{

Φ∗pλ ∈ ∂||mλ||TV,
−pλ = 1

λ (Φmλ − y).
(7)

Moreover, given a pair (mλ, pλ) ∈M(T)×L2(T), if relations (7) hold, then mλ is
a solution to Problem (Pλ(y)) and pλ is the unique solution to Problem (Dλ(y)).
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As for (P0(y)), a proof of strong duality is given in Appendix (see Proposi-
tion 8). If a solution p? to (D0(y)) exists, then it is linked to any solution m?

of (P0(y)) by

Φ∗p? ∈ ∂||m?||TV, (8)

and similarly, given a pair (m?, p?) ∈M(T)× L2(T), if relations (8) hold, then
m? is a solution to Problem (P0(y)) and p? is a solution to Problem (D0(y))).

Since finding η = Φ∗p? which satisfies (8) gives a quick proof that m? is
a solution of (P0(y)), we call η a dual certificate for m?. We may also use a
similar terminology for ηλ = Φ∗pλ and Problem (Pλ(y)).

In general, dual certificates for (P0(y)) are not unique, but we consider in
the following definition a specific one, which is crucial for our analysis.

Definition 1 (Minimal-norm certificate). When it exists, the minimal-norm
dual certificate associated to (P0(y)) is defined as η0 = Φ∗p0 where p0 ∈ L2(T)
is the solution of (D0(y)) with minimal norm, i.e.

η0 = Φ∗p0, where p0 = argmin
p

{||p||2 ; p is a solution of (D0(y))} . (9)

Observe that in the above definition, p0 is well-defined provided there exists
a solution to Problem (D0(y)), since p0 is then the projection of 0 on the non-
empty closed convex set of solutions. Moreover, in view of the extremality
conditions (8), given any solution m? to (P0(y)), it may be expressed as

p0 = argmin
p

{||p||2 ; Φ∗p ∈ ∂||m?||TV} . (10)

Proposition 1 (Convergence of dual certificates). Let pλ be the unique solution
of Problem (Dλ(y)), and p0 be the solution of Problem (P0(y)) with minimal
norm defined in (9). Then

lim
λ→0+

pλ = p0 for the L2 strong topology.

Moreover the dual certificates ηλ = Φ∗pλ for Problem (Pλ(y)) converge to the
minimal norm certificate η0 = Φ∗p0. More precisely,

∀k ∈ {0, 1, 2}, lim
λ→0+

η
(k)
λ = η

(k)
0 , (11)

in the sense of the uniform convergence.

Proof. Let pλ be the unique solution of (Dλ(y)). By optimality of pλ (resp. p0)
for (Dλ(y)) (resp. (D0(y)))

〈y, pλ〉 − λ||pλ||22 > 〈y, p0〉 − λ||p0||22, (12)

〈y, p0〉 > 〈y, pλ〉. (13)

As a consequence ||p0||22 > ||pλ||22 for all λ > 0.
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Now, let (λn)n∈N be any sequence of positive parameters converging to 0.
The sequence pλn being bounded in L2(T), we may extract a subsequence (still
denoted λn) such that pλn weakly converges to some p? ∈ L2(T). Passing to
the limit in (12), we get 〈y, p?〉 > 〈y, p0〉. Moreover, Φ∗pλn weakly converges
to Φ∗p? in C(T), so that ||Φ∗p?||∞ 6 lim infn ||Φ∗pλn ||∞ 6 1, and p? is therefore
a solution of (D0(y)).

But one has
||p?||2 6 lim inf

n
||pλn ||2 6 ||p0||2,

hence p? = p0 and in fact limn→+∞ ||pλn || = ||p0||. As a consequence, pλn
converges to p0 for the L2(T) strong topology as well. This being true for any
subsequence of any sequence λn → 0+, we get the result claimed for pλ.

It remains to prove the convergence of the dual certificates. Observing that

η
(k)
λ (t) =

∫
ϕ(k)(t− x)pλ(x)dx, we get

|η(k)
λ (t)− η(k)

0 (t)| =
∣∣∣ ∫ ϕ(k)(t− x)(pλ − p0)(x)dx

∣∣∣
6

√∫
|ϕ(k)(t− x)|2dt

√∫
|(pλ − p0)(x)|2dx

6 C||pλ − p0||2,

where C > 0 does not depend on t nor k, hence the uniform convergence.

3 Noise Robustness

3.1 Non degenerate source condition

Let us first recall the source condition introduced in [5] to derive convergence
rates for the Bregman distance.

Definition 2 (Source Condition). A measure m0 satisfies the source condition
if there exists p ∈ L2(T) such that

Φ∗p ∈ ∂||m0||TV.

In a finite-dimensional framework, the source condition would simply be
equivalent to the optimality of m0 for (P0(y)) given y = Φm0. In the framework
of Radon measures, the source condition amounts to assuming that m0 is a
solution of (P0(y)) and that there exists a solution to (D0(y)).

If one is interested in m0 being the unique solution of (P0(y)) for y = Φm0

(in which case we say that m0 is identifiable), the source condition may be
strengthened to give a sufficient condition.

Proposition 2 ([10]). Let m0 = mx0,a0 be a discrete measure. If Φx0
has full

rank, and if

• there exists η ∈ Im Φ∗ such that η ∈ ∂||m0||TV,

9



• ∀ s /∈ supp(m0), |η(s)| < 1,

then m0 is the unique solution of (P0(y)).

In this paper, we strengthen a bit more the Source Condition so as to derive
stability results with respect to the noise and the regularization parameter (see
Theorem 1).

Definition 3 (Non Degenerate Source Condition). Let m0 = mx0,a0 be a dis-
crete measure, and {x0,1, . . . x0,N} = suppm0. We say that m0 satisfies the
Non Degenerate Source Condition (NDSC) if

• there exists η ∈ Im Φ∗ such that η ∈ ∂||m0||TV.

• the minimal norm certificate η0 satisfies

∀ s ∈ T \ {x0,1, . . . x0,N}, |η0(s)| < 1,

∀ i ∈ {1, . . . N}, η′′0 (x0,i) 6= 0.

In that case, we say that η0 is not degenerate.

The first assumption in Definition 3 is the standard Source Condition. As
explained above, it implies the existence of a solution to (D0(y)), so that it
makes sense to consider the minimal norm certificate in the second assumption.

When Φ is an ideal low-pass filter with cutoff frequency fc, there are numer-
ical evidences that measures having a large enough separation distance (propor-
tional to fc) satisfy the non degenerate source condition, see Section 5.

3.2 Main Result

The following theorem, which is the main result of this paper, details the
precise structure of the solution when the signal-to-noise ratio is large enough
and λ is small enough.

Theorem 1 (Noise robustness). Let m0 = ma0,x0
=
∑N
i=1 a0,iδx0,i

be a discrete
measure. Assume that Γx0 (defined in (1)) has full rank and that m0 satisfies
the Non Degenerate Source Condition (see Definition 3). Then there exists
α > 0, λ0 > 0, such that for (λ,w) ∈ Dα,λ0

where

Dα,λ0
=
{

(λ,w) ∈ R+ × L2(T) ; 0 6 λ 6 λ0 and ||w||2 6 αλ
}
, (14)

the solution m̃ of Pλ(y + w) is unique and is composed of exactly N spikes,

m̃ =
∑N
i=1 ãλ,iδx̃λ,i with ãλ,i 6= 0 and sign(ãλ,i) = sign(a0,i) (for 1 6 i 6 N).

Moreover, writing (ã0, x̃0) = (a0, x0), the mapping

(λ,w) ∈ Dα,λ0
7→ (ãλ, x̃λ) ∈ RN × TN ,

is Ck−1 whenever ϕ ∈ Ck(T) (k > 2).
In particular, for λ = 1

α ||w||2, we have

∀i ∈ {1, . . . N}, |x̃λ,i − x0,i| = O(||w||2) and |ãλ,i − a0,i| = O(||w||2). (15)

Proof. We split the proof in several steps.
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Behavior of the minimal norm certificate. Let i ∈ {1, . . . N}. Since m
satisfies the non degenerate source condition, η′′0 (xi) 6= 0. In fact, η′′0 (x0,i) > 0
(resp. < 0) whenever η0(x0,i) = −1 (resp. +1). Moreover, by continuity, there
exists εi > 0, Ci > 0 such that for all t ∈ (x0,i − εi, x0,i + εi), one has

• |η0(t)| > Ci > 0,

• |η′′0 (t)| > Ci > 0.

The number of points x0,1, . . . x0,N being finite, we may choose εi = ε and
Ci = C independent of i and such that the sets (x0,i− ε, x0,i + ε) for 1 6 i 6 N

do not intersect. The set Kε = T \
⋃N
i=1(x0,i − ε, x0,i + ε) being compact, we

observe that supKε |η0| < 1.
As a consequence, there exists r > 0 such that for any function g ∈ C2(T)

satisfying ||η(j)
0 − g(j)||∞ 6 r for all j ∈ {0, 1, 2} |g(t)| > C

2 > 0 for t ∈ (x0,i − ε, x0,i + ε),
|g′′(t)| > C

2 > 0 for t ∈ (x0,i − ε, x0,i + ε),
supKε |g| < 1.

(16)

Variations of dual certificates. Let pλ be the solution of the noiseless prob-
lem (Dλ(y)) and p̃λ be the solution of the noisy dual problem Dλ(y + w) for
w ∈ L2(T). Since the dual problem is a projection on a convex set (see (D′λ(y))),
it is non-expansive, i.e.

||pλ − p̃λ||2 6
||w||2
λ

.

As a consequence, if ηλ = Φ∗pλ (resp. η̃λ = Φ∗p̃λ) is the dual certificate of
the noiseless (resp. noisy) problem, we have for j ∈ {0, 1, 2}

||η(j)
λ − η̃

(j)
λ ||2 6M

||w||2
λ

(17)

for some constant M > 0 which depends only on ϕ and its derivatives.

From now on, we set α = r
2M and we impose ||w||2λ 6 α. Writing

||η(j)
0 − η̃

(j)
λ ||∞ 6 ||η(j)

0 − η
(j)
λ ||∞ + ||η(j)

λ − η̃
(j)
λ ||∞,

6 ||η(j)
0 − η

(j)
λ ||∞ +

r

2
,

we see that for λ small enough η̃λ satisfies (16).

Structure of the reconstructed measure. By (16) for g = η̃λ and using the
extremality conditions we obtain that |m̃λ|(Kε) = 0 and that m̃λ has at most
one spike in each interval (x0,i − ε, x0,i + ε). Indeed, the extremality conditions
impose that supp(m̃λ) is included in the set of points t such that η̃λ(t) = ±1.
But since ηλ is strictly convex in (x0,i−ε, x0,i+ε) (or strictly concave, depending
on the sign of η0(x0,i)), there is at most one point x̃λ,i ∈ (x0,i− ε, x0,i + ε) such
that {x̃λ,i} ⊂ supp(m̃λ) ∩ (x0,i − ε, x0,i + ε).

11



It remains to prove that there is indeed one spike in each interval (x0,i −
ε, x0,i+ε). This is obtained by relying on a result by Bredies and Pikkarainen [3]
which is an application of [20, Th. 3.5] and guarantees that m̃λ converges to m
for the weak-* topology when λ, ||w||2 → 0. We sketch the proof in Appendix
(see Lemma 1) for the convenience of the reader.

By weak-* convergence of m̃λ to m for λ → 0+ and ||w||2 → 0, there are
necessarily N spikes located at some x̃λ,i ∈ (x0,i − ε, x0,i + ε) which converges
to x0,i, and their associated mass ãλ,i converges to ai.

Smoothness of the locations and amplitudes. To derive smoothness re-
sults for (ãλ, x̃λ) as a function of (λ,w), we observe that for λ small enough and
||w|| 6 αλ, it satisfies the following implicit equation

Es0(ãλ, x̃λ, λ, w) = 0

where s0 = sign(a0), and

Es0(a, x, λ, w) =

(
Φ∗x(Φxa− y − w) + λs0

Φ′x
∗
(Φxa− y − w)

)
= Γ∗x(Φxa− y − w) + λ

(
s0

0

)
.

Indeed, this implicit equation simply states that η̃λ(x̃λ,i) = sign(a0,i) = sign(ãλ,i),
and that η̃′λ(x̃λ,i) = 0.

Since ((a, x), (λ,w)) 7→ Es0(a, x, λ, w) is a C1 function defined on (RN ×
TN )× (R× L2(TN )), we may apply the implicit functions theorem.

The derivative of Es0 with respect to x and a reads

∂E

∂a
(a, x, λ, w) = ΓxΦx

∂E

∂x
(a, x, λ, w)[δ] = diag(δ)Γ′x(Φxa− y) + ΓxΦ′x

∗
diag(a)δ.

so that for λ = 0, w = 0 and using y = Φx0
a0, one obtains

∂Es
∂(a, x)

(a0, x0, 0, 0) = Γ∗x
(
Φx0

, Φ′x0
diag(a0)

)
= (Γ∗x0

Γx0)

(
Id 0
0 diag(a0)

)
.

Since we assume Γx0
has full rank, then

∂Es0
∂(a,x) (a0, x0, 0, 0) is invertible and the

implicit functions theorem applies: there is a neighborhood V ×W of (a0, x0)×
{(0, 0)} in (RN × TN )× (R× L2(T)) and a function f : W → V such that

((a, x), λ, w) ∈ V ×W and Es0(a, x, λ, w) = 0

⇐⇒ (λ,w) ∈W and (a, x) = f(λ,w).

Moreover, writing (âλ,w, x̂λ,w) = f(λ,w) ∈ RN × TN , we have

• (â0,0, x̂0,0) = (a0, x0),

12



• for any (λ,w) ∈W , sign(âλ,w) = s0,

• if ϕ ∈ Ck(T) (for k > 2), then f ∈ Ck−1(W ).

The constructed amplitudes and locations (âλ,w, x̂λ,w) coincide with those of
the solutions of (Pλ(y)) for all (λ,w) ∈ W such that ||w||2 6 αλ, hence the
result.

Remark 1. Although this paper focuses on identifiable measures, Theorem 1
describes the evolution of the solutions of Pλ(y +w) for any input measure m1

such that there exists m0 which satisfies the non degenerate source condition
and y = Φm1 = Φm0. Instead of converging towards m1, the solutions will
converge towards m0.

3.3 Extensions

Theorem 1 extends in a straightforward manner to higher dimensions, i.e.
when replacing T by Td for d > 1. In the NDSC introduced in Definition 3, one
should replace, for i = 1, . . . , N , the constraint η′′0 (x0,i) 6= 0 by the constraint
that the Hessian D2η0(x0,i) ∈ Rd×d is invertible.

The proof also extends to non-stationary filtering operators, i.e. which can
be written as

∀ t ∈ Td, Φm(t) =

∫
Td
ϕ(x, t)dm(x)

where ϕ ∈ C2(Td × Td).

4 Vanishing Derivatives Pre-certificate

As a by-product of the proof of Theorem 1, we show in this section that
the minimal norm certificate η0 is characterized by its values on the support
of m0 and the fact that its derivative must vanish on the support of m0. As a
consequence, one may compute he minimal norm certificate simply by solving
a linear system, without handling the cumbersome constraint ||η0||∞ 6 1.

4.1 Dual Pre-certificates

We begin by introducing a “good candidate” for a dual certificate.

Definition 4 (Vanishing derivative pre-certificate). The vanishing derivative
pre-certificate associated to a measure m0 = mx0,a0 is η̄0 = Φ∗q0 where

q0 = argmin
q∈L2(T)

||q|| subj. to ∀ 1 6 i 6 N,

{
(Φ∗q)(x0,i) = sign(a0,i),
(Φ∗q)′(x0,i) = 0.

(18)

It is clear that if m0 is a solution to (P0(y)) (for y = Φm0), and if there
exists a solution to (D0(y)), then the minimal norm certificate η0 must satisfy
all the constraints defining η̄0. Conversely, if ||η̄0||∞ 6 1, the conditions imposed

13



on η̄0 imply that m0 is a solution to (P0(y)) and that η̄0 is a certificate for
m0. As a consequence, for an identifiable measure m0, η0 = η̄0 if and only if
||η̄0||∞ 6 1.

The following proposition details the computation of η̄0.

Proposition 3. We assume Γx0
has full rank, i.e. Γ∗x0

Γx0
∈ R2N×2N is invert-

ible, and that Problem (18) is feasible. Then η̄0 is uniquely defined and

η̄0 = Φ∗Γ+,∗
x0

(
sign(a0)

0

)
where Γ+,∗

x0
= Γx0

(Γ∗x0
Γx0

)−1.

Proof. The problem (18) can be written as

η̄0 = argmin
η=Φ∗q

||q||. subj. to

{
Φ∗x0

q = sign(a0),
Φ′∗x0

q = 0,

which is a finite-dimensional quadratic optimization problem with affine equal-
ity constraints. Moreover, the assumption that Γx0

has full rank implies that
the constraints are qualified. Hence it can be solved by introducing Lagrange
multipliers u and v for the constraints. One should therefore solve the following
linear system to obtain the value of q = q̄0 Id Φx0

Φ′x0

Φ∗x0
0 0

Φ′x0

∗
0 0

qu
v

 =

0
s
0

 .

Solving for u, v in these equations gives the result.

4.2 The vanishing Derivative Pre-certificate is a Certifi-
cate

A priori, the vanishing derivative pre-certificate η̄0 introduced above is not
a certificate for m0 since we do not impose ||η̄0||∞ 6 1. Yet, the fact that
the derivative vanishes on the support of m0 and the non degenerate source
condition imply that η̄0 is indeed a certificate.

Proposition 4. Under the hypothesis of Theorem 1, the vanishing derivative
pre-certificate η̄0 is equal to the minimal norm certificate η0, and one has

η0 = Φ∗Γ+,∗
x0

(
sign(a0)

0

)
where Γ+,∗

x0
= Γx0

(Γ∗x0
Γx0

)−1. (19)

Proof. We consider the case where w = 0, we introduce the C1 path λ 7→
(âλ, x̂λ) constructed in the proof of Theorem 1 (in the noiseless case) which
coincides for λ small enough with the amplitudes and locations of the solution
mλ = maλ,xλ of (Pλ(y)).

14



Writing

â′0 =
∂âλ
∂λ

(0) ∈ RN and x̂′0 =
∂x̂λ
∂λ

(0) ∈ RN ,

we observe that for any i ∈ {1, . . . N} and any x ∈ Ω,

âλ,iϕ(x̂λ,i − x)− â0,iϕ(x̂0,i − x)

λ
−
[
â0,iϕ

′(x̂0,i − x)x̂′0,i + â′0,iϕ(x̂0,i − x)
]

=

∫ 1

0

[
âλt,iϕ

′(x̂λt,i − x)x̂′λt,i + â′λt,iϕ(x̂λt,i − x)
]

−
[
â0,iϕ

′(x̂0,i − x)x̂′0,i + â′0,iϕ(x̂0,i − x)
]

dt,

and the latter integral converges (uniformly in x) to zero when λ → 0+ by
uniform continuity of its integrand (since â, x̂ and ϕ are C1). As a consequence,

we obtain that
y−Φx̂λ
λ converges uniformly to −Γx0

(
Id 0
0 diag(a0)

)(
â′0
x̂′0

)
.

On the other hand, the implicit functions theorem yields(
â′0
x̂′0

)
=
∂(âλ, x̂λ)T

∂λ
(0)

= −
(
∂Es0
∂(a, x)

(a0, x0, 0)

)−1
∂Es0
∂λ

(a0, x0, 0)

= −
(

Id 0
0 diag(a0)−1

)
(Γ∗x0

Γx0
)−1

(
s0

0

)
.

As a consequence,
y−Φx̂λ
λ converges uniformly to Γx0(Γ∗x0

Γx0)−1

(
sign(a0)

0

)
and

Φ∗
(
y−Φx̂λ
λ

)
converges uniformly to η̄0.

On the other hand, by Proposition 1, we know that ηλ = Φ∗
(
y−Φxλ
λ

)
converges uniformly to the minimal norm certificate η0. We conclude that
η̄0 = η0.

5 Application to the Ideal Low-pass Filter

In this section, we apply the results of the previous sections to the particular
case of the Dirichlet kernel, defined as

ϕ(t) =

fc∑
k=−fc

e2iπkt =
sin ((2fc + 1)πt)

sin(πt)
. (20)

5.1 Elementary Results

We first check that the assumptions made in Section 3 hold in the case of
the ideal low-pass filter.
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Proposition 5 (Existence of p0). Let m ∈M(T) and y = Φm ∈ L2(T). There
exists a solution of (D0(y)). As a consequence, p0 ∈ L2(T) is well defined.

Proof. We rewrite (D0(y)) as

sup
||η||∞61,η∈Im Φ∗

〈m, η〉.

Let (ηn)n∈N be any maximizing sequence. Then (ηn)n∈N is bounded in the finite-
dimensional space of trigonometric polynomials with degree fc or less. We may
extract a subsequence converging to η∗ ∈ C(T). But ||η∗||∞ 6 1 and η∗ ∈ Im Φ∗,
so that η∗ = Φ∗p∗ for some p∗ solution of (D0(y)).

Proposition 6 (Injectivity of Γx). Let x = (x1, . . . xN ) ∈ TN with xi 6= xj for
i 6= j and N 6 fc. Then Γx = (Φx,Φ

′
x) has full rank.

Proof. Assume that for some (u, v) ∈ RN × RN , Γx(u, v) = 0. Then

∀ t ∈ T, 0 =

N∑
j=1

(ujϕ(t− xj) + vjϕ
′(t− xj))

=

fc∑
k=−fc

 N∑
j=1

(uj + 2ikπvj)e
−2ikπxj

 e2ikπt

We deduce that

∀ k ∈ {−fc, . . . fc},
N∑
j=1

(uj + kṽj)r
k
j = 0 where

{
rj = e−2iπxj ,
ṽj = 2iπvj .

It is therefore sufficient to prove that the columns of the following matrix are
linearly independent

r−fc1 . . . r−fcN (−fc)r−fc1 . . . (−fc)r−fcN
...

...
...

...
rk1 . . . rkN krk1 . . . krkN
...

...
...

...

rfc1 . . . rfcN (fc)r
fc
1 . . . (fc)r

fc
N

 .

If N < fc, we complete the family {r1, . . . rN} in a family {r0, r1, . . . rfc} ⊂ S1

such that the ri’s are pairwise distinct. We obtain a square matrix M by
inserting the corresponding columns

M =



r−fc1 . . . r−fcfc
r−fc0 (−fc)r−fc1 . . . (−fc)r−fcfc

...
...

...
...

...
rk1 . . . rkfc rk0 krk1 . . . krkfc
...

...
...

...
...

rfc1 . . . rfcfc rfc0 (fc)r
fc
1 . . . (fc)r

fc
fc


.
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We claim that M is invertible. Indeed, if there exists α ∈ C(2fc+1) such that
MTα = 0, then the rational function F (z) =

∑fc
k=−fc αkz

k satisfies:

F (rj) = 0 and F ′(rj) = 0 for 1 6 j 6 fc,

F (r0) = 0.

Hence, F has at least 2fc + 1 roots in S1, counting the multiplicities. This
imposes that F = 0, thus α = 0, and M is invertible. The result is proved.

5.2 Identifiable Measures

In [7], Candès and Fernandez-Granda have proved that discrete measures
are identifiable provided that their support is separated enough, i.e. ∆(m) > C

fc

for some C > 0, where ∆(m) is the so-called minimum separation distance.

Definition 5 (Minimum separation). The minimum separation of the support
of a discrete measure m is defined as

∆(m) = inf
(t,t′)∈supp(m)

|t− t′|,

where |t− t′| is the distance on the torus between t and t′ ∈ T, and we assume
t 6= t′.

In [7] it is proved that C 6 2 for complex measures (i.e. of the form ma,x

for a ∈ CN and x ∈ TN ) and C 6 1.87 for real measures (i.e. of the form ma,x

for a ∈ RN and x ∈ TN ). Extrapolating from numerical simulations on a finite
grid, the authors conjecture that for complex measures, one has C > 1. In this
section we show that for real measures, necessarily C > 1

2 .
We rely on the following theorem, proved by P. Turán [30].

Theorem 2 (Turán). Let P (z) be a non trivial polynomial of degree n such
that |P (1)| = max|z|=1 |P (z)|. Then for any root z0 of P on the unit circle,

| arg(z0)| > 2π
n . Moreover, if | arg(z0)| = 2π

n , then P (z) = c(1 + z)n for some
c ∈ C∗.

From this theorem we derive necessary conditions for measure that can be
reconstructed by (P0(y)).

Corollary 1 (Non identifiable measures). Let θ ∈ (0, 1
2 ]. Then there exists a

discrete measure m with ∆(m) = θ
fc

such that m is not a solution of (P0(y))
for y = Φm.

Proof. Let m = δ−θ/fc + δ0 − δθ/fc . By contradiction, assume that m is a
solution to (P0(y)), and let η ∈ C(T) be an associated solution of (D0(y))
(which exists since Im Φ∗ is finite-dimensional). Then necessarily η(0) = 1 and

η(θ/fc) = −1. The real trigonometric polynomial D(t) = 1+η(t)
2 is non-negative,

D(0) = 1 = ||D||∞ and D(θ/fc) = 0. If D(t) =
∑fc
k=−fc dke

2iπkt, the polynomial

P (z) =
∑2fc
k=0 dk−fcz

k satisfies P (1) = 1 = sup|z|=1 |P (z)|, and P (e2iπ θ
fc ) = 0.
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If θ < 1
2 this contradicts Theorem 2. If θ = 1

2 , then Theorem 2 asserts that
P (z) = c(1 + z)2fc , and from P (1) = 1 we get c = 1

22fc
, so that

D(t) = e−2iπfcP (e2iπt) = (cos(πfct))
2fc .

Then D(− θ
fc

) = 0, which contradicts the optimality of η. As a conclusion, m is

not a solution of (P0(y)).

In a similar way, we may also deduce the following corollary.

Corollary 2. Let m̃λ = mãλ,x̃λ be a discrete solution of Problem Pλ(y + w)
where y = Φm for any data m ∈ M(T) and any noise w ∈ L2(T). Let
(x̃λ,i, x̃λ,j) ∈ supp(mλ)2. If |x̃λ,i − x̃λ,j | 6 0.5

fc
then sign(ãλ,j) = sign(ãλ,i).

5.3 Performance of Pre-certificates

In order to prove their identifiability result for measures, the authors of [7]
introduce a “good candidate” for a dual certificate associate to m = ma,x for
a ∈ CN and x ∈ RN . For K being the square of the Fejer kernel, they build a
trigonometric polynomial

η̂0(t) =

N∑
i=1

(αiK(t− xi) + βiK
′(t− xi)) with K(t) =

 sin
((

fc
2 + 1

)
πt
)

(
fc
2 + 1

)
sinπt

4

and compute (αi, βi)
N
i=1 by imposing that η̂0(xi) = sign(ai) and η̂′0(xi) = 0.

They show that the constructed “pre-certificate” is indeed a certificate, i.e.
that ||η̂||∞ 6 1, provided that the support is separated enough (i.e. when
∆(m) > C/fc). This results is important since it proves that measures that
have sufficiently separated spikes are identifiable. Furthermore, using the fact
that η̂0 is not degenerate (i.e. η̂0(xi)

′′ 6= 0 for all i = 1, . . . , N), the same authors
derive an L2 robustness to noise result in [6], and Fernandez-Granda and Azais
et al. use the constructed certificate to analyze finely the positions of the spikes
in [17, 1].

From a numerical perspective, we have investigated how this pre-certificate
compares with the vanishing derivative pre-certificate that appears naturally in
our analysis, by generating random real-valued measures for different separation
distances and observing when each pre-certificate satisfies ||η||∞ 6 1.

As predicted by the result of [7], we observe numerically that the pre-
certificate η̂0 is a a certificate (i.e. ||η̂0||∞ 6 1) for any measure with ∆(m) >
1.87/fc. We also observe that this continues to hold up to ∆(m) > 1/fc.
Yet, below 1/fc, we observe numerically that some measures are still iden-
tifiable (as asserted using the vanishing derivative pre-certificate η̄0) but η̂0

stops being a certificate, i.e. ||η̂0||∞ > 1. An illustration is given in Fig-
ure 1, where the chosen parameters are fc = 26 and N = 7. For the cases
∆(m) = 2.50/fc and ∆(m) = 1.26/fc, both pre-certificates η̄0 and η̂0 are cer-
tificates, showing that the generated measure is identifiable. Notice how the
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∆(m) ≈ 2.50/fc ∆(m) ≈ 1.26/fc

∆(m) ≈ 0.69/fc ∆(m) ≈ 0.44/fc

Figure 1: The blue curve is the square Fejer kernel pre-certificate η̂0 (introduced
in [7]) and the green curve shows the vanishing derivative pre-certificate η̄0,
defined in (18), for several measures m (whose Diracs’ locations and elevation
are display in dashed red) with different separation distances ∆(m). Eventually
when ∆(m) is small enough, both pre-certificates break (i.e. are not anymore
certificates), but the square Fejer always breaks before the vanishing derivative
pre-certificate.

vanishing derivative certificate η̄0 oscillates much more than the square Fejer
certificate η̂0 . For ∆(m) = 0.69/fc, the square Fejer pre-certificate breaks the
constraint (||η||∞ ≈ 2.39) whereas the vanishing derivative certificate still satis-
fies ||η||∞ 6 1. Eventually, for ∆(m) = 0.44/fc, both pre-certificates violate the
constraint, with ||η̂0||∞ ≈ 3.39 and ||η̄0||∞ = 1.17 respectively.

In all the experiments that we have led, the vanishing derivative pre-certificate
behaved at least as well as the square Fejer. We are not able to prove rigorously
this observation, but several facts advocate for this:

• Whenever the square Fejer pre-certificate works, m is a solution of (P0(y)),
and the minimal norm certificate η0 is then associated to m.

• Provided that |η0| < 1 on T \ supp(m) and that η′′0 (xi) 6= 0 for all 1 6 i 6
N , Proposition 4 implies that the vanishing derivative pre-certificate η̄0 is
equal to η0.
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• It the minimum separation condition holds, the authors of [7] have proved
that |η̂0| < 1 on T \ supp(m) and η̂′′0 (xi) 6= 0.

Intuitively it seems very unlikely that the minimal norm certificate should fail
to satisfy |η0| < 1 on T \ supp(m) and η′′0 (xi) 6= 0 whereas the square Fejer
certificate does not. Indeed the failure of any of those conditions tend to impose
a large L2 norm on the considered pre-certificate η (recall that when ϕ is an
ideal low pass filter ||η||2 = ||p||2).

6 Deconvolution Over a Discrete Grid

6.1 Finite Dimensional `1 Regularization

A popular way to compute approximate solutions to (Pλ(y)) with fast al-
gorithms is to solve this problem on a finite discrete grid. This corresponds
to imposing that the optimized measures m are of the form m = ma,σ, where
σ = (σ1, . . . , σP ) ∈ TP is a fixed computational grid. The optimal measures
ma,σ solving the corresponding problem are obtained by solving the following
finite dimensional convex program on a

min
a∈RP

1

2
||y −Ψa||2 + λ||a||1 where ||a||1 =

P∑
i=1

|ai|. (P̄λ(y))

where Ψ = Φσ : RP → L2(T). The problem (P̄λ(y)) is the so-called basis
pursuit denoising problem [8], also known as the Lasso [29] in statistics. In the
noiseless setting, one considers

min
Ψa=y

||a||1. (P̄0(y))

We have already remarked in Section 3.3 that Theorem 1 extends to non-
stationary smooth operators (i.e. not necessarily convolutions). Similarly, the
results exposed in this section hold for any operator Ψ : RP → H where H ⊂
L2(T) (i.e. not necessarily of the form Ψ = Φσ). For instance, if H = RQ, then
Ψ is a finite dimensional matrix, i.e. Ψ ∈ RP×Q. Without loss of generality, we
assume that H = RQ with Q > P .

6.2 Certificates over a Discrete Grid

Similarly to its infinite dimensional counterpart, for any observation y ∈ H,
we can associate a minimal norm certificate η0 ∈ RP , which reads

η0 = argmin
η=Ψ∗p,p∈H

||p|| subject to η ∈ ∂||a?||1 (21)

where a? is any solution of the constrained problem (P̄0(y)). Note that in this
setting, the source condition is always satisfied, so that this η0 is always well
defined.
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The sub-differential of the `1 norm reads

∂||a||1 =
{
η ∈ RP ; ||η||∞ 6 1 and ηI = sign(aI)

}
where I = supp(a) = {i ∈ {1, . . . , N} ; ai 6= 0} and aI = (ai)i∈I .

Following [18], we introduce the following pre-certificate by dropping the
constraint ||η||∞ 6 1 in (21)

η̂0 = argmin
η=Ψ∗p,p∈H

||p|| subject to ηI = sign(a?I), (22)

where I = supp(a?) for any solution a? of the constrained problem (P̄0(y)).
We denote by ΨI the operator obtained by considering only the columns of Ψ
indexed by I. If ΨI has full rank, η̂0 is uniquely defined and can be computed
by solving a linear system

η̂0 = Ψ∗Ψ+,∗
I sign(a?I) where Ψ+,∗

I = ΨI(Ψ
∗
IΨI)

−1.

Like the vanishing derivative precertificate for the continuous framework, if η̂0

satisfies ||η̂0||∞ 6 1 then it is equal to η0.

6.3 Noise Robustness

The following theorem is a finite dimensional counter-part to Theorem 1.

Theorem 3 (Noise robustness, discrete case). Let a0 ∈ RN be a solution of
P̄0(y) for y = Ψa0. We assume that ΨJ has full rank, where

J = {i ∈ {1, . . . , N} ; |η0,i| = 1}

and η0 is the minimal norm certificate defined in (21).
Then, there exists α > 0, λ0 > 0, such that for (λ,w) ∈ Dα,λ0 (defined

in (14)) the solution ã of P̄λ(y + w) is unique and satisfies supp(ã) ⊂ J .
Moreover, choosing λ = ||w||2/α ensures ||ã− a0|| = O(||w||).

Proof. The dual problem to (P̄λ(y)) is :

min
||Ψ∗p||∞61

|| y
λ
− p||22, (D̄′λ(y))

and its solutions converge to p0 ∈ H for λ → 0+, where Ψ∗p0 = η0 is the
minimal norm certificate.

By the triangle inequality:

||η̃λ − η0||∞ 6 ||η̃λ − ηλ||∞︸ ︷︷ ︸
6C ||w||2λ

+||ηλ − η0||∞

Thus, there exist two constants α > 0 and λ0 > 0, such that for ||w||2λ 6 α
and 0 < λ < λ0, |η̃λ,i| < 1 for any i /∈ J . Then, the primal-dual extremality
conditions imply that for any solution ãλ of P̄λ(y + w), one has supp(ãλ) ⊂ J .
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Such a solution satisfies

1

λ
Ψ∗J (y + w −ΨJ ãλ,J) = η̃λ,J ,

and since ΨJ has full rank and y = ΨJa0,J , one obtains

ãλ,J = a0,J + Ψ+
J w − λ(ΨJΨ∗J)−1η̃λ,J .

But the certificate satisfies ||η̃λ,J ||∞ 6 1, hence, choosing λ = ||w||2
α we get

||ã− a0|| = O(||w||).

Note that although the hypotheses are similar to the one of Theorem 1, the
conclusion is different, in the sense that this theorem does not assert that the
support J of the recovered vector matches the support I of the input vector a0.
In fact, we have I ⊂ J , so that the recovered solutions of P̄λ(y + w) have in
general more spikes than a0, and the spikes in J \ I vanish as λ→ 0, ||w||2 → 0.

By assuming that J = I, we get the exact recovery of the support for small
noise. In particular, we obtain the following theorem, which was initially proved
by Fuchs [18], and which gives a more precise statement at the price of a more
stringent condition on the input signal a0.

Corollary 3 (Exact support recovery, discrete case,[18]). Let a0 ∈ RN and
I = supp(a0), assuming ΨI has full rank. If ||η̂0,Ic ||∞ < 1 where η̂0 is defined
in (22), then there exists α > 0, λ0 > 0, such that for (λ,w) ∈ Dα,λ0

(defined
in (14)) the solution ã of P̄λ(y + w) is unique and satisfies supp(ã) = I and
reads

ãI = a0,I + Ψ+
I w − λ(ΨIΨ

∗
I)
−1 sign(a0,I). (23)

The condition ||η̂0,Ic ||∞ < 1 is often called the irrepresentability condition in
the statistics literature, see [32]. This condition can be shown to be almost a
necessary and sufficient condition to ensure exact recovery of the support I. For
instance, if ||η̂0,Ic ||∞ > 1, one can show that supp(ã) 6= I where ã is any solution
of P̄λ(y) for all λ > 0, see [31]. In our framework, we see that the assumption
||η̂0,Ic ||∞ < 1 means that the precertificate η̂0 is indeed a certificate (so that it
is equal to the minimal norm certificate), and that its saturation set is equal to
the support of a0. The result [20, Th. 3.5] ensures that sign(ãλ,I) = sign(a0,I)
for λ small enough, hence Equation (23).

For deconvolution problems, an important issue is that Corollary 3 becomes
useless to study the stability of the original infinite dimensional problem (Pλ(y)).
Even if computed on a continuous grid, the pre-certificate (22) is not constrained
to have vanishing derivatives. So for a generic input measure m0 = ma0,σ, ||η̂0||∞
necessarily becomes larger than 1 for N large enough. As detailed in Section 4,
when shifting from the discrete grid setting to the continuous setting, the natural
pre-certificate to consider is the vanishing derivative pre-certificate η̄0 defined
in (18), and not the pre-certificate η̂0.
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Conclusion

In this paper, we have given for the first time a precise statement about
the structure of the measures recovered using sparse deconvolution. We have
shown that for non degenerate measures, one recovers the same number of spikes
and that these spikes converge to the original ones when λ and ||w||/λ are small
enough. Moreover, we have pointed the importance of a specific “minimal norm”
certificate in the asymptotic behavior of the sparse recovery. We have provided
a closed form solution that enables its computation by solving a linear system.
We have shown how a similar analysis applies to `1 minimization over a finite
grid, which shed some lights on the connexions between the finite and the infinite
dimensional recovery problems. Finally, let us note that the proposed method
extends to non-stationary filtering operators and to arbitrary dimensions.

Acknowledgements

The authors would like to thank Jalal Fadili, Charles Dossal and Samuel
Vaiter for fruitful discussions. This work has been supported by the European
Research Council (ERC project SIGMA-Vision).

Appendix

For the convenience of the reader, we give here the proofs of several auxiliary
results which are needed in the discussion.

Proposition 7 (Subdifferential of the total variation). Let us endowM(T) with
the weak-* topology and C(T) with the weak topology. Then, for any m ∈M(T),
we have:

∂||m||TV =

{
η ∈ C(T) ; ||η||∞ 6 1 and

∫
η dm = ||m||TV

}
.

Proof. Let A = {η ∈ C(T) ; ∀m ∈M(T), 〈η, m〉 6 ||m||TV}. It is clear that
A ⊂ B∞(0, 1), where B∞(0, 1) is the L∞(T) closed unit ball. Conversely, we
observe that B∞(0, 1) ⊂ A by considering the Dirac masses (±δt)t∈T.

Let us write J(m) := ||m||TV. The function J : M(T) → R ∪ {+∞} is
convex, proper, lower semi-continuous (for the weak-* topology), positively ho-
mogeneous and:

J∗(η) = sup
m∈M(T)

sup
t>0

(〈η, tm〉 − J(tm))

= sup
t>0

t

(
sup

m∈M(T)

〈η, m〉 − J(m)

)

=

{
0 if η ∈ A,
+∞ otherwise.

23



By Proposition I.5.1 in [15], for any η ∈ C(T):

η ∈ ∂J(m)⇐⇒ 〈η, m〉 = J(m) + J∗(η),

which is equivalent to ||η||∞ 6 1 and
∫
ηdm = ||m||TV.

Proposition 8. There exists a solution to (P0(y)) and the strong duality holds
between (P0(y)) and (D0(y)), i.e.

min
Φ(m)=y

||m||TV = sup
||Φ∗p||∞61

〈y, p〉. (24)

Moreover, if a solution p? to (D0(y)) exists,

Φ∗p? ∈ ∂||m?||TV (25)

where m? is any solution to (P0(y)). Conversely, if (25) holds, then m? and p?

are solutions of respectively (P0(y)) and (D0(y)).

Proof. We apply [15, Theorem II.4.1] to (D0(y)) (and not to (P0(y)) as would
be natural) rewritten as

inf
||Φ∗p||∞61

〈−y, p〉,

The infimum is finite since for any admissible p, 〈−y, p〉 = 〈m0, Φp〉 > −||m0||TV.
Let V = L2(T), Y = C(T) (endowed with the strong topology), Y ∗ = M(T),
F (u) = 〈−y, u〉 for u ∈ V , G(ψ) = ι||·||∞61(ψ) for ψ ∈ Y and Λ = Φ∗. It is clear
that F and G are proper convex lower semi-continuous functions. Eventually,
F is finite at 0, G is finite and continuous at 0 = Λ0. Hence the result.

Lemma 1 ([20, Th. 3.5],[3, Prop. 5]). Let m be an identifiable measure, if

λ→ 0 and ||w|| → 0 with
||w||22
λ → 0, then m̃λ converges to m with respect to the

weak-* topology.

Proof. We follow the proof given in [20], simply adapting it to our framework.
By optimality of m̃λ, one has

1

2
||Φm̃λ − y − w||22 + λ||m̃λ||TV 6

1

2
||Φm− y︸ ︷︷ ︸

=0

−w||22 + λ||m||TV, (26)

so that

lim
λ→0,||w||2→0

||Φm̃λ − y||2 = 0 and lim sup
λ→0,||w||2→0

||m̃λ||TV 6 ||m||TV.

Thus,

lim sup
λ→0,||w||2→0

[
1

2
||Φm̃λ − y − w||22 + λmax||m̃λ||TV

]
6 lim sup
λ→0,||w||2→0

[
1

2
||Φm̃λ − y − w||22 + λ||m̃λ||TV

]
+ lim sup
λ→0,||w||2→0

(λmax − λ)||m̃λ||TV

6 λmax||m||TV < +∞
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Since closed balls for the total variation norm are sequentially compact for the
weak-* topology, from any sequence we may extract a subsequence (λk, wk)
such that m̃λk converges to some m̃ with respect to the weak-* topology. From
the weak-* to weak continuity of Φ we get Φm̃ = y, and from the lower semi-
continuity of the total variation, one has

||m̃||TV 6 lim inf
k→+∞

||m̃λk ||TV 6 lim sup
k→+∞

||m̃λk ||TV 6 ||m||TV.

The original measure m being identifiable, we see that m̃ = m. Since this is
true for any subsequence, the claimed result is proved.
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Dunod, 1999.

[5] M. Burger and S. Osher. Convergence rates of convex variational regular-
ization. Inverse Problems, 20(5):1411–1421, 2004.

[6] E. J. Candès and C. Fernandez-Granda. Super-resolution from noisy data.
CoRR, abs/1211.0290, 2012.

[7] E. J. Candès and C. Fernandez-Granda. Towards a mathematical theory
of super-resolution. Communications on Pure and Applied Mathematics.
To appear., 2013.

[8] S.S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decomposition by
basis pursuit. SIAM journal on scientific computing, 20(1):33–61, 1999.

[9] J. F. Claerbout and F. Muir. Robust modeling with erratic data. Geo-
physics, 38(5):826–844, 1973.

[10] Y. de Castro and F. Gamboa. Exact reconstruction using beurling min-
imal extrapolation. Journal of Mathematical Analysis and Applications,
395(1):336–354, 2012.

25



[11] L. Demanet, D. Needell, and N. Nguyen. Super-resolution via superset
selection and pruning. CoRR, abs/1302.6288, 2013.

[12] D. L. Donoho. Superresolution via sparsity constraints. SIAM J. Math.
Anal., 23(5):1309–1331, September 1992.

[13] C. Dossal and S. Mallat. Sparse spike deconvolution with minimum scale.
In Proceedings of SPARS, pages 123–126, November 2005.

[14] M. F. Duarte and R. G. Baraniuk. Spectral compressive sensing. Applied
and Computational Harmonic Analysis, 35(1):111–129, 2013.

[15] I. Ekeland and R. Témam. Convex Analysis and Variational Problems.
Number vol. 1 in Classics in Applied Mathematics. Society for Industrial
and Applied Mathematics, 1976.

[16] A. Fannjiang and W. Liao. Coherence pattern-guided compressive sensing
with unresolved grids. SIAM J. Img. Sci., 5(1):179–202, February 2012.

[17] C. Fernandez-Granda. Support detection in super-resolution. CoRR,
abs/1302.3921, 2013.

[18] J.J. Fuchs. On sparse representations in arbitrary redundant bases. IEEE
Transactions on Information Theory, 50(6):1341–1344, 2004.

[19] M. Grasmair, O. Scherzer, and M. Haltmeier. Necessary and sufficient
conditions for linear convergence of `1-regularization. Communications on
Pure and Applied Mathematics, 64(2):161–182, 2011.

[20] B. Hofmann, B. Kaltenbacher, C. Poschl, and O. Scherzer. A convergence
rates result for tikhonov regularization in banach spaces with non-smooth
operators. Inverse Problems, 23(3):987, 2007.

[21] S. Levy and P. Fullagar. Reconstruction of a sparse spike train from a
portion of its spectrum and application to high-resolution deconvolution.
Geophysics, 46:1235–1243, 1981.

[22] J. Lindberg. Mathematical concepts of optical superresolution. Journal of
Optics, 14(8):083001, 2012.

[23] D. A. Lorenz and D. Trede. Greedy Deconvolution of Point-like Objects.
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