Colette Johnen

Fast self-stabilizing k-independent dominating set construction Labri

Keywords: distributed computing, fault tolerance, self-stabilization, kindependent dominating set, k-dominating set, k-independent set

We propose a fast silent self-stabilizing building a k-independent dominating set, named FID. The convergence of protocol FID, is established for any computation under the unfair distributed scheduler. FID reaches a terminal (also legitimate) configuration in at most 4n + k rounds, where n is the network size. FID requires (k + 1)log(n + 1) bits per node.

Introduction

In this paper, we consider the problem of computing a distance-k independent dominating set in a self-stabilizing manner in case where k > 1. A nodes set is a distance-k independent dominating set if and only if this set is a distance-k independent set and a distance-k dominating set. A set I of nodes is distance-k independent if every node in I is at distance at least k + 1 to any other node of I. A set of nodes D is distance-k dominating if every node not belonging to D is at distance at most k of a node in D. We propose a very simple and fast protocol, called FID. The protocol FID reaches a terminal configuration in at most 4n + k rounds, where n is the network size. FID requires (k + 1)log(n + 1) bits per node. The obtained distance-k independent dominating set contains at most 2n/k + 2 nodes. Related Works. Silent self-stabilizing protocols building distance-k dominating set are proposed in [START_REF] Datta | A self-stabilizing O(k)-time k-clustering algorithm[END_REF][START_REF] Caron | self-stabilizing k-clustering algorithm for weighted graphs[END_REF]. These protocols do not build a k-independent set. In [START_REF] Larsson | A self-stabilizing (k,r)-clustering algorithm with multiple paths for wireless ad-hoc networks[END_REF][START_REF] Larsson | Self-stabilizing (k,r)-clustering in clock rate-limited systems[END_REF], Larsson and Tsigas propose self-stabilizing (l,k)-clustering protocols under various assupmtions. These protocols ensure, if possible, that each node has l cluster-heads at distance at most k from itself.

This work was partially supported by the ANR project Displexity.

1

In [START_REF] Datta | A self-stabilizing O(n)-round k-clustering algorithm[END_REF], a silent self-stabilizing protocol extracting a minimal distance-k dominating set from any distance-k dominating set is proposed. A minimal distance-k dominating set has no proper subset being a distance-k dominating set. The protocol converges in O(n) rounds, it requires at least O(k.log(n)) bits per node. The paper [START_REF] Datta | Selfstabilizing small k-dominating sets[END_REF] presents a silent self-stabilizing protocol building a small distance-k dominating set : the obtained dominating set contains at most n/(k + 1) . The protocol of [START_REF] Datta | Selfstabilizing small k-dominating sets[END_REF] converges in O(n) rounds, it requires O(log(n) + k.log(n/k)) bits per node. The protocol of [START_REF] Datta | Competitive self-stabilizing k-clustering[END_REF] builds competitive k-dominating sets : the obtained dominating set contains at most 1+ (n-1)/(k+1) nodes. The protocol of [START_REF] Datta | Competitive self-stabilizing k-clustering[END_REF] converges in O(n) rounds, it requires O(log(2k.2(∆ + 1).2n.D)) bits per node, where D is the network diameter, and ∆ is a bound on node degree. The protocols of [START_REF] Datta | Competitive self-stabilizing k-clustering[END_REF][START_REF] Datta | Selfstabilizing small k-dominating sets[END_REF] use the hierachical collateral composition of several silent self-stabilizing protocols whose a leader election protocol and a spanning tree construction rooted to the elected leader. So their convergence time are larger than 4n + k rounds. The presented protocol is simple : no use of the hierachical collateral composition, no need of leader election process, neither the building of spanning tree. Therefore, the protocol FID is fast.

Model and Concepts

A distributed system S is an undirected graph G = (V, E) where the vertex set, V , is the set of nodes and the edge set, E, is the set of communication links. A link (u, v) ∈ E if and only if u and v can directly communicate (links are bidirectional); so, the node u and v are neighbors. N v denotes the set of v's neighbors:

N v = {u ∈ V | (u, v) ∈ E}.
The distance between the nodes u and v is denoted by dist(u, v). The set of nodes at distance at most k of a node v is denoted by k

-neigborhood(v) = {u ∈ V | dist(u, v) ∈ [1, k]}.
Definition 1 (distance-k independent dominating set). Let D be a subset of V ; D is a distance-k dominating set if and only if ∀v ∈ V /D we have k-neigborhood(v) ∩ D = ∅. Let I be a subset of V ; I is a distance-k independent set if and only if ∀u ∈ I we have k-neigborhood(u)∩ I = ∅. A subset of V is a distance-k independent dominating set if this subset is a distance-k dominating set and a distance-k independent set.

To every node v in the network is assigned an identifier, denoted by id v . Two distinct nodes have distinct identifier. It is possible to order the identifier values. The symbol ⊥ denotes a value smaller than any identifier value in the network.

Each node maintains a set of shared variables. A node can read its own variables and those of its neighbors, but it can modify only its variables. The state of a node is defined by the values of its local variables. The cartesian product of states of all nodes determines the configuration of the system. The program of each node is a set of rules. Each rule has the form: Rule i :< Guard i >-→< Action i >. The guard of a v's rule is a boolean expression involving the state of the node v, and those of its neighbors. The action of a v's rule updates v's state. A rule can be executed by a node v only if it is enabled, i.e., its guard is satisfied by the node v. A node is said to be enabled if at least one of its rules is enabled. A configuration is terminal, if and only if no node can execute a rule.

During a computation step from a configuration one or several enabled nodes perform simultaneously an action to reach another configuration.

A computation e is a sequence of configurations e = c 0 , c 1 , ..., c i , ..., where c i+1 is reached from c i by a single computation step, ∀i 0. A computation e is maximal if it is infinite, or if it reaches a terminal configuration.

Definition 2 (Silent Self-Stabilization). Let L be a predicate on the configuration. A distributed system S is a silent self-stabilizing system to L if and only if (1) all terminal configurations satisfy L; (2) all computations reach a terminal configuration.

Stabilization time. We use the round notion to measure the time complexity. The first round of a computation e = c 1 , ..., c j , ... is the minimal prefix e 1 = c 1 , ..., c j , such that every enabled node in c 1 either executes a rule or it is neutralized during a computation step of e 1 . A node v is neutralized during a computation step if v is disabled in the reached configuration. Let e be the suffix of e such that e = e 1 e . The second round of e is the first round of e , and so on. The stabilization time is the maximal number of rounds needed by any computation from any configuration to reach a terminal configuration.

Notation 1 A node v is a head if dom[0](v) = id v ; otherwise it is an ordinary node.
Once the network is stabilized, any ordinary node v has in its k-neigborhood a head having a largest identifier than its own identifier. And, the heads set is a distance-k independent set.

Protocol 1 : FID: Fast distance-k independent dominating set construc- tion Shared variables • dom[](v) is a table of k + 1 members. A member is identifier value or ⊥. Predicates • resignation(v) ≡ idv < max {dom[i](v) | 0 < i ≤ k} • toUpdate(v) ≡ ∃ i ∈ [1, k] such that dom[i](v) = max {dom[i-1](u) | u ∈ Nv} • ordinaryToUpdate(v) : dom[0](v) = ⊥ • headToUpdate(v) : dom[0](v) = idv Rules RU(v) : toUpdate(v) -→ for i ∈ [1, k] do dom[i](v) := max {dom[i-1](u) | u ∈ Nv} ; if resignation(v) then dom[0](v) := ⊥ ; else dom[0](v) := idv ; RE(v) : ¬toUpdate(v) ∧ ¬resignation(v) ∧ headToUpdate(v) -→ dom[0](v) := idv ; RR(v) : ¬toUpdate(v) ∧ resignation(v) ∧ ordinaryToUpdate(v); -→ dom[0](v) := ⊥ ;
The value of dom[i](v) is ⊥ if there is not a path of length i from a head to v. Otherwise, the value of dom[i](v) is the largest head identifier such that there is a path of length i from this head to v.

When an ordinary node v has not a head in its k-neighborhood then the table dom[] in v does not contain any identifier. Notice that in this case, the predicates ¬resignation(v) and headToUpdate(v) are verified. So, the node v can perform the rule RE or the rule RU. Hence, the heads set is a distance-k dominating set in a terminal configuration.

The predicate resignation(v) is verified when the node v has in its k-neigborhood a head u having a larger identifier than v's identifier (i.e. id v < id u). If the node v is a head then the predicate ordinaryToUpdate(v) is also verified. In this case, v can perform the rule RR or the rule RU.

70 dom[0]=70 dom[2]=70 dom[4]=70 89 dom[1]=90 dom[3]=90 dom[4]=80 80 dom[0]=80 dom[2]=80 dom[4]=80 90 dom[0]=90 dom[2]=90 dom[4]=90 88 dom[2]=90 dom[3]=80 dom[4]=90 87 dom[3]=90 dom[4]=80 86 dom[4]=90 85 dom[1]=80 dom[3]=80 dom[4]=90 84 dom[2]=80 dom[3]=90 dom[4]=80 83 dom[3]=80 dom[4]=90 76 dom[4]=80 79 dom[1]=70 dom[3]=70 dom[4]=80 82 dom[2]=70 dom[3]=80 dom[4]=90 77 dom[3]=70 dom[4]=80 66 dom[4]=70 69 dom[4]=70 78 dom[3]=70 dom[4]=80 67 dom[4]=70
k=4. The head identifiers are underlined. In each node, the value of dom[i] for 0 ≤ i ≤4 is indicated except if the value is . The color of a node is the color of the head in its k-neighborhood having the largest identifier.

Correctness of the protocol F ID

In this section, we prove that the set of heads is a distance-k independent dominating set, in every terminal configuration of the FID protocol.

Observation 1 Let v be a node. In a terminal configuration, dom

[0](v) = id v ∨ dom[0](v) = ⊥ Definition 3. (OrdinaryPr(i))
. For all i ∈ [1, k], the property OrdinaryPr(i) is defined as follow: if there is not a path of length i from a head to the node v then dom[i](v) = ⊥ otherwise dom[i](v) = id u where id u is the largest head identifier having a path to v of length i.

Lemma 1. In a terminal configuration, the property OrdinaryPr(1) is verified.

Proof. According to observation 1, dom[0](u) = ⊥ if and only if u is a head (dom[0](u) = id u). Let v be an ordinary node, in a terminal configuration. If v has a not a head in its neigborhood then dom[0](u) = ⊥, ∀u ∈ N v . So dom [START_REF] Caron | self-stabilizing k-clustering algorithm for weighted graphs[END_REF](v) = ⊥. ⊥ is smaller than any identifier value. So, if v has a head in its neigborhood then dom [START_REF] Caron | self-stabilizing k-clustering algorithm for weighted graphs[END_REF]

(v) = max {id u | u ∈ N v and dom[0](u) = id u }.
Lemma 2. Let i be a positive integer strictly smaller than k. In a terminal configuration, if the property OrdinaryPr(i) is verified then the property OrdinaryPr(i+1) is verified.

Proof. Let v be an ordinary node, in a terminal configuration in which the property OrdinaryPr(i) is verified. There is not a path of length i + 1 from a head to v if and only if not v's neighbor has a path of length i to a head. We have dom

[i](u) = ⊥, ∀u ∈ N v . So dom[i+1](v) = ⊥.
Let w be the head having the largest identifier such that there is a path of length i + 1 from w to v. v has a neighbor, denoted by u, on its path to w. As OrdinaryPr(i) is verified, dom[i](u) = id w , and

dom[i](u) ≤ id w for any node u ∈ N v . So dom[i+1](v) = id w .
Theorem 1. Let c be a terminal configuration. In c, any ordinary node u has a head in its k-neigborhood.

Proof. We will prove that if an ordinary node has not a head in its kneigborhood then the configuration c is not terminal. In c, for all i ∈ [1, k], the property OrdinaryPr(i) is verified according to the lemma 1 and to the lemma 2. Let u be an ordinary node without any head in its k-neighborhood. So there is not path of length lesser than k + 1 between u and a head. We have dom[i](u) = ⊥, ∀i ∈ [0, k]. So the predicate ¬resignation(u) ∧ headToUpdate(u) is verified in c. The node u can perform the rule RE or the rule RU.

The following theorem establishes that the set of heads is a distance-k independent set. Theorem 2. Let c be a terminal configuration. In c, a head has not head in its k-neigborhood.

Proof. We will prove that if a head has a head in its k-neigborhood then the configuration c is not terminal. Let wrongHeadSet the set of heads having one or several heads are in their k-neigborhood. Assume that wrongHeadSet is not empty. v1 denotes the node of wrongHeadSet having the smallest identifier. v2 denotes the closest head to v1, and d denotes the distance between v1 and v2. We have 0 < d ≤ k. According to the property OrdinaryPr(d), dom[d](v1) ≥ id v2 . So, in the configuration c, the predicate resignation(v1)∧ ordinaryToUpdate(v1) is satisfied. The node v1 can perform the rule RR or the rule RU.

Termination of the protocol F ID

In this section, we prove that all maximal computations under the unfair distributed scheduler are finite by reductio ad absurdam arguments.

dom[0] values

Assume that a node or several nodes modify infinitely often their value of dom[0]. We named Set + the set of nodes that infinitely often modify the value of dom[0]. We denoted by u + the node of Set + having the largest identifier.

Let e2 be the suffix of e1 in which no node having a larger identifier than u + 's identifier modifies the value of dom[0]. According to the definition of predicate resignation, there is an integer i such that dom[i](u +) > id u + infinitely often (at time where u + becomes ordinary) and dom[i](u +) ≤ id u + infinitely often (at time where u + becomes leader). So u + has a neighbor named u i-1 such that (i) the value of dom[i-1](u i-1) is infinitely often greater than id u + and (ii) the value of dom[i-1](u i-1) is infinitely often smaller than id u + . It is possible only if there is a path of i nodes, u i-1 , u i-2 , u i-3 , ..., u 0 , such that (i) the value of dom[i-j](u i-j) is infinitely often greater than id u + and (ii) the value of dom[i-j](u i-j) is infinitely often smaller than id u + with 1 ≤ j ≤ i. So, the value dom[0](u 0) is infinitely often greater than id u + ; and infinitely often smaller than id u + . dom[0](u 0) can only take two values: ⊥ or id u 0 . As ⊥ is smaller than any identifier value: u 0 has a largest identifier than u + , and u 0 changes infinitely often its value of dom[0] during e2. There is a contradiction. So e2 has a suffix e3 where no node changes its value of dom[0].

∀ 0 < i ≤ k, dom[i] values

Let us name u i a node that modifies infinitely often its value of dom[i] with 0 < i ≤ k along e3. It is possible only if there is a path of i nodes, u i-1 , u i-2 , u i-3 , ..., u 0 , such that the value of dom[i-j](u i-j) changes infinitely often, for 1 ≤ j ≤ i. So, the value of dom[0](u 0) changes infinitely often along e3. There is a contradiction: ∀0 < i ≤ k, no node modifies infinitely often its value of dom[i].

We have established that e3 has a suffix e4 where all tables dom[] have their final values. Any rule action by a node v modifies a value of its table dom[]. So, a terminal configuration is reached.

Convergence time

In this section, we establish that the convergence time is at most 4n + k rounds.

Lemma 3. The size of a distance-k independent set is at most M = max(2n/(k + 2) , 1).

Proof. Let I be a k-independent set such that |I| > 1. Let v be a node of I. We denote by closest(v) the set of nodes closer to v than any other node of I. Notice that w∈I closest(w) ⊂ V and closest(v) ∩ closest(u) = ∅, ∀(u, v) ∈ I 2 . Let u be the closest node to v that belongs to I. Let x be node on the path from v to u such that 0 ≤ dist(v, x) ≤ k/2 . Let w be a node of I other than v. We have dist

(w, x) > k-dist(v, x) ≥ k/2 because k < dist(w, v) ≤ dist(v, x) + dist(x, w). So, closest(v) contains the first k/2 + 1 nodes in the path from v to u. We conclude that |I| ≤ (2n)/(k + 2) . Notation 2 Set 0 = ∅; V i = V -Set i ; vh i is the node of V i having the largest identifier; Set i+1 = Set i ∪ k-neighborhood(vh i) ∪ {vh i }; T i = 2i(k + 1).
For all nodes u, after the first round, the value of dom[0](u) is the identifier of a V 's node; this will stay true along the computation. For all nodes u, after the second round, the value of dom [START_REF] Caron | self-stabilizing k-clustering algorithm for weighted graphs[END_REF](u) is also the identifier of a V 's node; this will stay true along the computation. So, for all nodes u, after the k+1 first rounds, the table dom[](u) contains only V 's identifier; this will stay true along the computation. After one more round, vh 0 , the node having the largest identifier, vh 0 , is a head. It will stay a head along the computation (because resignation(vh 0) is never verified). After k more rounds, all nodes of k-neighborhood(vh 0), are and will stay ordinary because they verify forever resignation. So after the first T 1 = 2(k + 1) first rounds, the nodes of Set 1 have their final status (ordinary or head).

After T i + k + 1 rounds, for all l ∈ [0, k], we have dom[l](u i) ∈ V i for any node u i of V i . This will stay true along the computation. So, after one more round, vh i is a head; and it will stay a head. After k more rounds, all nodes of k-neighborhood(vh i), are and will stay ordinary (because they verify forever resignation). So after the first T i+1 = 2(k + 1) + T i first rounds, the nodes of Set i+1 have their final status (ordinary or head).

The set HX = {v | ∃i such that v = vh i } is a distance-k independent set. So V M = ∅. We conclude that after at most the first 2n < T M < 4n first rounds, all nodes have their final status (ordinary or head). After k more rounds, in any node, the table dom[] has its final values.

Fig. 1 .

 1 Fig. 1. A terminal configuration of FID

The protocol F IDThe protocol FID, presented in protocol 1, builds a distance-k independent dominating set.