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Abstract. 3D human action recognition is an important current chal-
lenge at the heart of many research areas lying to the modeling of the
spatio-temporal information. In this paper, we propose representing hu-
man actions using spatio-temporal motion trajectories. In the proposed
approach, each trajectory consists of one motion channel corresponding
to the evolution of the 3D position of all joint coordinates within frames
of action sequence. Action recognition is achieved through a shape tra-
jectory representation that is learnt by a K-NN classifier, which takes
benefit from Riemannian geometry in an open curve shape space. Ex-
periments on the MSR Action 3D and UTKinect human action datasets
show that, in comparison to state-of-the-art methods, the proposed ap-
proach obtains promising results that show the potential of our approach.
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1 Introduction

Imaging technologies have recently shown a rapid advancement with the intro-
duction of consumer depth cameras with real-time capabilities, like Microsoft
Kinect or Asus Xtion PRO LIVE. These new acquisition devices have stimu-
lated the development of various promising applications, including human pose
reconstruction and estimation, scene flow estimation, hand gesture recognition,
face super-resolution. Encouraging results shown in these works have been made
possible also thanks to the advantages that depth cameras have in comparison to
conventional cameras, such as an easier foreground/background segmentation,
and a lower sensitivity to lighting conditions.

In this context, an increasing attention has been directed to the task of recog-
nizing human actions using depth map sequences. To this end, several approaches
have been developed in the last few years that can be categorized as: skeleton
based, that estimate the positions of a set of joints in the human skeleton from the
depth map, and then model the pose of the human body in subsequent frames of
a sequence using the position and the relations between joints; depth map based,
that extract volumetric and temporal features from the overall set of points of
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the depth maps in a sequence; and hybrid solutions, which combine information
extracted from both the joints of the skeleton and the depth maps. Following
this categorization, existing methods for human action recognition with depth
cameras are shortly reviewed below.

1.1 Related Work

Skeleton based approaches have become popular thanks to the work of Shotton
et al. [1], where a real-time method is defined to accurately predict 3D positions
of body joints in individual depth map without using any temporal informa-
tion. In that work, prediction accuracy results are reported for 16 joints, but the
Kinect tracking system developed on top of this approach is capable to estimate
3D positions for 20 joints of the human skeleton. Relying on the joints location
provided by Kinect, in [2] an approach for human action recognition is proposed,
which computes histograms of the locations of 12 3D joints as a compact repre-
sentation of postures. The histograms computed from the action depth sequences
are then projected using LDA and clustered into k posture visual words, which
represent the prototypical poses of actions. The temporal evolutions of those
visual words are modeled by discrete Hidden Markov Models (HMMs). Results
were provided on a proprietary dataset and on the public Microsoft Research
(MSR) Action3D dataset [3].

In [4], human actions recognition is obtained by extracting three features
for each joint which are based on pair-wise differences of joint positions: differ-
ences between joints in the current frame; between joints in the current frame
and in the preceding frame; and between joints in the current frame and in the
initial frame of the sequence that is assumed to approximate the neutral pos-
ture. Since the number of these differences results in a high dimensional feature
vector, PCA is used to reduce redundancy and noise in the feature, and to ob-
tain a compact EigenJoints representation for each frame. Finally, a näıve-Bayes
nearest-neighbor classifier is used for multi-class action classification on the MSR
Action3D dataset.

Methods based on depth maps, do not rely on fitting a humanoid skeleton
on the data, but use instead the entire set of points of depth map sequences to
extract meaningful spatiotemporal descriptors. Several approaches are used for
action recognition like 3D silhouettes [3], Comparative Coding Descriptor [5],
or Histogram of Oriented Gradient (HOG) on Depth Motion Maps (DMM) [6].
Other methods represent the action sequence as a 4D shape and extract Spatio-
Temporal Occupancy Pattern features (STOP) [7], or Random Occupancy Pat-
tern features (ROP) [8].

Hybrid solutions try to combine positive aspects of both skeleton and depth-
map based methods. The approach in [9] proposes a Local Occupancy Pattern
(LOP) around each 3D joint as local feature for human body representation.

Relying on the observation that most human gestures can be recognized using
only the shape of the skeleton of the human body, most of the human action
approaches focus on the positions of 3D joints as features for recognition. The
most important advantage of these features is that they are easy to extract with
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new depth cameras. Except that, the choice of good features to model the shape
of the human body is not the only issue in human action recognition. Even if
accurate 3D joints positions are available, action recognition task is still difficult
due to significant spatial and temporal variations in an action for different, or
even the same, actor. Feature space representation and similarity metric are also
important factors for recognition effectiveness.

1.2 Proposed Approach

In this paper, we explore the joint positions as gesture representation and we
model the dynamics of the full skeleton as a trajectory using shape analysis on
Riemannian manifolds for human actions recognition. Our proposal in this work
is motivated by: (1) The fact that many features in computer vision applications
lie on curved space due to the geometric nature of the problems; (2) The shape
and dynamic cues are very important for modeling human activity and their
effectiveness have been demonstrated in several works in the state-of-the-art [10,
11]; (3) Using such manifold offers a wide variety of statistical and modeling
tools for gesture and action recognition.

The rest of the paper is organized as follows: Sect. 2 describes our approach
including the spatio-temporal representation of action, the elastic metric used
to compare action sequences and the recognition method used for classification;
Sect. 3 discusses about the experimental results; Sect. 4 concludes the paper also
prospecting future research directions.

2 Spatio-temporal Representation

In this work, 3D human actions are represented by spatio-temporal motion tra-
jectories of pose vectors in an Euclidian space. Trajectories are represented as
curves in the Riemannian manifold of open curve shape space in order to model
the dynamics of temporal variations of pose as the action progresses. The shape
of each trajectory is viewed as a point on the shape space of open curves and,
hence, the similarity between two trajectories is qualified by an elastic distance
between their corresponding points in shape space. Finally, a classification pro-
cess is performed on shape space manifold. This approach is schematized in
Fig. 1.

2.1 Space of Trajectories

Using the Kinect, we can easily obtain in real-time the 3D location of body
parts, called joints. In each frame, the 3D positions of 20 joints are available.
As there are 20 joints and each has 3 coordinates, the whole body pose at each
frame can be represented by a vector in a 60-dimensional space (pose space). An
instance of action will be regarded as a trajectory of poses or an open curve in the
Euclidian space. Each trajectory consists of one motion channel corresponding
to the evolution of all 3D joint coordinates. This is summarized on the left of
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Fig. 1. Overview of our approach

Fig. 1, where each action is represented by a curve (for visualization, curves are
shown in 2D, but they actually lie in a 60-dimensional space).

For each action sequence, we have a corresponding trajectory in a space of
60 dimensions. As the 3D position of each joint is represented by 3 different
dimensions among the 60 dimensions, we are interested in the evolving shapes
of these trajectories (curves) during actions. This motivated us to analyze the
shape of the trajectories in order to compare action sequences. For this purpose,
a measure representing the distance between the shape of two curves is needed.
Since the actions are not realized at the same speed, and do not start and finish
at the same time, the distance should be invariant to the temporal elasticity.

2.2 Trajectory Projection in Shape Space

In order to analyze human action trajectories independently to the elasticity
(speed, time), we employ an elastic metric within a Riemannian shape space.
Since a manifold is considered as a topological space which is locally similar
to an Euclidean space, it can be seen as a continuous surface lying in a higher
dimensional Euclidean space [12].

We can therefore represent the trajectory by β : I → R60, for an interval I
= [0,1]. To analyze the shape of β, we shall represent it mathematically using a
square-root representation. We define its square-root velocity function (SRVF)
q : I→ R60, given by:

q(t)
.
=

β̇√
‖β̇‖

(1)

where q(t) is a special function introduced in [12] that captures the shape of
β and is particularly convenient for shape analysis. Its effectiveness has been
shown in [13] for human body extremal curves in R3 in order to compute poses
similarities. Our goal is to extend its use to spatio-temporal trajectories in Rn.
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As shown in [12], the L2 norm represents the elastic metric to compare the
shape of two curves, under the SRVF representation. We define the set of curves:

C = {q : I→ R60|‖q‖ = 1} ⊂ L2(I,R60). (2)

With the L2 norm on its tangent space, C becomes a Riemannian manifold
and the distance between two elements of this manifold, q1 and q2, is given by:

dc(q1, q2)
.
= cos−1(〈q1, q2〉) (3)

This distance measures the geodesic length between two trajectories represented
in the manifold C.

In our case, we need to compare the shape of the trajectories independently
of the elasticity. So, we need to be invariant to the re-parametrization of the
curves. We define the parametrization group Γ which is the set of all orientation-
preserving diffeomorphisms of I to itself. The elements γ ∈ Γ are the re-
parametrization functions. For a curve β : I→ R60, γ ◦β is a re-parametrization
of β. As shown in [14], the SRVF of γ ◦ β is given by

√
γ̇(t)(q ◦ γ)(t). We define

the equivalent class containing q as:

[q] = {
√
γ̇(t)(q ◦ γ)(t)|γ ∈ Γ}. (4)

The set of such equivalence classes is called the shape space of elastic curves,
noted S. In practise, dynamic programming is performed for optimal re-parametrization.

The shortest geodesic path between [q1] and [q2] in the shape space of open
curves S is given by:

α(τ) =
1

sin(θ)
(sin((1− τ)θ)q1 + sin(θτ)q∗2) , (5)

where θ = ds([q1], [q2]) = dc(q1, q
∗
2).

In the above equations, q∗2 is the optimal element associated with the opti-
mal re-parametrization γ∗ of the second curve q2. This defined distance allows
comparing the trajectories shape regardless to elastic deformation.

2.3 Recognition Algorithm

Let {(Xi,yi)}, i = 1, . . . , N , be the training set with respect to class labels, where
Xi ∈M, yi ∈ {1, . . . , Nc}, where Nc is the number of classes and M is a Rieman-
nian manifold. We want to find a function F(X) : M 7−→ 1, . . . , Nc for clustering
data lying in different submanifolds of a Riemannian space, based on the training
set of labeled items of the data. To this end, we propose a K-Nearest-Neighbor
classifier on the Riemannian manifold, learned by the trajectories modeled on
the open curve shape space. Such learning method exploits geometric proper-
ties of the open curve shape space, particularly its Riemannian metric. This
indeed relies only on the computation of the (geodesic) distances to the nearest
neighbors of each data point of training set.
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The action recognition problem is reduced to classification in Riemannian
space. More precisely, given a set of training trajectory samplesXi : i = 1, . . . , N ,
they are represented by the underlying points qi : i = 1, . . . , N , which map
trajectories on the shape space manifold (see the mapping between trajectories
and the shape space sphere in the middle of Fig. 1). Then, for any trajectory
query sample Xq, a point representation qq is obtained by mapping on the shape
space manifold. Finally, a geodesic-based classifier is performed to find the K-
closed trajectories of the query samples and to label Xq using the elastic metric
computed via tangent spaces as given in Eq. (3).

3 Experimental Results

The proposed approach has been evaluated on two different datasets: MSR Ac-
tion 3D and UTKinect. For each dataset, we compare our approach with state
of the art methods which have been evaluated on these datasets.

3.1 MSR Action 3D dataset

The MSR Action 3D dataset is a public dataset [3] on which many methods
have been evaluated. This dataset includes 20 actions performed by 10 persons
facing the camera. Each action is performed 2 or 3 times. In total, 567 sequences
are available. For each sequence, the dataset provides depth information, color
information and skeleton information. In our case, we only use the skeleton
data. As reported in [9], 10 actions are not used in the experiments because the
skeletons are either missing or too erroneous. For our experiments, we use 557
sequences.

In order to fairly compare our method with the state of the art, we follow
the same experimental protocol as the works evaluated on MSR Action 3D. The
sequences are split into three different subsets.

For each subset, we performed three different tests: Test One, Test Two, and
Cross Subject Test. In Test One, 1/3 of the subset is used as training and the
rest as testing. In Test Two, 2/3 of the subset is used as training and the rest
as testing. In Cross Subject Test, one half of the subjects is used as training
and the second half is used as test. The Cross Subject Test is more challenging
because the subjects used as training are different from those used as testing. It
is therefore more representative of a real case. In all our experiments, the data
was randomly split into training and test sets. The random split was repeated
10 times and the average classification accuracy is reported here. Table 1 shows
a comparison with the most significant state of the art methods on MSR Action
3D. Each comparison between a training action and a test action takes 45ms. The
computation time to recognize a test action is 45ms multiplied by the number
of training sequences.

We obtain an average accuracy of 93.1 for the Test One, 95.3 for the Test Two,
and 92.8 for the Cross Subject Test. As shown in Tab. 1, we obtain competitive
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Table 1. MSR Action 3D: We compare our method with HO3DJ [2], EigenJoints [4],
STOP [7], HOG [6], and Actionlet [9]. The method obtaining the best result in each
experiment is evidenced in bold

HO3DJ EigenJoints STOP HOG Our Method

AS1 One 98.5 94.7 98.2 97.3 90.3
AS2 One 96.7 95.4 94.8 92.2 91.0
AS3 One 93.5 97.3 97.4 98.0 98.0
AS1 Two 98.6 97.3 99.1 98.7 93.4
AS2 Two 97.9 98.7 97.0 94.7 93.9
AS3 Two 94.9 97.3 98.7 98.7 98.6
AS1 CrSub 88.0 74.5 84.7 96.2 90.1
AS2 CrSub 85.5 76.1 81.3 84.1 90.6
AS3 CrSub 63.5 96.4 84.8 94.6 97.6

accuracies in the Test One and the Test Two, compared to the methods of the
state of the art. In Cross Subject Test, we outperform existing methods.

First, we can see that for each test, we obtain better results with the Action
Subset 3. Indeed, the actions in this subset are very different while most of the
actions in subset 1 and subset 2 are quite similar. For example, we found actions
using hands or feet in subset 3 like high throw and forward kick. In subset 1 and
2, most of the actions are using only the hands, and especially only the left hand
like hammer, draw circle, forward punch, or draw X.

We can also notice that we obtain similar accuracies for each subset regardless
the test performed. Even if the subject who is performing the action is not
present in the training set, we obtain good accuracies. Indeed, thanks to our
spatio-temporal representation, an action performing by two different subjects
are represented by similar trajectories in term of the shape. In real case, the
subject performs an action for the first time in front of the recognition system.
The Cross Subject Test is therefore the most representative test of a real case.

Finally, we observed that the accuracies are very low for some actions like
hammer and hand catch, compared to the other actions. This can be explained
by the fact that the way of performing these two actions varies a lot depending
on the subjects. For example, some subjects repeat two or three times these
actions while other subjects performs each action only once.

3.2 UTKinect dataset

In order to confirm the effectiveness of our approach, we also evaluate the pro-
posed method on a second dataset: UTKinect [2]. In this dataset, 10 subjects
perform 10 different actions two times, for a total of 200 sequences. The ac-
tions include: walk, sit-down, stand-up, pick-up, carry, throw, push, pull, wave
and clap-hand. The dataset provides color information, depth information, and
skeleton information. This dataset presents three main challenges: First, the ac-
tion sequences are registered from different views; Second, there is human-object
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interaction for some actions; Third, another difficulty is added by the presence of
occlusions, caused by human-object interaction or by the absence of some body
parts in the field of view.

To be comparable to the work in [2], we follow the same experimental pro-
tocol. We use the Leave One sequence Out Cross Validation method (LOOCV).
For each iteration, one sequence is used as test and all others sequences are used
as training. The operation is repeated such that each sequence is used once as
testing. We obtain an accuracy corresponding to the mean value of the accura-
cies obtained in each iteration. We also compute a mean accuracy obtained for
each action separately (see Tab. 2).

Table 2. UTKinect dataset: We compare our method with HO3DJ [2]

Action Walk Sit Stand Pickup Carry Throw Push Pull Wave Clap Overall

HO3DJ 96.5 91.5 93.5 97.5 97.5 59.0 81.5 92.5 100 100 90.9
Our 90.0 100 100 100 68.4 95 90 100 100 80.0 91.5

As we can see in the Tab. 2, we obtain an accuracy similar to the work in [2].
We remark that most of the wrongly classified sequences are due to actions
that include human-object interaction. As our skeleton based approach is not
able to detect objects, we expect these sequences to be the main source of error
for our method. To investigate this point, we manually removed sequences with
human-object interaction (pick-up, carry, throw) and repeated the classification
experiments on this reduced dataset. We can see in Tab. 3 that removing actions
with human-object interaction substantially improve the accuracy.

Table 3. Reduced version of UTKinect: Comparison of our method with HO3DJ [2]

Action Walk Sit Stand Push Pull Wave Clap Overall

HO3DJ 96.5 91.5 93.5 81.5 92.5 100 100 90.9
Our 100 100 100 95 100 100 100 80.0 96.4

4 Conclusions

We have proposed an effective human action recognition method by using a
spatio-temporal motion trajectory representation. We take as input the 3D po-
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sition of each joint of the skeleton in each frame of the sequence and use them
to compute a corresponding trajectory. To compare the shape of the trajecto-
ries, we compute a distance between the projected trajectories in a shape space.
Finally, we use a K-Nearest-Neighbor method to classify the action sequences
which takes benefits from Riemannian geometry in open curve shape space. The
experimental results on MSR Action 3D and UTKinect demonstrate that our
approach outperforms the existing state-of-the-art in some cases. As future work,
we plan to investigate other descriptors based on both depth and skeleton in-
formation to manage the problem of human-object interaction. We also plan to
analyse and deal with specific cases where our method gives lower accuracies,
like in sequences where actions are performed more than once. Finally, we would
like to explore different applicative contexts and other available datasets.
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