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Abstract

In this paper we derive a posteriori error estimates for the compositional model of multiphase

Darcy flow in porous media, consisting of a system of strongly coupled nonlinear unsteady partial

differential and algebraic equations. We show how to control the dual norm of the residual aug-

mented by a nonconformity evaluation term by fully computable estimators. We then decompose

the estimators into the space, time, linearization, and algebraic error components. This allows to

formulate criteria for stopping the iterative algebraic solver and the iterative linearization solver

when the corresponding error components do not affect significantly the overall error. Moreover, the

spatial and temporal error components can be balanced by time step and space mesh adaptation.

Our analysis applies to a broad class of standard numerical methods, and is independent of the

linearization and of the iterative algebraic solvers employed. We exemplify it for the two-point finite

volume method with fully implicit Euler time stepping, the Newton linearization, and the GMRes

algebraic solver. Numerical results on two real-life reservoir engineering examples confirm that sig-

nificant computational gains can be achieved thanks to our adaptive stopping criteria, already on

fixed meshes, without any noticeable loss of precision.

Key words: a posteriori error analysis, adaptive algorithms, compositional Darcy flow, finite

volume methods.

1 Introduction

Reservoir modeling is an important branch of petroleum engineering which provides predictive tools
to elaborate reservoir exploration and oil production strategies. From a mathematical standpoint, the
underlying models require the numerical solution of highly nontrivial problems resulting from nonlinear,
strongly coupled systems of partial differential and algebraic equations. Our goal is to show that also in
such complex cases, one can devise efficient solution algorithms based on a posteriori error estimates that
ensure error control and allow significant computational savings in numerical simulations. Improving the
performance of reservoir simulators is a key point, since the simulation of complex Darcian flows in three
space dimensions accounts for the largest part of the computational effort in optimization models for
petroleum fields exploitation.

We focus on the Darcy flow of several fluids through a subsurface porous medium. We suppose that the
fluids are composed of a finite number of components that constitute the phases in the reservoir. Under
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the assumption that the flow process is isothermal, the equations that govern the compositional model are
the conservation of the amount of each component supplemented by algebraic equations expressing the
conservation of volume, the conservation of the quantity of matter, and the thermodynamic equilibrium.

Several numerical methods have been proposed for the discretization of the compositional model.Finite
difference and finite element methods can be used under some assumptions on the physical data,
see [4, 10, 26, 65] and references therein, but do not respect directly the local mass conservation. Mixed
finite element methods do not suffer from such a drawback and have been extensively used and analyzed,
see, e.g. [30, 24, 25] and references therein. They can moreover easily handle complicated geometries.

Recently, finite volume methods have become popular in reservoir engineering in view of their nu-
merous advantages: they meet the industrial constraints of robustness and low computational cost, they
satisfy local conservation, are simple to code, and can be used on a large variety of meshes. Several
node-centered finite volume discretizations are presented and compared by Huber and Helming [43].
Cell-centered finite volume methods have been considered in [50, 62, 39, 40]. A symmetric and coercive
cell-centered finite volume scheme for discretizing Darcy fluxes has been proposed in [6]. A particularly
popular family of cell-centered finite volume schemes in the oil industry is that of multi-point methods,
which can be easily plugged into traditional simulators thereby allowing to handle very complicated
geometries. They have been studied in the multiphase compositional context by Aavatsmark et al. [1, 2],
see also the references therein. More recently, a variation with compact stencil and increased stability has
been proposed and analyzed in [5]. For an up-to-date review of discretization methods for diffusive fluxes
in the context of geoscience models we refer to [28]; see also Droniou [31] for a wider-scope introduction
to finite volume methods for diffusive problems on general meshes.

To the best of our knowledge, almost no work has been done to this day on a posteriori error estimates
and stopping criteria for the general version of the multiphase compositional model allowing an arbitrary
number of phases and components. The goal of the present work is to fill this gap.

A posteriori error estimates enable to monitor the computational error. For model unsteady nonlinear
problems, some of the first rigorous results were obtained by Eriksson and Johnson [34] and by Verfürth
[60, 61]. Degenerate problems have subsequently been studied by Nochetto et al. [52], Ohlberger [53], and
lastly in [29]. An adaptation of the estimators for finite volume discretizations of hyperbolic conserva-
tion laws of Kröner and Ohlberger [48] to a steam-assisted gravity drainage two-component, three-phase
flow has been presented by Mamaghani et al. [51]. For multiphase reservoir simulation, adaptive mesh
refinement algorithms based on dynamic local grid refinement approaches were first considered by Heine-
mann [41] and Ewing et al. [37]. Then, in [57], Sammon discussed the development of adaptive techniques
in the context of unstructured grids for compositional simulation. Local refinement based on structured
grid adaptive mesh refinement was probably first applied by Hornung and Trangenstein in [42] and
Trangenstein and Bi [59]. In Pau et al. [54, 55], another development of a structured grid adaptive
mesh refinement algorithm for incompressible/compressible two-phase flow in porous media is discussed.
Recently, the first rigorous results for immiscible incompressible two-phase flow have appeared. Refer-
ence [64] develops a general abstract framework for a posteriori estimates of the dual norm of the residual
augmented by a nonconformity evaluation term, and proposes an adaptive algorithm with stopping cri-
teria for the iterative solution of the arising linear systems and iterative linearization/iterative coupling,
wherein the spatial and temporal errors are equilibrated. This leads to both error control and important
computational savings. Rigorous energy-spaces-type bounds have then been obtained for vertex-centered
finite volume discretizations in [20].

In this paper we derive fully computable a posteriori error estimates for a general version of the
multiphase compositional model. Following [64], the results are derived for the error measured as the
dual norm of the residual augmented by a nonconformity evaluation term. This error measure has the
advantage of simplifying the analysis because it stems directly from the given model. It has recently been
proved, for conforming discretizations of model nonlinear problems such as the immiscible incompressible
two-phase flow in [20] and of the two-phase Stefan problem in [29], that this error measure is an upper
bound for an energy-spaces-type norm of the difference between the exact and approximate solutions.

Our a posteriori error estimate can be separated into parts identifying the various sources of the
error in the numerical solution. More specifically, we construct: a spatial estimator incorporating the
errors related to the space discretization and to the nonconformity of the scheme; a temporal esti-
mator accounting for the time discretization error; a linearization estimator due to the approximate
linearization; and, finally, an algebraic estimator due to the inexact solution of the arising linear alge-
braic systems. Distinguishing the different error components allows to formulate stopping criteria for
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the iterative linearization and iterative algebraic solvers that stop the iterations when the corresponding
error components no longer affect significantly the overall error. We also propose to equilibrate the space
and time errors by adapting the choice of the time step and adjusting adaptively the computational
mesh. These criteria are collected to design an adaptive algorithm for the resolution of the multiphase
compositional model ensuring a user-given precision and significant computational savings compared to
the classical resolution of the model, and this already on fixed meshes. Additionally, our estimators
prove capable of identifying relevant features of the solution such as well singularities and moving fronts.
This anticipates them to be a good tool for the local adaptation of the spatial mesh. This topic will be
treated in detail in a future work.

The paper is organized as follows. In Section 2 we describe the system of equations for the multiphase
compositional model and identify the unknowns and relevant physical properties along with their de-
pendencies. We also discuss therein a fully implicit cell-centered finite volume discretization with phase
upwind and two-point discretization of the diffusive fluxes. In Section 3 we introduce the corresponding
weak formulation, define the error measure, and state our a posteriori error estimate. In Section 4 we
distinguish the different arising error components and propose a fully adaptive algorithm. Finally, in
Section 5 we illustrate our theoretical analysis by numerical results; already on fixed meshes, we obtain
the same precision and a speed-up factor of order 10 in terms of the total number of algebraic solver
iterations in comparison with the classical resolution.

2 Setting

We introduce in this section the multiphase compositional model and its finite volume discretization.

2.1 The multiphase compositional model

The compositional Darcy model describes the flow of several fluids through a porous medium reservoir
occupying the space region Ω ⊂ Rd, d ∈ {2, 3}, over the time interval (0, tF), tF > 0. It is assumed in
what follows that Ω is a bounded connected polygon if d = 2 or polyhedron if d = 3.

2.1.1 Model unknowns

We consider a system where matter is present in different phases collected in the set P = {p}, each
containing one or more components from the set C = {c}. For a given phase p ∈ P, let Cp ⊂ C be the set
of its components, and, for a given component c ∈ C, denote by Pc the set of the phases which contain
c. For a given phase p ∈ P, Sp denotes the saturation, i.e., the fraction of the pore volume occupied
by p, and, for each component c ∈ Cp, Cp,c is the corresponding molar fraction in p. Saturations are
collected in the vector S = (Sp)p∈P while, for all p ∈ P , molar fractions are collected in the vectors
Cp := (Cp,c)c∈Cp

. We tackle here the isothermal case where no energy source or sink is present and the
temperature of both the fluids and the porous medium are fixed to a given value. The dependence on
the temperature is hence not taken into account in what follows. We denote by P the reference pressure
such that the phase pressures Pp, p ∈ P, are expressed as

Pp = Pp(P,S) := P + Pcp(S), (2.1)

where Pcp(S) is a generalized capillary pressure. In a two-phase system, the standard capillary pressure
is defined as the difference between the non-wetting and wetting phase pressures. In multiphase systems,
capillary pressures are usually obtained by combining the expressions of capillary pressures for each
couple of non-wetting and wetting phases. Formula (2.1) allows to deal with this aspect in a more
abstract and mathematically convenient way by introducing a symmetry in the treatment of the phases.
In practice, the reference pressure is chosen as the pressure of a suitable phase p ∈ P, whose generalized
capillary pressure is hence identically zero. The unknowns of the model are collected in the vector

X :=





P
(Sp)p∈P

(Cp,c)p∈P,c∈Cp



 .

This gives a total of 1 + NP +
∑

p∈P NCp
unknowns, (here and in what follows, NS stands for the

cardinality of the set S).
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2.1.2 Physical properties

The porous medium is characterized by its porosity φ and its absolute permeability Λ, both of which are
assumed constant in time for the sake of simplicity. For each fluid phase p ∈ P, the following properties
are relevant to the model (the usual dependence is provided in brackets): (i) the molar density ζp(Pp,Cp);
(ii) themass density ρp(Pp,Cp); (iii) the viscosity µp(Pp,Cp); (iv) the relative permeability kr,p(S); (v) for
all c ∈ Cp, the fugacity fc,p(Pp,Cp). It is also convenient to define for each phase p ∈ P the mobility

given by νp(Pp,S,Cp) := ζp(Pp,Cp)
kr,p(S)

µp(Pp,Cp)
.

2.1.3 Governing partial differential equations

The governing partial differential equations (PDEs) are obtained by enforcing the conservation of the
amounts of each component, using a constitutive law to relate the average phase velocities to the un-
knowns of the model. The conservation of the amount of each component is expressed by the following
system of NC PDEs:

∂tlc +∇·Φc = qc, ∀c ∈ C, (2.2)

where, for each c ∈ C, the component flux Φc has the following expression:

Φc :=
∑

p∈Pc

Φp,c, Φp,c = Φp,c(Pp,S,Cp) := νp(Pp,S,Cp)Cp,cvp(Pp,Cp), (2.3)

and for all p ∈ P, vp represents the average phase velocity given by Darcy’s law,

vp = vp(Pp,Cp) = −Λ (∇Pp − ρp(Pp,Cp)g) = −Λ (∇Pp + ρp(Pp,Cp)g∇z) , (2.4)

where g denotes the gravity vector acting in the negative z direction and g its Euclidian norm. Addi-
tionally, in (2.2), qc ∈ L2((0, tF);L

2(Ω)) denotes a source or sink and lc is the amount (in moles) of
component c per unit volume,

lc = lc(X ) = φ
∑

p∈Pc

ζp(Pp,Cp)SpCp,c. (2.5)

For the sake of simplicity, we assume that no-flow boundary conditions are prescribed for all the com-
ponent fluxes,

Φc·nΩ = 0 on ∂Ω× (0, tF) ∀c ∈ C, (2.6)

where ∂Ω denotes the boundary of Ω and nΩ its unit outward normal. At t = 0 we prescribe the initial
amount of each component,

lc(·, 0) = l0c ∀c ∈ C. (2.7)

2.1.4 Closure algebraic equations

The governing PDEs of the previous section need to be supplemented by a system of algebraic equations
imposing the volume conservation, the conservation of the quantity of matter, and local thermodynamic
equilibria. First, it is assumed that the pore volume is saturated by the phases, i.e.,

∑

p∈P

Sp = 1. (2.8)

Next, by definition, the molar fractions satisfy
∑

c∈Cp

Cp,c = 1 ∀p ∈ P, (2.9)

which corresponds to a total of NP algebraic equations. Finally, we assume the thermodynamic equilib-
rium expressed by

∑

c∈C

(NPc
− 1) =

∑

p∈P

NCp
−NC (2.10)

equalities of fugacities. Formulating the thermodynamic equilibrium (2.10) for an arbitrary number of
phases and components lies out of the scope of the present work, and we limit ourselves in the next
section to two examples. For further details we refer to Bear [14] or Chen et al. [25].
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2.1.5 Examples

To fix the ideas, we now present two common examples of multiphase compositional flows in the context
of reservoir simulation.

Example 1 (Three-phase flow). We consider three phases, typically water, gas, and oil, P = {w, g, o},
containing NC components decomposed into NH := NC − 1 hydrocarbon components from the set H, and
one water component e. Usually, under isothermal conditions, mass interchange occurs only between the
gas phase and the oil phase. Thus, the water phase contains only the water component e with molar
fraction Cw,e = 1. The equations from (2.10) expressing the thermodynamic equilibrium between the oil
and gas phases take here the form

fc,o(P,Co) = fc,g(P,Cg), ∀c ∈ H, (2.11)

which corresponds to NH algebraic equations. Condition (2.11) is often reformulated as

Ko
c (P,Co)Co,c = Kg

c (P,Cg)Cg,c, ∀c ∈ H, (2.12)

where Ko
c ,K

g
c are the so-called equilibrium constants for the component c ∈ H in the oil and gas phases,

respectively. Letting Ko,g
c :=

Ko
c

K
g
c
, we can write (2.11) as

Cg,c = Ko,g
c (P,Co,Cg)Co,c, ∀c ∈ H, (2.13)

with Ko,g
c the equilibrium constant between the oil and gas phases for the component c ∈ H. Using

the equations of mass conservation (2.2), volume conservation (2.8), conservation of the quantity of
matter (2.9), and the thermodynamic equilibrium (2.13), the three-phase compositional model reads

∂t(φζwSwCw,e) +∇·

(

ζwkr,w
µw

Cw,evw

)

= qe,

∂t
(

φ(ζoSoCo,c + ζgSgCg,c)
)

+∇·

(

ζokr,o
µo

Co,cvo +
ζgkr,g
µg

Cg,cvg

)

= qc ∀c ∈ H,

Sw + So + Sg = 1,

Cw,e = 1,
∑

c∈Co

Co,c = 1,

∑

c∈Cg

Cg,c = 1,

Ko,g
c (P,Co,Cg)Co,c = Cg,c, ∀c ∈ H,

(2.14)

where the phase pressures are given by (2.1) and the Darcy velocities by (2.4), while the boundary and
initial conditions are respectively specified by (2.6) and (2.7). The total number of equations is 2NC +3.
Recall that the unknowns are one reference pressure, NP saturations, and

∑

p∈P NCp
molar fractions,

totaling

1 +NP +
∑

p∈P

NCp
= 1 + 3 +

(

1 + 2× (NC − 1)
)

= 2NC + 3,

which gives us the same number of equations as unknowns.

Example 2 (Miscible two-phase flow). We next examine how the model of Example 1 simplifies when
water is not present. This is precisely the case considered in the numerical examples of Section 5 below.
The phases are now gas and oil, corresponding to P = {g, o}, composed of NC hydrocarbon components
with, using the notation of Example 1, C = H. Mass interchange is allowed between these two phases,
and the thermodynamic equilibrium relations are given by (2.11) or (2.12) as in the previous example.
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The system of equations (2.14) simplifies to

∂t
(

φ(ζoSoCo,c + ζgSgCg,c)
)

+∇·

(

ζokr,o
µo

Co,cvo +
ζgkr,g
µg

Cg,cvg

)

= qc, ∀c ∈ C,

So + Sg = 1,
∑

c∈Co

Co,c = 1,

∑

c∈Cg

Cg,c = 1,

Ko,g
c (P,Co,Cg)Co,c = Cg,c, ∀c ∈ C,

(2.15)

amounting to 2NC + 3 equations. Also in this case we have the same number of equations as unknowns,
the latter equaling to

1 +NP +
∑

p∈P

NCp
= 1 + 2 +

(

2× (NC)
)

= 2NC + 3.

2.2 An implicit finite volume scheme with phase-upwind and two-point dis-

cretization of diffusive fluxes

In this section we briefly discuss a fully implicit numerical scheme for the multiphase compositional model
of Section 2.1 based on phase-upwind and two-point finite volume discretization of diffusive fluxes. The
use of phase-upwind for the finite volume discretization of the Darcy problem is considered, e.g., in
Brenier and Jaffré [16] and Eymard et al. [40]. This scheme is of primary importance due to its stability
and consequent popularity in the oil industry.

2.2.1 Space-time meshes

Let (τn)1≤n≤N denote a sequence of positive real numbers corresponding to the discrete time steps such

that tF =
∑N

n=1 τn. We consider the discrete times (tn)0≤n≤N such that t0 := 0 and, for 1 ≤ n ≤ N ,
tn :=

∑n
i=1 τi; then we define the time intervals In := (tn−1, tn). For a function of time v with sufficient

regularity we denote vn := v(tn), 0 ≤ n ≤ N , and, for 1 ≤ n ≤ N , we define the backward differencing
operator

∂n
t v :=

1

τn
(vn − vn−1) (2.16)

that we shall use for both scalar and vector functions.
Let (Mn)0≤n≤N denote a family of meshes of the space domain Ω superadmissible in the sense of

Eymard et al. [38, Definition 3.1]. Common instances of superadmissible meshes are Cartesian orthogonal
grids or matching simplicial meshes that satisfy the (strict) Delaunay condition. Superadmissibility
requires, in particular, that for all M ∈ Mn there exists a point xM ∈ M (the cell center), and for all
mesh faces σ, there exists a point xσ ∈ σ (the face center) such that, for all faces σ lying on the boundary
of an element M , the line segment joining xM with xσ is Λ−1-orthogonal to σ. In what follows we let,
for all M ∈ Mn and all σ ∈ E i,n

M , dM,σ := dist(xM ,xσ), where E i,n
M denotes the faces of an element

M ∈ Mn not lying on ∂Ω. For every element M ∈ Mn, we denote by |M | its d-dimensional Lebesgue
measure and by hM its diameter. For 0 ≤ n ≤ N , we denote by En the set of mesh faces. Boundary
faces are collected in the set Eb,n := {σ ∈ En; σ ⊂ ∂Ω} and we let E i,n := En \ Eb,n. For an internal face
σ ∈ E i,n we fix an arbitrary orientation and denote the corresponding unit normal vector by nσ. For a
boundary face σ ∈ Eb,n, nσ coincides with the exterior unit normal nΩ of Ω.

2.2.2 Finite volume discretization

In the context of cell-centered finite volume methods, the unknowns of the model are discretized using
one value per cell: For all 0 ≤ n ≤ N we let

Xn
M := (Xn

M )M∈Mn , Xn
M :=





Pn
M

(Sn
p,M )p∈P

(Cn
p,c,M )p∈P,c∈Cp



 ∀M ∈ Mn.
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In particular, in practice, the initial condition (2.7) needs to be augmented to

XM(·, 0) = X 0
M, (2.17)

where X 0
M typically results from a steady-state equilibrium computation. For simplicity, we suppose

that l0c in (2.7) is piecewise constant on M0 and exactly satisfied by the corresponding components of
X 0

M. For all time steps 0 ≤ n ≤ N and all M ∈ Mn, the discrete phase saturations are collected in
the vector Sn

M := (Sn
p,M )p∈P while, for all p ∈ P, the discrete molar fractions are collected in the vector

Cn
p,M := (Cn

p,c,M )c∈Cp
. We consider in what follows an isotropic, possibly heterogeneous medium such

that the local (cell) permeability tensor satisfies Λ|M = λMId for all M ∈ Mn and a scalar λM > 0.
Since we consider superadmissible meshes, this assumption ensures the consistency of the two-point
finite volume discretization of diffusive fluxes. We emphasize, in passing, that the consistency of the
discretization scheme is not required in the a posteriori error analysis. As a matter of fact, the proof of
Theorem 3.3 below does not require to specify the origin of the discrete approximation.

For each phase p ∈ P, the corresponding phase pressure inside each cell M ∈ Mn at time step
0 ≤ n ≤ N is given by

Pn
p,M = Pn

p,M (Pn
M ,Sn

M ) := Pn
M + Pcp(S

n
M ). (2.18)

The PDEs (2.2) expressing the conservation of the amount of each component are discretized as follows:
For all 1 ≤ n ≤ N , we require

|M |∂n
t lc,M +

∑

σ∈Ei,n

M

Fc,M,σ(X
n
M) = |M |qnc,M , ∀c ∈ C, ∀M ∈ Mn, (2.19)

where qnc,M :=
∫

In

∫

M
qc/(|M |τn) (more details about the source term will be given in the numerical

tests), and the accumulation term is given, for all 0 ≤ n ≤ N , by the following discrete version of (2.5):

lnc,M = lc,M (Xn
M ) := φ

∑

p∈Pc

ζp(P
n
p,M ,Cn

p,M )Sn
p,MCn

p,c,M ∀c ∈ C, ∀M ∈ Mn. (2.20)

For each component c ∈ C, its total flux across σ results from the sum of the corresponding fluxes for
each phase p ∈ Pc, i.e.,

Fc,M,σ(X
n
M) :=

∑

p∈Pc

Fp,c,M,σ(X
n
M), (2.21)

where, for all p ∈ Pc, all M ∈ Mn, and all σ ∈ E i,n
M with σ = ∂M ∩ ∂L,

Fp,c,M,σ(X
n
M) = ν↑p(X

n
M)Cn

p,c,M
↑
p
Fp,M,σ(X

n
M), M↑

p =

{

M if Pn
p,M − Pn

p,L ≥ 0,

L otherwise,
(2.22)

and with Cn

p,c,M
↑
p

and ν↑p(X
n
M) := νp(P

n

p,M
↑
p

,Sn

M
↑
p

,Cn

p,M
↑
p

) denoting, respectively, the upstream molar

fraction and upstream mobility. In (2.22), we have introduced the two-point finite volume approximation
of the normal component of the average phase velocity on σ given by

Fp,M,σ(X
n
M) := |σ|

αMαL

αM + αL

[

Pn
p,M − Pn

p,L + ρnp,σg (zM − zL)
]

, αK :=
λK

dKσ

∀K ∈ {M,L}, (2.23)

where ρnp,σ is an approximation of the mass density of the phase p on the face σ given by (other choices
are possible),

ρnp,σ :=

(

χn
p,Mρp(P

n
p,M ,Cn

p,M ) + χn
p,Lρp(P

n
p,L,C

n
p,L)

)

χn
p,M + χn

p,L

, χn
p,K =

{

1 if Sn
p,K > 0,

0 otherwise,
K ∈ {M,L}.

Boundary fluxes are set to zero for all components to account for the homogeneous natural boundary
condition (2.6).

Remark 2.1 (General meshes and full permeability tensors). A straightforward variation of this scheme
that is consistent on more general meshes and for full permeability tensors consists in using a multi-point
expression for Fp,M,σ (cf. (2.23)) in the spirit of [2, 32]; see also [5].
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At the discrete level, volume conservation is expressed by the following relation: For all 1 ≤ n ≤ N ,

∑

p∈P

Sn
p,M = 1 ∀M ∈ Mn. (2.24)

Similarly, the discrete conservation of matter in each phase reads, for all 1 ≤ n ≤ N ,

∑

c∈Cp

Cn
p,c,M = 1 ∀p ∈ P, ∀M ∈ Mn. (2.25)

Finally, the thermodynamic equilibrium is enforced by requiring the equality of fugacities for all time
steps inside each cell, leading to

∑

p∈P

NCp
−NC equations ∀1 ≤ n ≤ N, ∀M ∈ Mn. (2.26)

An important remark which can be exploited in the implementation is that (2.24), (2.25), and the
thermodynamic equilibrium (2.26) express local algebraic relations between the unknowns in each cell.
This allows to reduce the size of the global linear system to NMn×NC equations stemming from (2.19). A
detailed treatment of local elimination strategies is out of the scope of the present work. We emphasize,
however, that a local elimination procedure is indeed used in the numerical examples of Section 5.

3 A basic a posteriori error estimate

We derive here an a posteriori estimate for the error measured by the dual norm of the residual augmented
by a nonconformity evaluation term. This choice of the error measure is naturally inspired by the problem,
and allows to obtain a fully computable error upper bound. The results of this section are generic for
an arbitrary approximation; we show how to apply them to the finite volume setting of Section 2.2 in
Section 4 below.

3.1 Weak solution

At this stage, we need to characterize a weak solution for the multiphase compositional model (2.1)–
(2.10). Let (·, ·)D stand for the L2-scalar product on D ⊂ Ω and ‖·‖D for the associated norm; the same
notation is used for both scalar and vector arguments, and the subscript is dropped whenever D = Ω.
We define

X := L2((0, tF);H
1(Ω)), (3.1a)

Y := H1((0, tF);L
2(Ω)). (3.1b)

Let ε > 0 be a (small) parameter which only needs to satisfy ε ≤ 1. We equip the space X with the
norm

‖ϕ‖X :=

{

N
∑

n=1

∫

In

∑

M∈Mn

‖ϕ‖2X,Mdt

}
1
2

, ‖ϕ‖2X,M := εh−2
M ‖ϕ‖2M + ‖∇ϕ‖2M , ϕ ∈ X. (3.2)

This choice is motivated by the homogeneous Neumann boundary condition (2.6); taking ε = 0 is possible
and classical when Dirichlet (pressure) boundary conditions prescribed at least on a part of the boundary,
cf. [35, 64, 20]. We suppose sufficient regularity to satisfy:

Assumption 3.1 (Weak solution). There exists a weak solution X of (2.1)–(2.10) which can be char-
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acterized as follows:

lc ∈ Y ∀c ∈ C, (3.3a)

Pp(P,S) ∈ X ∀p ∈ P, (3.3b)

Φc ∈ [L2((0, tF);L
2(Ω))]d ∀c ∈ C, (3.3c)

∫ tF

0

{(∂tlc, ϕ)(t)− (Φc,∇ϕ)(t)} dt =

∫ tF

0

(qc, ϕ)(t)dt ∀ϕ ∈ X, ∀c ∈ C, (3.3d)

the initial condition (2.7) holds, (3.3e)

the algebraic closure equations (2.8)–(2.10) hold, (3.3f)

where Pp, lc, and Φc are defined, respectively, by (2.1), (2.5), and (2.3).

Existence and uniqueness of a weak solution has to our knowledge not been established for the
multiphase compositional model. In simplified settings, with typically only two phases present and each
phase composed of a single component, such results can be found in [47, 22, 8, 9, 23, 19, 46, 7] and the
references therein.

Remark 3.2 (Component fluxes). It follows from (3.3a), the assumption qc ∈ L2((0, tF); L
2(Ω)), (3.3c),

and (3.3d) that actually

Φc ∈ L2((0, tF);H(div,Ω)) ∀c ∈ C, (3.4a)

∇·Φc = qc − ∂tlc ∀c ∈ C, (3.4b)

Φc·nΩ = 0 on ∂Ω× (0, tF) ∀c ∈ C, (3.4c)

so that the component fluxes Φc have the normal trace continuous in a proper sense, the governing
equation (2.2) is satisfied with a weak divergence, and the boundary conditions (2.6) hold in the normal
trace sense.

3.2 A generic approximate solution

In order to present the results of this section abstractly, not linked to any specific numerical discretization,
we suppose here that for each 0 ≤ n ≤ N and p ∈ P, we are given a piecewise H1 in space (typically
piecewise polynomial of degree ≥ 1, possibly discontinuous) phase pressure Pn

p,h. Therefrom, the space–
time functions Pp,hτ are created by prescribing Pp,hτ (t

n) := Pn
p,h, 0 ≤ n ≤ N , Pp,hτ thus being piecewise

affine and continuous in time. By such an assumption, Pp,hτ are not necessarily included in the energy
space X; we henceforth understand by ∇ the broken gradient operator on the meshes Mn. Similarly, the
amounts of components lnc,h, 0 ≤ n ≤ N , c ∈ C, are supposed L2 in space (typically piecewise polynomial
of degree ≥ 0, possibly discontinuous) and form the piecewise affine and continuous-in-time functions
lc,hτ , c ∈ C, by lc,hτ (t

n) = lnc,h. Thus lc,hτ ∈ Y , in a discrete equivalent of (3.3a).
We suppose that the space–time reference pressure, saturation, and molar fraction approximations

Phτ , Sp,hτ , and Cp,c,hτ , p ∈ P, c ∈ Cp are linked to Pp,hτ and lc,hτ via (2.1) and (2.5), respectively.
Similarly, we suppose that the algebraic closure equations (2.8)–(2.10) are satisfied exactly, and, for
simplicity, that l0c,h satisfies exactly the initial condition (2.7), i.e., l0c,h = l0c . Below, the concise notation
for the vector-valued space–time functions Phτ := (Pp,hτ )p∈P , Shτ := (Sp,hτ )p∈P and, for all p ∈ P,
Cp,hτ := (Cp,c,hτ )c∈Cp

, will be employed. We show how we obtain the above quantities in the finite volume
setting of Section 2.2, or more precisely during the calculation including also an iterative linearization
and iterative solution of the arising linear systems, in Section 4.2 below.

3.3 Error measure

Following [64], we consider an error measure for the above approximate solution inspired from the weak
formulation (3.3), which consists of the dual norm of the residual supplemented by a nonconformity
evaluation term. For nonlinear problems, it has been argued in, e.g., [21, 33, 36, 29] that the dual
norm of the residual is a more natural choice than the energy norm. Moreover, in the two-phase flow
setting with conforming approximations and Dirichlet boundary conditions, it has been shown in [20,
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Theorem 5.7] that the dual norm of the residual is an upper bound for an energy-type difference between
the exact pressures and saturations. Concretely, our error measure is defined as

N = N (Phτ ,Shτ , (Cp,hτ )p∈P) :=

{

∑

c∈C

Nc
2

}
1
2

+

{

∑

p∈P

Np
2

}
1
2

, (3.5)

where the quantities Nc, c ∈ C, and Np, p ∈ P, have the same dependence as N . They are defined,
respectively, as

Nc := sup
ϕ∈X,‖ϕ‖X=1

∫ tF

0

{

(∂tlc − ∂tlc,hτ , ϕ)(t)−
(

Φc −Φc,hτ ,∇ϕ
)

(t)
}

dt, (3.6)

with the exact component fluxes Φc defined by (2.3) and Φc,hτ given by

Φc,hτ :=
∑

p∈Pc

Φp,c,hτ , Φp,c,hτ := νp(Pp,hτ ,Shτ ,Cp,hτ )Cp,c,hτvp(Pp,hτ ,Cp,hτ ), (3.7)

and

Np := inf
δp∈X

{

∑

c∈Cp

∫ tF

0

‖Ψp,c(Pp,hτ )(t)−Ψp,c(δp)(t)‖
2dt

}
1
2

, (3.8)

where, for a space–time function ϕ ∈ L2((0, tF);H
1(M)) (piecewise regular with respect to the partitions

Mn), we have let
Ψp,c(ϕ) := νp(Pp,hτ ,Shτ ,Cp,hτ )Cp,c,hτΛ∇ϕ. (3.9)

The first term Nc evaluates the non-satisfaction of (3.3d) at the discrete level, as Φc,hτ given by (3.7) do
not necessarily satisfy the conditions (3.4), while the second term Np quantifies the possible departure
of the discrete phase pressures Pp,hτ from the energy space X.

3.4 Flux and pressure reconstructions

To estimate the terms Nc in the error measure (3.5) we, for all 1 ≤ n ≤ N , introduce NC component flux
reconstructions (Θn

c,h)c∈C such that, for all c ∈ C, Θn
c,h ∈ H(div; Ω) and the following local conservation

property holds:
(qnc,h − ∂n

t lc,hτ −∇·Θn
c,h, 1)M = 0 ∀c ∈ C, ∀M ∈ Mn, (3.10a)

where we have introduced the piecewise constant space functions qnc,h, c ∈ C, such that (qnc,h)|M =
∫

In

∫

M
qc/(|M |τn). For further use we also define the space–time functions qc,hτ , c ∈ C, such that

qc,hτ |In = qnc,h for all 1 ≤ n ≤ N . It is also assumed that the boundary condition (2.6) is satisfied
exactly, i.e.,

Θn
c,h·nΩ = 0 on ∂Ω. (3.10b)

We denote by Θc,hτ the space–time function such that Θc,hτ |In = Θn
c,h for all 1 ≤ n ≤ N . Note that

Θc,hτ mimic the properties of the weak component fluxes Φc as expressed in Remark 3.2. In practice,
Θn

c,h are constructed in the Raviart–Thomas–Nédélec finite-dimensional subspaces of H(div; Ω); details
in the finite volume context are given in Section 4.4 below.

To estimate the terms Np in (3.5), we need NP phase pressure reconstructions Pp,hτ , p ∈ P, such that
Pp,hτ ∈ X for all p ∈ P. These reconstructions are typically piecewise polynomial continuous in space
and piecewise affine continuous in time. Details in the finite volume context are given in Section 4.3
below.

3.5 A posteriori error estimate

We now derive a fully computable upper bound for the approximate solution as specified in Section 3.2,
the error measure introduced in Section 3.3, and based on the pressure and flux reconstructions of
Section 3.4. A key ingredient is the following Poincaré inequality:

‖ϕ− ϕM‖M ≤ CP,MhM‖∇ϕ‖M ∀ϕ ∈ H1(M), ∀M ∈ Mn, 1 ≤ n ≤ N, (3.11)
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where ϕM :=
∫

M
ϕ/|M | denotes the mean value of the function ϕ on M . We recall that CP,M = 1/π for

convex cells M (see [56, 15]).
For all 1 ≤ n ≤ N , M ∈ Mn, and c ∈ C, we define the residual estimators ηnR,M,c, the flux estimators

ηnF,M,c(t), t ∈ In, and the nonconformity estimators ηnNC,M,p,c(t), t ∈ In, p ∈ Pc, as follows:

ηnR,M,c := min{CP,M , ε−
1
2 }hM‖qnc,h − ∂n

t lc,hτ −∇·Θn
c,h‖M , (3.12a)

ηnF,M,c(t) := ‖Θn
c,h −Φc,hτ (t)‖M , (3.12b)

ηnNC,M,p,c(t) := ‖Ψp,c(Pp,hτ )(t)−Ψp,c(Pp,hτ )(t)‖M . (3.12c)

Theorem 3.3 (A posteriori estimate for the error measure (3.5)). Under Assumption 3.1, for the flux
and pressure reconstructions of Section 3.4, and with the estimators given by (3.12), there holds

Nc ≤

{

N
∑

n=1

∫

In

∑

M∈Mn

(

ηnR,M,c + ηnF,M,c(t)
)2

dt

}
1
2

+ ‖qc − qc,hτ‖X′ c ∈ C, (3.13a)

Np ≤

{

∑

c∈Cp

N
∑

n=1

∫

In

∑

M∈Mn

(

ηnNC,M,p,c(t)
)2

dt

}
1
2

p ∈ P. (3.13b)

Remark 3.4 (Source term). In reservoir simulation, the source terms qc, c ∈ C, are typically piecewise
constant on the space–time mesh. Then, the last term in the estimate (3.13a), called data oscillation in
numerical analysis literature, vanishes.

Proof. The proof is simple using the equilibrated flux reconstructions Θn
c,h. To bound Nc, let ϕ ∈ X be

such that ‖ϕ‖X = 1. There holds

Γ(ϕ) :=

∫ tF

0

{(∂tlc − ∂tlc,hτ , ϕ)(t)− (Φc −Φc,hτ ,∇ϕ)(t)}dt

=

∫ tF

0

{(qc − ∂tlc,hτ , ϕ)(t) + (Φc,hτ ,∇ϕ)(t)}dt

=

∫ tF

0

{(qc,hτ − ∂tlc,hτ −∇·Θc,hτ , ϕ)(t)− (Θc,hτ −Φc,hτ ,∇ϕ)(t)}dt

+

∫ tF

0

(qc − qc,hτ , ϕ)(t)dt

=

N
∑

n=1

∫

In

{(qnc,h − ∂n
t lc,hτ −∇·Θn

c,h, ϕ)(t)− (Θn
c,h −Φc,hτ ,∇ϕ)(t)}dt

+

∫ tF

0

(qc − qc,hτ , ϕ)(t)dt,

where we have used (3.3d) in the second line and we where have added and subtracted (Θc,hτ ,∇ϕ)(t)
and used Green’s theorem along with (3.10b) to infer (∇·Θc,hτ , ϕ)(t) + (Θc,hτ ,∇ϕ)(t) = 0 in the third
line. For all 1 ≤ n ≤ N and t ∈ In, using the local conservation property (3.10a) followed by the
Cauchy–Schwarz and Poincaré’s (3.11) inequalities, and recalling (3.12a), it is inferred,

(qnc,h − ∂n
t lc,hτ −∇·Θn

c,h, ϕ)(t) =
∑

M∈Mn

(qnc,h − ∂n
t lc,hτ −∇·Θn

c,h, ϕ)M (t)

=
∑

M∈Mn

(qnc,h − ∂n
t lc,hτ −∇·Θn

c,h, ϕ− ϕM )M (t)

≤
∑

M∈Mn

‖qnc,h − ∂n
t lc,hτ −∇·Θn

c,h‖M‖ϕ− ϕM‖M (t)

≤
∑

M∈Mn

min{CP,M , ε−
1
2 }hM‖qnc,h − ∂n

t lc,hτ−∇·Θn
c,h‖M‖ϕ‖X,M (t)

=
∑

M∈Mn

ηnR,M,c‖ϕ‖X,M (t).
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Using again the Cauchy–Schwarz inequality yields for all 1 ≤ n ≤ N and t ∈ In,

−(Θn
c,h −Φc,hτ ,∇ϕ)(t) =

∑

M∈Mn

−(Θn
c,h −Φc,hτ ,∇ϕ)M (t) ≤

∑

M∈Mn

ηnF,M,c(t)‖∇ϕ‖M (t).

Thus,

Γ(ϕ) ≤
N
∑

n=1

∫

In

∑

M∈Mn

{(ηnR,M,c + ηnF,M,c(t))‖ϕ‖X,M (t)}dt+ ‖qc − qc,hτ‖X′‖ϕ‖X . (3.14)

Finally, using the Cauchy–Schwarz inequality together with the definition (3.2) of the norm on X and
‖ϕ‖X = 1 to bound the first term in equation (3.14) yields the estimate (3.13a).

The estimate (3.13b) is obtained using the X−regularity of the phase pressure reconstructions Pp,hτ

defined in Section 3.4 to bound the infimum in (3.8).

4 Application to finite volume method and adaptivity based on

distinguishing the different error components

We apply here the abstract result of the previous section to the finite volume discretization introduced in
Section 2.2. Moreover, we consider a practical implementation of (2.17)–(2.26), requiring the solution of
the arising system of nonlinear algebraic equations at each time step. Distinguishing the different error
components in the basic a posteriori error estimate of Theorem 3.3, we propose stopping criteria for the
employed iterative algebraic and linearization solvers. An entirely adaptive algorithm, also balancing
the time and space error components via adaptive time step choice and adaptive mesh refinement, is
proposed. For the sake of simplicity, we assume henceforth that the source terms qc, c ∈ C, are piecewise
constant on the space–time mesh, so that the last term in the estimate (3.13a) vanishes, cf. Remark 3.4.

4.1 Linearization and algebraic resolution

The finite volume method discussed in Section 2.2 requires to solve a system of nonlinear algebraic
equations at each time step. Recalling (2.16), for all 1 ≤ n ≤ N , the discrete conservation of compo-
nents (2.19) can be rewritten as

Rn
c,M

(

Xn
M

)

:=
|M |

τn
(

lc,M
(

Xn
M

)

− ln−1
c,M

)

+
∑

σ∈Ei,n

M

Fc,M,σ

(

Xn
M

)

−|M |qnc,M = 0 ∀c ∈ C, ∀M ∈ Mn. (4.1)

System (4.1) can be solved by any suitable linearization. In what follows, we focus on the Newton
linearization algorithm, although the a posteriori error analysis developed in this work can be easily
adapted to accommodate other linearization algorithms in the spirit of [36].

For 1 ≤ n ≤ N and Xn,0
M fixed (typically, Xn,0

M = Xn−1
M ), the Newton algorithm generates a sequence

(Xn,k
M )k≥1 with Xn,k

M solution to the following system of linear algebraic equations: For all c ∈ C and all
M ∈ Mn,

∑

M ′∈Mn

∂Rn
c,M

∂Xn
M ′

(

Xn,k−1
M

)

·
(

Xn,k
M ′ −Xn,k−1

M ′

)

+Rn
c,M

(

Xn,k−1
M

)

= 0. (4.2)

The (approximate) solution to (4.2) is typically obtained using an iterative algebraic solver. For 1 ≤ n ≤

N , a given Newton iteration k ≥ 1, and Xn,k,0
M fixed (typically, Xn,k,0

M = Xn,k−1
M ), the iterative solver

generates a sequence (Xn,k,i
M )i≥1 solving (4.2) up to the residuals, given for all c ∈ C and all M ∈ Mn

by

Rn,k,i
c,M

:=
∑

M ′∈Mn

∂Rn
c,M

∂Xn
M ′

(

Xn,k−1
M

)

·
(

Xn,k,i
M ′ −Xn,k−1

M ′

)

+Rn
c,M

(

Xn,k−1
M

)

. (4.3)

Plugging (4.1) into (4.3), it is inferred

Rn,k,i
c,M =

∑

M ′∈Mn

|M |

τn
∂lc,M
∂Xn

M ′

(

Xn,k−1
M

)

·
(

Xn,k,i
M ′ −Xn,k−1

M ′

)

+
∑

M ′∈Mn

∑

σ∈Ei,n

M

∂Fc,M,σ

∂Xn
M ′

(

Xn,k−1
M

)

·
(

Xn,k,i
M ′ −Xn,k−1

M ′

)

+Rn
c,M

(

Xn,k−1
M

)

.
(4.4)
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The first and the second terms in the right-hand side of (4.4) are linear perturbations of the corresponding
terms in (4.1). The linear perturbation in the accumulation is

Ln,k,i
c,M

:=
∑

M ′∈Mn

∂lc,M
∂Xn

M ′

(

Xn,k−1
M

)

·
(

Xn,k,i
M ′ −Xn,k−1

M ′

)

, (4.5)

whereas the linearized component flux reads

Fn,k,i
c,M,σ

:=
∑

p∈Pc

Fn,k,i
p,c,M,σ, (4.6)

with linearized phase component fluxes

Fn,k,i
p,c,M,σ

:= Fp,c,M,σ

(

Xn,k−1
M

)

+
∑

M ′∈Mn

∂Fp,c,M,σ

∂Xn
M ′

(

Xn,k−1
M

)

·
(

Xn,k,i
M ′ −Xn,k−1

M ′

)

. (4.7)

In conclusion, at time step n, Newton iteration k ≥ 1, and linear solver iteration i ≥ 1, the residual
vector Rn,k,i

c,M is given by

Rn,k,i
c,M =

|M |

τn

(

lc,M
(

Xn,k−1
M

)

+ Ln,k,i
c,M − ln−1

c,M

)

+
∑

σ∈Ei,n

M

Fn,k,i
c,M,σ − |M |qnc,M ∀c ∈ C, ∀M ∈ Mn. (4.8)

4.2 Approximate solution

In this section we identify the approximate solutions, as discussed in Section 3.2, for the finite volume
setting of Sections 2.2 and 4.1. We will need some finite-dimensional subspaces of H(div,Ω). When
the meshes Mn consist of rectangular parallelepipeds, as it is the case in the numerical experiments of
Section 5 below, we use

RTN(Mn) := {vh ∈ H(div; Ω); vh|M ∈ Q0,1(M)×Q1,0(M) if d = 2,

Q0,1,1(M)×Q1,0,1(M)×Q1,1,0(M) if d = 3, ∀M ∈ Mn} .
(4.9)

For general meshes, one typically introduces matching simplicial submeshes of Mn, here still denoted
Mn, and uses

RTN(Mn) :=
{

vh ∈ H(div; Ω); vh|M ∈ [P0(M)]d + xP0(M), ∀M ∈ Mn
}

. (4.10)

For more details on the lowest-order Raviart–Thomas–Nédélec spaces (4.9) and (4.10), we refer to Brezzi
and Fortin [17].

Remark 4.1 (General meshes and full permeability tensors). For more general polygonal or poly-
hedral meshes and full permeability tensors, one possibility is to replace the Raviart–Thomas–Nédélec
spaces (4.9) and (4.10) by the generalization proposed in [27, Appendix A], which has the remarkable
property that it guarantees H(div; Ω)-conformity without the need for a subdivision of the elements into
tetrahedra in three space dimensions.

4.2.1 Phase pressure postprocessings

As explained in Sections 3.2 and 3.3, we need to evaluate the broken gradient of the discrete phase
pressures Pn

p,h, p ∈ P, 0 ≤ n ≤ N . The original finite volume pressure approximations Pn
p,M of (2.18),

or, more precisely, Pn,k,i
p,M obtained from Xn,k,i

M in Section 4.1, are only piecewise constant. We thus,
following [63], define piecewise quadratic, possibly discontinuous phase pressures as follows. Let 1 ≤ n ≤
N , a Newton linearization iteration k ≥ 1, and an algebraic solver iteration i ≥ 1 be fixed. For all p ∈ P
we define Γ

n,k,i
p,h ∈ RTN(Mn) such that, for all M ∈ Mn and all σ ∈ E i,n

M ,

(Γn,k,i
p,h ·nM , 1)σ = Fp,M,σ(X

n,k,i
M ),
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with Fp,M,σ defined by (2.23) and Γ
n,k,i
p,h ·nΩ = 0 on ∂Ω. The fluxes Γ

n,k,i
p,h are thus discrete versions of

the Darcy velocities vp from (2.4). Motivated by (2.4), we then, for each p ∈ P, introduce the piecewise

quadratic phase pressure Pn,k,i
p,h such that, for all M ∈ Mn,

(−Λ∇Pn,k,i
p,h )|M = (Γn,k,i

p,h )|M − (Λρp(P
n,k,i
p,M ,Cn,k,i

p,M )g)|M and
(Pn,k,i

p,h , 1)M

|M |
= Pn,k,i

p,M . (4.11)

The space–time function Pn,k,i
p,hτ is then as usual continuous and piecewise affine in time, given by Pn,k,i

p,h

at the discrete times tn; for n = 0, the initial datum from (2.17) is used.

Remark 4.2 (General meshes and full permeability tensors). On more general polygonal or polyhedral
meshes and for full permeability tensors, one can alternatively define for all p ∈ P a piecewise affine,
possibly discontinuous pressures Pn,k,i

p,h replacing (Γn,k,i
p,h )|M in (4.11) by

∑

σ∈Ei,n

M

|σ|

|M |
Fp,M,σ(X

n,k,i
M )(xσ − xM ).

The use of the above formula to lift fluxes is justified in [5, Section 2.3].

4.2.2 Reference pressure, saturations, molar fractions, and amounts of components

The approximations of all saturations, molar fractions, and amounts of components by the finite volume
approach of Sections 2.2 and 4.1 is piecewise constant on the meshes Mn. We keep them as such and
use the notations (recall the definition of the function lc,M of (2.20))

(Sn,k,i
p,h )|M = Sn,k,i

p,M , (4.12a)

(Cn,k,i
p,c,h)|M = Cn,k,i

p,c,M , (4.12b)

(ln,k,ic,h )|M = ln,k,ic,M
:= lc,M (Xn,k,i

M ), (4.12c)

for 0 ≤ n ≤ N , k ≥ 1, i ≥ 1, M ∈ Mn, p ∈ P, and c ∈ Cp. The space–time functions Sn,k,i
p,hτ , C

n,k,i
p,c,hτ , and

ln,k,ic,hτ are then defined therefrom while being continuous and piecewise affine in time. In what concerns

the reference pressure Pn,k,i
hτ , it does not appear explicitly in what follows.

In Section 3.2, we have made the assumption that the links (2.1) and (2.5), as well as the algebraic

closure equations (2.8)–(2.10), are satisfied exactly for the discrete approximations Pn,k,i
hτ , Sn,k,i

p,hτ , C
n,k,i
p,c,hτ ,

Pn,k,i
p,hτ , and ln,k,ic,hτ . This may not hold precisely for all of the required links for the above construction but

we suppose the error from this non-satisfaction is negligible. Typically (2.8) and (2.9) holds precisely,
but (2.1) and (2.5) may be violated (the capillary pressure function applied to a piecewise polynomial
is typically no more a piecewise polynomial and a product of two piecewise affine-in-time functions is a
piecewise quadratic-in-time function) and (2.10) will be violated if the local fugacity equations are not
resolved exactly.

4.3 Phase pressure reconstructions

We define the phase pressure reconstructions discussed in Section (3.4) from Pn,k,i
p,h of (4.11) by

P
n,k,i
p,h = I(Pn,k,i

p,h ) p ∈ P, (4.13)

0 ≤ n ≤ N , k ≥ 1, i ≥ 1, where I denotes the vertex-averaging interpolator. This operator has
been introduced in the context of a posteriori error estimates for finite volume discretizations of Darcy’s
equations by Achdou et al. [3] and in the discontinuous Galerkin setting by Karakashian and Pascal [45].

As usual, Pp,hτ is then continuous and piecewise affine in time, given by P
n,k,i
p,h at the discrete times tn.

Most importantly, it satisfies Pp,hτ ∈ X.
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4.4 Component flux reconstructions

We provide here details on how to build the component flux reconstructions in the spirit of Section 3.4 for
the finite volume setting of Sections 2.2 and 4.1. Several different flux reconstructions will be introduced
to accommodate the presence of different error components.

Let a time step 1 ≤ n ≤ N , a Newton linearization iteration k ≥ 1, and an algebraic solver iteration
i ≥ 1 be fixed. For all c ∈ C, the discretization flux reconstruction Θ

n,k,i
disc,c,h ∈ RTN(Mn) is such that,

for all M ∈ Mn and all σ ∈ E i,n
M ,

(Θn,k,i
disc,c,h·nM , 1)σ := Fc,M,σ(X

n,k,i
M ), (4.14a)

with Fc,M,σ defined by (2.21), while Θ
n,k,i
disc,c,h·nΩ = 0 on ∂Ω coherently with (2.6). For all c ∈ C we also

define a linearization error flux reconstruction Θ
n,k,i
lin,c,h ∈ RTN(Mn) such that, for all M ∈ Mn and for

all σ ∈ E i,n
M ,

(Θn,k,i
lin,c,h·nM , 1)σ = Fn,k,i

c,M,σ − Fc,M,σ(X
n,k,i
M ), (4.14b)

with Fn,k,i
c,M,σ defined by (4.6), and, similarly, an algebraic error flux reconstruction Θ

n,k,i
alg,c,h ∈ RTN(Mn)

such that, for all M ∈ Mn and for all σ ∈ E i,n
M ,

(Θn,k,i
alg,c,h·nM , 1)∂M := −Rn,k,i

c,M , (4.14c)

with Rn,k,i
c,M defined by (4.8). To complete both (4.14b) and (4.14c), we set respectively Θ

n,k,i
lin,c,h·nΩ = 0

and Θ
n,k,i
alg,c,h·nΩ = 0 on ∂Ω. For all c ∈ C, the equivalent of the component flux reconstruction Θn

c,h from
Section 3.4 is then given by

Θ
n,k,i
c,h

:= Θ
n,k,i
disc,c,h +Θ

n,k,i
lin,c,h +Θ

n,k,i
alg,c,h. (4.14d)

Remark 4.3 (Algebraic error). In practice it is rather difficult to satisfy (4.14c) exactly, though it
is possible following, e.g., [44, Section 7.3]. Following [36, Section 4] we prefer to compute our alge-
braic error flux reconstruction by: (i) performing j additional iterations of the algebraic solver from

the stage (4.3), with j a user-defined fixed number; (ii) computing Θ
n,k,i+j
disc,c,h and Θ

n,k,i+j
lin,c,h as in (4.14a)

and (4.14b), respectively, with i replaced by i+ j; (iii) defining the algebraic error flux reconstruction as

Θ
n,k,i
alg,c,h := Θ

n,k,i+j
disc,c,h +Θ

n,k,i+j
lin,c,h − (Θn,k,i

disc,c,h+Θ
n,k,i
lin,c,h). Then, (4.14c) only holds approximately (the better

the bigger j is), but turns out to work perfectly in practice.

4.5 Distinguishing the space, time, linearization, and algebraic errors

In this section, we first give a time-localized version of Theorem 3.3. Subsequently, we derive an a
posteriori error estimate distinguishing the space, time, linearization, and algebraic error components.

4.5.1 A time-localized a posteriori error estimate

Let 1 ≤ n ≤ N , a Newton linearization iteration k ≥ 1, and an algebraic solver iteration i ≥ 1 be fixed.
It follows from (4.8), the definition (4.14d) of the flux reconstruction Θ

n,k,i
c,h , and Green’s theorem that

there holds, for all c ∈ C,

(

qnc,h −
lc,M

(

Xn,k−1
M

)

+ Ln,k,i
c,M − ln−1

c,M

τn
−∇·Θn,k,i

c,h , 1

)

M

= 0 ∀M ∈ Mn. (4.15)

Unfortunately, owing to the nonlinear accumulation term, compare the definition (4.12c) of ln,k,ic,hτ with (4.8),
(4.15) is not a full equivalent of (3.10a). However, we can still elaborate Theorem 3.3 as follows. For
all c ∈ C, define the following refined version of the estimators of (3.12), with the additional nonlinear
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accumulation estimator ηn,k,iNA,M,c:

ηn,k,iR,M,c
:= min{CP,M , ε−

1
2 }hM‖qnc,h − (τn)−1

(

lc,M
(

Xn,k−1
M

)

+ Ln,k,i
c,M − ln−1

c,M

)

−∇·Θn,k,i
c,h ‖M ,

(4.16a)

ηn,k,iF,M,c(t) := ‖Θn,k,i
c,h −Φ

n,k,i
c,hτ (t)‖M t ∈ In, (4.16b)

ηn,k,iNC,M,p,c(t) := ‖Ψp,c(P
n,k,i
p,hτ )(t)−Ψp,c(P

n,k,i
p,hτ )(t)‖M t ∈ In, p ∈ Pc, (4.16c)

ηn,k,iNA,M,c
:= ε−

1
2hM (τn)−1‖lc,M

(

Xn,k,i
M

)

− lc,M
(

Xn,k−1
M

)

− Ln,k,i
c,M ‖M , (4.16d)

where the functions Ψp,c, p ∈ P, c ∈ Cp, are defined by (3.9), while

Φ
n,k,i
c,hτ

:=
∑

p∈Pc

Φ
n,k,i
p,c,hτ , Φ

n,k,i
p,c,hτ

:= νp(P
n,k,i
p,hτ ,Sn,k,i

hτ ,Cn,k,i
p,hτ )C

n,k,i
p,c,hτvp(P

n,k,i
p,hτ ,Cn,k,i

p,hτ ).

In the spirit of Section 3.3, we define the time-localized error measure,

Nn :=

{

∑

c∈C

(Nn
c )

2

}
1
2

+

{

∑

p∈P

(Nn
p )

2

}
1
2

, (4.17)

where Nn
c , c ∈ C, and Nn

p , p ∈ P, are defined as (3.6) and (3.8), respectively, with the current approx-
imations indexed n, k, i and the time integration performed on the time intervals In instead of (0, tF).
Note that

Nc =

N
∑

n=1

(Nn
c )

2, Np =

N
∑

n=1

(Nn
p )

2.

We then have:

Corollary 4.4 (Time-localized a posteriori error estimate). Consider a time step 1 ≤ n ≤ N , a Newton
linearization iteration k ≥ 1, and an algebraic solver iteration i ≥ 1. Under Assumption 3.1, for the
approximate solution of Section 4.2, the phase pressure reconstructions of Section 4.3, the component
flux reconstructions of Section 4.4, and with the estimators given by (4.16), there holds

Nn
c ≤

{

∫

In

∑

M∈Mn

(

ηn,k,iR,M,c + ηn,k,iF,M,c(t) + ηn,k,iNA,M,c

)2
dt

}
1
2

c ∈ C, (4.18a)

Nn
p ≤

{

∑

c∈Cp

∫

In

∑

M∈Mn

(

ηn,k,iNC,M,p,c(t)
)2
dt

}
1
2

p ∈ P. (4.18b)

Proof. The proof is a slight modification of that of Theorem 3.3. We only need to estimate

N
∑

n=1

∫

In

∑

M∈Mn

(∂n
t l

n,k,i
c,hτ − (τn)−1

(

lc,M
(

Xn,k−1
M

)

+ Ln,k,i
c,M − ln−1

c,M

)

, ϕ)M (t)dt

=

N
∑

n=1

∫

In

∑

M∈Mn

((τn)−1
(

lc,M (Xn,k,i
M )− lc,M

(

Xn,k−1
M

)

− Ln,k,i
c,M

)

, ϕ)M (t)dt

≤
N
∑

n=1

∫

In

∑

M∈Mn

ηn,k,iNA,M,cε
1
2h−1

M ‖ϕ‖M (t)dt ≤
N
∑

n=1

∫

In

∑

M∈Mn

ηn,k,iNA,M,c‖ϕ‖X,M (t)dt,

to combine this bound with (3.14) and the definition (3.2) of the norm on the space X, and restrict the
result to the given time interval.
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4.5.2 Distinguishing the different error components

For all 1 ≤ n ≤ N , k ≥ 1, i ≥ 1, M ∈ Mn, and c ∈ C, we define the spatial estimators evaluating the
error related to the spatial mesh resolution,

ηn,k,isp,M,c(t) := ηn,k,iR,M,c + ‖Θn,k,i
disc,c,h −Φ

n,k,i
c,hτ (t

n)‖M +

{

∑

p∈Pc

(

ηn,k,iNC,M,p,c(t)
)2

}
1
2

t ∈ In, (4.19a)

the temporal estimators evaluating the error related to the size of the time step,

ηn,k,itm,M,c(t) := ‖Φn,k,i
c,hτ (t

n)−Φ
n,k,i
c,hτ (t)‖M t ∈ In, (4.19b)

the linearization estimators measuring the error in the linearization of the nonlinear system (4.1),

ηn,k,ilin,M,c
:= ‖Θn,k,i

lin,c,h‖M + ηn,k,iNA,M,c, (4.19c)

and the algebraic estimators that quantify the error in the algebraic iterative resolution of the linear
system (4.2),

ηn,k,ialg,M,c
:= ‖Θn,k,i

alg,c,h‖M . (4.19d)

For all c ∈ C, global versions of these estimators are given by

ηn,k,isp,c :=

{

4

∫

In

∑

M∈Mn

(

ηn,k,isp,M,c(t)
)2
dt

}
1
2

, (4.20a)

ηn,k,itm,c :=

{

2

∫

In

∑

M∈Mn

(

ηn,k,itm,M,c(t)
)2
dt

}
1
2

, (4.20b)

ηn,k,ilin,c :=

{

2τn
∑

M∈Mn

(

ηn,k,ilin,M,c

)2

}
1
2

, (4.20c)

ηn,k,ialg,c :=

{

2τn
∑

M∈Mn

(

ηn,k,ialg,M,c

)2

}
1
2

. (4.20d)

Using the triangle inequality and Corollary 4.4, we can estimate the time-localized norm Nn of (4.17)
as follows:

Corollary 4.5 (Distinguishing the space, time, linearization, and algebraic errors). Under the assump-
tions of Corollary 4.4, there holds, with the estimators given by (4.20),

Nn ≤

{

∑

c∈C

(

ηn,k,isp,c + ηn,k,itm,c + ηn,k,ilin,c + ηn,k,ialg,c

)2

}
1
2

. (4.21)

4.6 A fully adaptive algorithm

In this section we propose an adaptive algorithm based on the estimators (4.20). Let γlin, γalg ∈ (0, 1) be
user-given parameters; these express respectively the fraction allowed for the linearization and algebraic
error components. Similarly, let the parameters for balancing the spatial and temporal errors Γtm >
γtm > 0 be fixed. Finally, let critnc stand for the maximal error allowed in the component c on the time
interval In. Our algorithm is as follows:

1. Initialization

(a) Choose an initial mesh M0, an initial time step τ0, and set t0 := 0 and n := 0.

(b) Set up the initial approximation X 0
M.

2. Loop in time
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(a) Set n := n+ 1, Mn := Mn−1, τn := τn−1, and k := 0.

(b) Define Xn,0
M := Xn−1

M .

(c) Spatial and temporal errors balancing loop

i. Newton linearization loop

A. Newton initialization

• Set k := k + 1 and i := 0.

• Define Xn,k,0
M := Xn,k−1

M .

B. Set up the linear system.

• Compute the linearized component fluxes Fn,k,i
c,M,σ, c ∈ C, following (4.6).

• Compute the perturbation of the accumulation term Ln,k,i
c,M , c ∈ C, following (4.5).

• Assemble the linear system following (4.8).

C. Algebraic solver loop

• Set i := i+ 1.

• Perform a step of the iterative algebraic solver for the solution of (4.8).

• A posteriori estimators

– Build the postprocessed phase pressures following (4.11).

– Construct the approximations of the saturations, molar fractions, and amounts
of components following (4.12).

– Prescribe the continuous phase pressure reconstructions following (4.13).

– Construct the component flux reconstructions Θ
n,k,i
disc,c,h, Θ

n,k,i
lin,c,h, Θ

n,k,i
alg,c,h, and

Θ
n,k,i
c,h following (4.14).

– Evaluate the different estimators defined by (4.20).

• Terminate the algebraic solver loop if

ηn,k,ialg,c ≤ γalg
(

ηn,k,isp,c + ηn,k,itm,c + ηn,k,ilin,c

)

, ∀c ∈ C. (4.22)

D. Update

• Update the unknowns; set Xn,k
M := Xn,k,i

M .

E. Terminate the Newton linearization loop if

ηn,k,ilin,c ≤ γlin
(

ηn,k,isp,c + ηn,k,itm,c

)

, ∀c ∈ C. (4.23)

ii. Adapt the time step if necessary.

iii. If spatial mesh adaptation is considered, refine or coarsen the mesh Mn in function of
the distribution of the local spatial error estimators ηn,k,isp,M,c(t) of (4.19a).

iv. Terminate the spatial and temporal errors balancing loop if

γtmη
n,k,i
sp,c ≤ ηn,k,itm,c ≤ Γtmη

n,k,i
sp,c and ηn,k,isp,c + ηn,k,itm,c ≤ critnc ∀c ∈ C. (4.24)

(d) Data update

i. Set Xn
M := Xn,k,i

M and tn := tn−1 + τn.

(e) End: Loop in time if (tn > tF ).

Note that in (4.22) we propose to stop the iterative algebraic solver when the algebraic error com-
ponents do not affect significantly the overall error. A variation in the spirit of Remark 4.3 can be
considered where a user-defined number j of linear iterations are performed before recomputing the esti-
mators, and the algebraic estimator is replaced by its approximate version. Similarly, the criterion (4.23)
expresses the fact that there is no need to continue with the linearization iterations if the overall error
is dominated by the space and time errors. Finally, by (4.24) we give a way to select the time step
τn in order to equilibrate the space and time error components; congruently, the spatial mesh should
be refined/derefined. If local adaptive mesh refinement is considered, Mn should be such that, for all
M1,M2 ∈ Mn with M1 6= M2,

ηn,k,isp,c,M1
≈ ηn,k,isp,c,M2

, ∀c ∈ C.

Local (elementwise) versions of the criteria (4.22) and (4.23) can be formulated using the local estima-
tors (4.19); see [44, 33, 36].
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Injection well

Production well

(a) Two-spot pattern (b) Absolute permeability for the heteroge-
neous test case of Section 5.3

Figure 1: Configuration for the numerical test cases

5 Numerical results

In this section we illustrate our theoretical results on two test cases representative of enhanced oil
recovery techniques. More specifically, we focus on the case when oil recovery is improved by injecting
components that are not originally present in the reservoir to increase the mobility, cf., e.g., [49, 58].
Both homogeneous and heterogeneous (but isotropic) porous media are considered.

5.1 Setting

We consider the injection of gas composed of carbon dioxide CO2 (component g1) and nitrogen N2

(component g2) into a reservoir initially saturated with heptanol C7H16 (component o). The three
components, collected in the set C := {o, g1, g2}, can be present in a liquid or gaseous phase corresponding
to P := {l, g}. This is therefore a special case of the more general problem considered in Example 2.
The spatial domain is Ω = (0, 1000)m×(0, 1000)m and the process is simulated for tF = 7 years. We
consider a two-spot pattern, see Figure 1a, where we have one injection well with pressure fixed to
Pinj = 1.1× 1010Pa and one production well with pressure fixed to Ppro = 9× 106Pa. Well are modeled
as nonlinear source terms as detailed in the following. Denoting by Minj and Mpro the cells containing
the injection and production wells, respectively, the rates of injection and production of the component
c ∈ C, denoted by qc,Minj

and qc,Mpro
, are given by the following expressions:

|Minj|qc,Minj
= −νg,Minj

(Pinj, Sg,inj,Cg,inj)Cg,c,injIPMinj

(

Pg,Minj
− Pinj

)

,

and,

|Mpro|qc,Mpro
= −

∑

p∈Cp

{

νp,Mpro
(Pp,Mpro

, Sp,Mpro
,Cp,Mpro

)Cp,c,Mpro
IPMpro

(

Pp,Mpro
− Ppro

)}

,

where Sg,inj = 1 is the injected gas saturation, Cg,inj is the vector of injected components molar fractions
in gas

Cg,inj = {Cg,o,inj = 0, Cg,g1,inj = 0.8, Cg,g2,inj = 0.2},

and IPM is the well’s production index given, for isotropic medium, by Peaceman’s formula:

IPM :=
2πλM∆ZM

log(0.14 rd
rw

)
, rd :=

√

∆x2
M +∆y2M ,

with rw the well radius set to 0.5m, rd the equivalent block well radius, ∆ZM the perforated mesh height,
and ∆xM ,∆yM the linear dimensions of the perforated cell M along the x and y axis, respectively.
The required physical properties are chosen as follows: (i) porosity φ = 0.1. (ii) phase molar density
ζp =

∑

c∈C ζc(P )Cc,p, p ∈ {l, g}, where ζc, c ∈ C, takes the form

ζc(P ) = αc

P − Pinj

Ppro − Pinj
+ βc

P − Ppro

Pinj − Ppro
,
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with (αo, βo) = (6640.88, 6669.32), (αg1 , βg2) = (4703.4, 5567.0), and (αg2 , βg2) = (3062.5, 3676.4).
(iii) The liquid phase viscosity µl = 3.2× 10−4Pas, the gas phase viscosity µg = 3.5× 10−5Pas. (iv) The
relative permeability

kr,p(Sp) =











1 if Sp ≥ 1,
Sp−Sres

p

1−Sres
p

if Sres
p < Sp < 1,

0 if Sp ≤ Sres
p ,

where the residual saturations are respectively given by Sres
l = 0.2 and Sres

g = 0.1. Concerning the
thermodynamic equilibrium between the oil and gas phases

Cg,c = Ko,g
c (P,Co,Cg)Co,c, ∀c ∈ C,

we consider here a simple formula, depending just on the pressure, for the equilibrium constant Ko,g
c =

Ko,g
c (P ) between the oil and gas phases for the component c ∈ C given by

Ko,g
c (P ) = γc

P − Pinj

Ppro − Pinj
+ δc

P − Ppro

Pinj − Ppro
,

with (γo, δo) = (1.2× 10−2, 1× 10−2), (γg1 , δg1) = (1.3× 101, 1.64× 101), and (γg2 , δg2) = (64, 76). Note
that, as we consider a horizontal 2D case, gravitational effects are not taken into account in the numerical
tests, and the phase mass densities ρp, p ∈ P, need not be specified. We shall test two cases, with a
homogeneous porous medium and a heterogeneous one. The capillary pressure curves and the absolute
permeability Λ are problem-specific and will be described below.

We consider a uniform spatial mesh (mesh adaptation will be considered in a future work) and
choose the initial time step as τ0 = 5.184× 105s, which equals to 6 days. We consider the finite volume
discretization of Section 2.2.2 with the Newton linearization detailed in Section 4.1; we obtain (4.8)
with the GMRes iterative solver and ILU preconditioner with zero level fill-in. Our implementation uses
PETSc [12, 11, 13] with the function KSPSetConvergenceTest allowing to enter a user-defined convergence
criterion.

We compare the adaptive resolution where the stopping criteria for the GMRes and Newton iterations
are given by, respectively, (4.22) and (4.23) with γalg = γlin = 10−3, with a classical algorithm where
iterations are stopped using a fixed threshold, i.e.,

errn,k,ialg ≤ 10−8, (5.1)

for the GMRes iterations where errn,k,ialg denotes relative algebraic residual, and

errn,klin ≤ 10−8, (5.2)

for the Newton linearization, where errn,klin denotes the relative linearization residual. The algebraic error

flux reconstruction Θ
n,k,i
alg,c,h is obtained in the spirit of Remark 4.3 with j = 2. We thus perform two

additional GMRes iterations before checking the criterion (4.22) (these additional steps are not wasted
as we continue the iteration from the last obtained solution in the next GMRes step).

5.2 Compressible flow in a homogeneous porous medium

We first consider a simplified test case with a homogeneous permeability Λ = (9.869 233× 10−14m2)I,
where I is the identity tensor, and no capillary effects, setting Pcp(S) ≡ 0 for all p ∈ P. For a fixed time
step and the first Newton iteration, we first show in the left part of Figure 2 the evolution of the different
estimators as a function of the GMRes iterations at the classical resolution stopped following (5.1). We
remark that the algebraic error steadily decreases, while the other components stagnate starting from
the first iteration. For the same time step, in the right part of Figure 2 we depict the evolution of the
spatial, temporal, and linearization error estimators as a function of the number of Newton iterations.
The spatial and temporal errors stagnate starting from the third step while the linearization error ηn,k,ilin,M

decreases until 10−6, which is equivalent to the value 10−8 for the relative linearization residual at
which we satisfy the classical stopping criterion (5.2). These results justify our stopping criteria which
economize many useless iterations.
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Figure 2: Evolution of the spatial, temporal, linearization, and algebraic error estimators (4.20) for a
fixed mesh at time 1.04 · 106s, as a function of GMRes iterations on the first Newton iteration (left) and
Newton iterations (right).
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Figure 3: Cumulated oil production rate during the simulation, classical resolution vs. adaptive resolu-
tion.

21



Figure 4: Liquid saturation, classical (left) vs. adaptive (right) resolution at times 7.8× 107s and
2.1× 108s for the test case of Section 5.2

.

Figure 3a shows the cumulated rate of oil production during the simulation for the classical and
adaptive resolutions. We remark that using the adaptive algorithm does not affect the accuracy of
the predicted oil production rate, which is the crucial engineering output of the simulation. We next
in Figure 4 show the evolution of the saturation in the liquid phase for both classical and adaptive
resolutions at two times during the simulation. Values without any visible difference are found in the
two cases. Similarly, Figure 5 compares the resulting reference pressures using the adaptive algorithm
and the classical one; again no loss of the precision is observed.

Figure 6 illustrates the evolution of the spatial estimators (4.19a) of the oil component. We see that
this estimator detects the error caused by the two wells, as well as the error following the saturation
front. This result pleads for a space mesh refinement/coarsening strategy using our estimators which
will be considered in a future work.

We next focus on computational savings resulting from our adaptive stopping criteria. In the left
part of Figure 7, we show the number of Newton iterations at each time step after the total simulation.
The cumulated number of Newton iterations as a function of time is then presented in the right part
of Figure 7. The overall gain in terms of linearization iterations obtained using our stopping criteria is
quite significant.

Finally, similar results are obtained using the stopping criterion for the algebraic solver. We represent
in the left part of Figure 8 the number of GMRes iterations at each time and Newton step. In the right
part of Figure 8, we then depict the cumulated number of GMRes iterations as a function of time steps,
where still more interesting results can be found. We see that during the simulation the gain in GMRes
iterations reaches a factor of roughly 10 for the adaptive resolution compared with the classical one.

5.3 Compressible flow in a heterogeneous porous medium

We consider here the heterogeneous permeability field shown in Figure 1b corresponding to a log-normal
distribution. For the phase pressures, we choose Pl as the reference pressure P , i.e. Pcl ≡ 0, and follow
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Figure 5: Reference pressure, classical (left) vs. adaptive (right) resolution at time 1.26× 108s for the
test case of Section 5.2

.

Figure 6: Spatial error distribution at times 7.8× 107s and 1.04× 108s for the test case of Section 5.2
.
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Figure 7: Newton iterations at each time step (left) and cumulated number of Newton iterations as a
function of time (right) for the test case of Section 5.2. Average number of Newton iterations by time
step: 4 iterations (classical), 2 iterations (adaptive).
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Figure 8: GMRes iterations for each time and Newton iteration step (left) and cumulated number of
GMRes iterations as a function of time (right) for the test case of Section 5.2. Average number of GMRes
iterations by time and Newton iteration step: 31 iterations (classical), 6 iterations (adaptive). Average
number of GMRes iterations by time step: 126 iterations (classical), 12 iterations (adaptive).

the Brooks–Corey model [18] for the gas phase capillary pressure law, i.e.,

Pg = P + Pcg(Sg), Pcg(Sg) = Pe · (Se)
m, Se = 1−

Sg − Sres
g

1− Sres
l − Sres

g

,

with Pe = 8.73× 105Pa, m = − 1
2.89 , and Sres

l , Sres
g are the residual saturations defined previousely.

As for the homogeneous case, we verify in Figure 3b that the adaptive resolution does not affect
the accuracy of the predicted oil production rate by comparing with the results obtained using the
classical resolution procedure based on the stopping criteria (5.1) and (5.2) for the GMRes and Newton
iterations, respectively. Also, Figure 9 compares the liquid saturation obtained using the adaptive and
classical resolutions. Again, applying the adaptive algorithm does not influence the precision. A similar
comparison for the reference pressure is shown in Figure 10.

The evolution of the spatial estimator (4.19a) at different time steps is shown in Figure 11. It again
detects the error around the injection and production wells, while, advancing in time, the error follows
the saturation front. As in the homogeneous case, we thus deem our estimators to be a good tool for
adaptive mesh refinement.

The saved iterations from the linearization method at each time step can be found in the left part of
Figure 12. In the right part of this figure we show the cumulated number of Newton iterations during
the simulation as a function of time steps; again a considerable gain in terms of the number of Newton

24



Figure 9: Liquid saturation, classical (left) and adaptive (right) resolutions at times 5.2× 107s,
1.04× 108s, and 1.6× 108s for the test case of Section 5.3

.

Figure 10: Pressure, classical (left) and adaptive (right) resolution at time 5.2× 107s for the test case of
Section 5.3

.
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Figure 11: Spatial error distribution at times 2.6× 107s, 5.2× 107s, 1.08× 108s, and 1.6× 108s for the
test case of Section 5.3

.

iterations is achieved.
Similarly, in Figure 13 we compare our algebraic stopping criterion with the classical one. At every

time and Newton iteration step, the economy of the GMRes iterations using the stopping criterion (4.22)
can be appreciated in the left part of Figure 13. In its right part, the overall gain is presented. Here
better than for the homogeneous case, the speed-up factor is roughly 10.

References

[1] I. Aavatsmark, T. Barkve, Ø. Bøe, and T. Mannseth. Discretization on non-orthogonal, curvilinear grids for multi-
phase flow. In Proc. of the 4th European Conf. on the Mathematics of Oil Recovery, volume D, Røros, Norway,
1994.

[2] I. Aavatsmark, T. Barkve, Ø. Bøe, and T. Mannseth. Discretization on unstructured grids for inhomogeneous,
anisotropic media. I. Derivation of the methods. SIAM J. Sci. Comput., 19(5):1700–1716, 1998.

[3] Y. Achdou, C. Bernardi, and F. Coquel. A priori and a posteriori analysis of finite volume discretizations of Darcy’s
equations. Numer. Math., 96(1):17–42, 2003.

[4] G. Acs and E. Farkas. General purpose compositional model. Society of Petroleum Engineers, 25(4):543–553, 1985.
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[6] L. Agélas, D. A. Di Pietro, and R. Masson. A symmetric and coercive finite volume scheme for multiphase porous
media flow problems with applications in the oil industry. In Finite volumes for complex applications V, pages 35–51.
ISTE, London, 2008.
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[36] A. Ern and M. Vohraĺık. Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion
PDEs. SIAM J. Sci. Comput., 2013. DOI 10.1137/120896918.

[37] R. E. Ewing, B. A. Boyett, D. K. Babu, and R. F. Heinemann. Efficient use of locally refined grids for multiphase
reservoir simulation. Society of Petroleum Engineers, 1989.
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[58] S. Thomas. Récupération assistée du pétrole : panorama. Oil & Gas Science and Technology - Rev. IFP, 63(1):9–19,
2008.

[59] J. A. Trangenstein and Z. Bi. Multi-scale iterative techniques and adaptive mesh refinement for flow in porous media.
Adv. Water Resour., pages 1175–1213, 2001.

[60] R. Verfürth. A posteriori error estimates for nonlinear problems. Lr(0, T ;Lρ(Ω))-error estimates for finite element
discretizations of parabolic equations. Math. Comp., 67(224):1335–1360, 1998.

[61] R. Verfürth. A posteriori error estimates for nonlinear problems: Lr(0, T ;W 1,ρ(Ω))-error estimates for finite element
discretizations of parabolic equations. Numer. Methods Partial Differential Equations, 14(4):487–518, 1998.

[62] M. H. Vignal. Convergence of a finite volume scheme for an elliptic-hyperbolic system. M2AN Math. Model. Numer.

Anal., 30(7):841–872, 1996.
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