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ABSTRACT
Simulating human-centered pervasive systems requires accu-
rate assumptions on the behavior of human groups. Recent
models consider this behavior as a combination of both so-
cial and spatial factors. Yet, establishing accurate traces of
human groups is difficult: current techniques capture either
positions, or contacts, with a limited accuracy.

In this paper we introduce a new technique to capture such
behaviors. The interest of this approach lies in the unprece-
dented accuracy at which both positions and orientations
of humans, even gathered in a crowd, are captured. From
the mobility to the topological connectivity, the open-source
framework we developed offers a layered approach that can
be tailored, allowing to compare and reason about models and
traces.

We introduce a new trace of 50 individuals on which the
validity and accuracy of this approach is demonstrated. To
showcase the interest of our software pipeline, we compare
it against the random waypoint model. Our fine-grained ana-
lyzes, that take into account social interactions between users,
show that the random waypoint model is not a reasonable ap-
proximation of any of the phenomena we observed.
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INTRODUCTION
During the past few years, the problem of understanding hu-
man mobility has received a growing attention from the re-
search community. Thanks to the widespread use of mobile
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handheld devices, large scale datasets have been produced
and successfully exploited to characterize human mobility
patterns. Applications are multiple: from street planning to
epidemics modeling, every hint about how humans move is a
powerful ally for designing tomorrow’s information society.

Indeed, the users contact model is one of the most crucial
parameters of a ubiquitous system that relies on short range
communication (SRC). However, available mobility traces
are usually coarse grained and do not allow to precisely em-
ulate SRC topologies. Contact traces exist, but these are
usually established using SRC technologies themselves. The
problem of such approaches is genericity: how to simulate
a Bluetooth communication topology using an RFID contact
trace, and vice-versa? Due to the wide variety of SRC tech-
nologies and their rapid evolution, it is of prime importance
to establish datasets that are technology independent.

The idea that users mobility and social contacts are connected
has recently given rise to the development of mobility mod-
els taking these two dynamics in consideration. But in the
absence of traces capturing both interactions and movements,
such models remain only partially validated. One of the fun-
damental question that is left unanswered is “what is a good
analytical model for crowd connectivity?”, and, as a corol-
lary, “how to validate models?”.

To that end, we present SOUK— Spatial Observation of hU-
man Kinetics. This platform allows to precisely capture, in
real time, both the position and the orientation of individuals
in a dense region. To achieve this, each individual is equipped
with two lightweight wireless tags that are localized with a
15cm accuracy using a network of sensors. More precisely,
we present SOUK as a mean to test the realism of existing and
future human mobility models.

Social events (meetings, cocktails, concerts) constitute per-
fect use cases for SOUK because of it’s ability to cap-
ture users’ localization, orientation and interactions in dense
crowds. The dynamic network of social interactions arising
during the social event can thus be computed, exposed in
real-time and logged for off-line analysis. To the best of our
knowledge, this is the first time that both social interactions
and movements are assessed at such a granularity and scale.

The main contributions of the paper are:

• We introduce SOUK, a platform to capture the behavior of
a crowd at an unprecedented scale and resolution. Traces
captured using this platform allow to assess both position



and social contacts of individuals, allowing precise simu-
lation of any Short Range Communication topology.

• We provide a set of tools to compare models and reality
using a wide variety of metrics, in a layered approach. We
believe this tool chain could be of prime importance to de-
velop realistic models and compare them to reality.

• We showcase our approach by comparing the random way-
point model against an experimental deployment of the
platform on 50 individuals during a social event.

Although the drawbacks of random waypoint models are
already known [11], the comparison is only presented to
demonstrate how the proposed approach allows to easily
compare a given model against reality.

The paper is organized as follows: the following section dis-
cusses related works. Then, we present the SOUK experimen-
tal platform. The next section describes an experiment we
conducted and associated results. The last section concludes
the paper and exposes some trails of future work.

RELATED WORK: A MATTER OF SCALE
Recently, several mobility data collection campaigns have
been conducted and published, for instance in the CRAW-
DAD project1. These campaigns use off-the-shelf hardware,
such as smartphones, to capture information, thus their local-
ization source is either a GPS system or based on wireless
interfaces (WiFi or GSM). Compared to the datasets we cap-
ture, the major difference lies in the scale: SOUK’s dataset has
a smaller scale (i.e., building-wise vs. town-wise, and short
term vs. long-term) but provides a higher accuracy (i.e., in the
order of 10cm vs. 10−100m) and includes users orientation,
thus enabling a precise capture of social interactions between
users. These two types of datasets are complementary: i) un-
derstanding micro-mobility and fine-grained interactions be-
tween users requires a highly accurate localization platform,
while ii) understanding long-term evolution of systems and
recurrent behaviors requires a large scale deployment [1].

The study, and modeling, of the relationship between human
mobility and social aspects of human behavior has recently
gained a lot of attention. In particular, much effort is spent
in developing socially inspired mobility or propagation mod-
els [6, 10]. In these works, positioning is not necessarily of
primary interest but, rather, access to data concerning con-
tacts or proximity between the individuals is necessary. Many
different technologies and methods have been used to collect
or infer social contacts: Bluetooth and WiFi networks [2,4,7],
dead reckoning [8] or RFIDs [3, 10]. The main limitation of
these experiments lies in the fact that contacts are inferred
when two devices are co-located or in communication range.
Accuracy of this inference can be questioned and some inter-
actions may be missed.

To the best of our knowledge, this is the first time that such
an accurate and precise dataset about both positioning and
contacts is produced for a dense population.

1CRAWDAD project: http://crawdad.cs.dartmouth.edu

EXPERIMENTAL PLATFORM
SOUK consists of three parts: i) an experimental platform2

to capture the position and orientation of mobile individuals
using a fixed infrastructure of sensors and two wireless Ultra-
Wide-Band tags per participant, ii) a framework to develop
mobility models, and iii) a software system that exploits
the output of either the capture process or model-generated
traces. In a nutshell, both mobility models and the experi-
mental platform can feed a database that is then accessed by
a software pipeline. The use of a database between produc-
tion and exploitation of positions ensures the repeatability of
experiments, and a certain degree of genericity: any model or
positioning system can be used, for real-time exploitation of
data or for later off-line analysis.

EXPERIMENTATION AND PRELIMINARY RESULTS
We present here one measurement study that was conducted
in 2012 during a reception following the inauguration of a
new building. The attendance was a mix of scientists, jour-
nalists, and representatives of local institutions. More than
0.6 million position reports were collected. In this experi-
ment, we deployed 116 tags, thus equipping 58 out of around
100 participants.

Figure 1. One tag
per shoulder

We collected approximately 1.5 hours
of data. Any volunteer was provided
with a pair of tags, as shown on Fig-
ure 1. The room used for experiments
is approximately a 10m× 10m square
zone. To ensure an accuracy of around
15cm, the system was carefully cali-
brated using laser range-finders.

Contacts
Users’ positions and orientations produced by SOUK are ab-
stracted by the notion of snapshot, i.e., positioning informa-
tion is sampled at regular intervals to provide a clean inter-
face to upper software layers. By analyzing snapshots, we
can use a device-based model to explore the topology of a
system consisting of devices carried by users, or a user-based
model to dig into interpersonal relations that took place dur-
ing the experiments. Interestingly, as we show hereafter, the
latter has a non negligible impact on the former.

Device-based
The simplest model considers that a and b are attendees’ de-
vices and detects whether these are within wireless contact
range r. In this case, the simplest approach is to decide upon
the distance between them, using a unit disc wireless commu-
nication model (i.e. a link is active iff d(a, b) < r).

User-based, cone
Alternatively, one can consider that a and b are attendees and
that their awareness is limited by a cone in which social inter-
actions can happen. Therefore, each attendee i has a “social
cone” of 2×α in front of him, with a range to 2m. Everybody
in i’s cone is potentially interacting with i. If j is in i’s cone,
and i is in j’s cone, i.e., they face each other, we consider
them as interacting with each other.
2Ubisense http://ubisense.net

http://crawdad.cs.dartmouth.edu
http://ubisense.net
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Figure 2. Number of user-based contacts
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Figure 3. Evolution of the largest connected component size over time -
random way point (RWP) vs. user based (UB) - wireless

User-based, Voronoı̈
The third model we exploit relies on Voronoı̈ diagrams. We
first compute the Voronoı̈ cell of each user i (i.e., the poly-
gon containing all the points that are closer to i than to any
other attendee). Then we consider that i and j are interact-
ing if (1) they have neighboring cells and (2) they face each
other, again with an angle of maximum 2×α. This approach
does not require a “social” distance parameter which is hard
to calibrate, as it is affected by both cultural factors and envi-
ronmental factors such as local people density, as studied by
Hall [5].

Figure 2 illustrates the impact of the contact detection model
by representing the number of detected social links over time
for both user-based detection techniques. Two main parame-
ters impact the number of detected links: the detection strat-
egy (cone, or Voronoı̈) and the maximal deviation angle α.
Voronoı̈ and cone detection techniques roughly detect the
same amount of links for a fixed α, although Voronoı̈ always
detects less links than the cone method. This is probably an
impact of the “line-of-sight” effect of Voronoı̈: consider 3 at-
tendees i, j, k on a line, i and k can be in contact using the
cone method (provided d(i, k) < 2m) whereas the Voronoı̈
method will never detect an interaction between them. In-
terestingly, the Voronoı̈ method leads to a more stable link
count over time. The grayed zones around each curve rep-
resent the standard deviation of the smoothing applied. This
suggests increasing α decreases stability of the results, and
that Voronoı̈ method always provides more stable results.

Interactions
Figures 3, 4 and 5 exploit the extracted interactions from a
graph perspective by exploring the “knitting” of the structure.
Figures 3 and 4 both compare traces obtained from the ex-
periment (User-based/UB, dark colors) and from a random
waypoint model (RWP, light colors) tailored to copy the ob-
served behavior (identical attendee speed, pause duration and
pause probability).

Figure 3 represents the evolution of the largest connected
component size in the contact graph derived from traces us-

ing various radio ranges. Computing the size of the largest
connected component provides an upper bound of the num-
ber of devices able to exchange messages using a multi-hop
communication scheme at a given moment in time. One can
notice a striking difference between results obtained using
synthetic and real traces: the size of the largest connected
component for synthetic traces is constant over time, and al-
ways overestimates the number of connected attendees. This
figure also illustrates the dramatic impact of range: above 3m
all attendees are connected. A 1m-range never allows to con-
nect more than 12 devices, while a 2m-range allows to reach
nearly everyone.

Figure 4 presents another striking difference between UB and
RWP traces. Recall that the RWP model is parametrized from
UB derived statistics. From these traces, we counted the num-
ber of wireless contacts made by each pair of devices assum-
ing a range of 2m. In other words, we compute the weights
of a wireless contact graph for both traces. Figure 4 presents
the distribution of these weights. It reads the following: in
the UB trace, around 28 devices pairs were in contact be-
tween 150 and 160 times. The main difference is that RWP
trace provides a (not surprisingly) normal distribution cen-
tered around 50, whereas the real trace exhibits a heavy tailed
distribution: some devices pair connect very often while some
others nearly never connect.

Figure 5 partly explains this striking difference: it represents
a layout of the final social interaction graph, when consid-
ering only most frequent links, i.e., links that were active at
least 50 snapshots —approximately 2.5 minutes. Each link
is weighted proportionally to the amount of time its end-
points spent together. Colors represent communities, com-
puted using a classical community detection algorithm [9].
It is interesting to observe the variety of contact patterns:
whereas some attendees only have few but very strong con-
nections, e.g., node 39, others have many links of lesser im-
portance, like node 7. Modularity, as defined in [9], captures
to which extent a graph is organized as interconnected mod-
ules. Graphs without structure, i.e., where any two vertices
are connected with the same probability, have a 0 modular-
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Figure 4. Weight distributions of collected contact graphs, user-based (UB)
against random waypoint model (RWP), using a 2m range

Figure 5. Layout of the final interaction graph - only most frequent links
are represented.

ity, whereas graphs composed of disconnected cliques have a
modularity close to 1. The modularity of our social graph is
0.51, which means that the detected communities are signifi-
cant: many social links fall within communities and few fall
between two different communities.

The conclusion we draw from these two observations is that
random waypoint models have no chance of correctly emulat-
ing human micro-mobility because they ignore the primordial
social dimension of our behavior, even when using a RWP
that mimics users observed behaviors. As we move to meet
our friends (and avoid our foes) we drastically bias the con-
nection pattern of the devices we carry. Even if the limits
of random waypoint models are already known, these results
showcase the possible use of the SOUK platform by analyzing
the social structure of the underlying interaction network.

CONCLUSION
This paper presents a framework to capture and analyze mo-
bility data of crowds, with the long-term goal of refining mo-
bility models or deriving new ones. Instead of using raw
mobility data or abstract mobility models to test the im-
pact of mobility on human-carried devices, we seek to study
and characterize crowd mobility using the presented frame-
work. We argue this strategy will enable to assess the level
of realism and generality of models and traces, allowing to
better understand and simulate human-centered Short Range
Communication-based systems.

As a first step towards this goal, we present the results ob-
tained during the first experimental deployments of the plat-
form. To the best of our knowledge the dynamics of such
a dense crowd had never been assessed that precisely before.
Analysis reveals that crowd behavior is all but random, insist-
ing on the need of a better model toolbox to design and test
mobility-resilient software systems.

On the practical side, the SOUK platform, which is fully open
source, has been designed as a scalable solution towards anal-
ysis of large crowds: although the results presented here are
illustrated on an experiment involving 50 persons, both the
hardware cost and the complexity of software analysis (using
Voronoı̈-based approach) are linear with respect to the num-
ber of tracked individuals.
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