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Fast self-stabilizing k-independent dominating
set construction?

Labri Technical Report RR-1472-13

Colette Johnen

Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France

Abstract. We propose a fast silent self-stabilizing building a k-independent
dominating set, named FID. The convergence of protocol FID, is es-
tablished for any computation under the unfair distributed scheduler.
FID reaches a terminal (also legitimate) configuration in at most 4n+k
rounds, where n is the network size. FID requires (k + 1)log(n+ 1) bits
per node.
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independent dominating set, k-dominating set, k-independent set

1 Introduction

In this paper, we consider the problem of computing a distance-k inde-
pendent dominating set in a self-stabilizing manner in case where k > 1.
A nodes set is a distance-k independent dominating set if and only if this
set is a distance-k independent set and a distance-k dominating set. A
set I of nodes is distance-k independent if every node in I is at distance
at least k + 1 to any other node of I. A set of nodes D is distance-k
dominating if every node not belonging to D is at distance at most k of
a node in D. We propose a very simple and fast protocol, called FID.
The protocol FID reaches a terminal configuration in at most 4n + k
rounds, where n is the network size. FID requires (k + 1)log(n+ 1) bits
per node. The obtained distance-k independent dominating set contains
at most b2n/k + 2c nodes.

Related Works. Silent self-stabilizing protocols building distance-k dom-
inating set are proposed in [5,1]. These protocols do not build a k-independent
set.

In [6,7], Larsson and Tsigas propose self-stabilizing (l,k)-clustering proto-
cols under various assupmtions. These protocols ensure, if possible, that
each node has l cluster-heads at distance at most k from itself.

? This work was partially supported by the ANR project Displexity.

1



In [2], a silent self-stabilizing protocol extracting a minimal distance-k
dominating set from any distance-k dominating set is proposed. A min-
imal distance-k dominating set has no proper subset being a distance-k
dominating set. The protocol converges in O(n) rounds, it requires at
least O(k.log(n)) bits per node.
The paper [4] presents a silent self-stabilizing protocol building a small
distance-k dominating set : the obtained dominating set contains at most
dn/(k + 1)e. The protocol of [4] converges in O(n) rounds, it requires
O(log(n) + k.log(n/k)) bits per node. The protocol of [3] builds compet-
itive k-dominating sets : the obtained dominating set contains at most
1+b(n−1)/(k+1)c nodes. The protocol of [3] converges in O(n) rounds, it
requires O(log(2k.2(∆+ 1).2n.D)) bits per node, where D is the network
diameter, and ∆ is a bound on node degree. The protocols of [3,4] use
the hierachical collateral composition of several silent self-stabilizing pro-
tocols whose a leader election protocol and a spanning tree construction
rooted to the elected leader. So their convergence time are larger than
4n+ k rounds.
The presented protocol is simple : no use of the hierachical collateral
composition, no need of leader election process, neither the building of
spanning tree. Therefore, the protocol FID is fast.

2 Model and Concepts

A distributed system S is an undirected graph G = (V,E) where the
vertex set, V , is the set of nodes and the edge set, E, is the set of commu-
nication links. A link (u, v) ∈ E if and only if u and v can directly com-
municate (links are bidirectional); so, the node u and v are neighbors. Nv

denotes the set of v’s neighbors: Nv = {u ∈ V | (u, v) ∈ E}. The distance
between the nodes u and v is denoted by dist(u, v). The set of nodes
at distance at most k of a node v is denoted by k-neigborhood(v) =
{u ∈ V | dist(u, v) ∈ [1, k]}.

Definition 1 (distance-k independent dominating set). Let D be a
subset of V ; D is a distance-k dominating set if and only if ∀v ∈ V/D
we have k-neigborhood(v) ∩ D 6= ∅. Let I be a subset of V ; I is a
distance-k independent set if and only if ∀u ∈ I we have k-neigborhood(u)∩
I = ∅. A subset of V is a distance-k independent dominating set if this
subset is a distance-k dominating set and a distance-k independent set.

To every node v in the network is assigned an identifier, denoted by
idv. Two distinct nodes have distinct identifier. It is possible to order the

2



identifier values. The symbol ⊥ denotes a value smaller than any identifier
value in the network.

Each node maintains a set of shared variables. A node can read its own
variables and those of its neighbors, but it can modify only its variables.
The state of a node is defined by the values of its local variables. The
cartesian product of states of all nodes determines the configuration of
the system. The program of each node is a set of rules. Each rule has
the form: Rulei :< Guardi >−→< Actioni >. The guard of a v’s rule
is a boolean expression involving the state of the node v, and those of
its neighbors. The action of a v’s rule updates v’s state. A rule can be
executed by a node v only if it is enabled, i.e., its guard is satisfied by the
node v. A node is said to be enabled if at least one of its rules is enabled.
A configuration is terminal, if and only if no node can execute a rule.

During a computation step from a configuration one or several enabled
nodes perform simultaneously an action to reach another configuration.
A computation e is a sequence of configurations e = c0, c1, ..., ci, ..., where
ci+1 is reached from ci by a single computation step, ∀i > 0. A computa-
tion e is maximal if it is infinite, or if it reaches a terminal configuration.

Definition 2 (Silent Self-Stabilization). Let L be a predicate on the
configuration. A distributed system S is a silent self-stabilizing system to
L if and only if (1) all terminal configurations satisfy L; (2) all compu-
tations reach a terminal configuration.

Stabilization time. We use the round notion to measure the time com-
plexity. The first round of a computation e = c1, ..., cj , ... is the minimal
prefix e1 = c1, ..., cj , such that every enabled node in c1 either executes
a rule or it is neutralized during a computation step of e1. A node v
is neutralized during a computation step if v is disabled in the reached
configuration.
Let e′ be the suffix of e such that e = e1e

′. The second round of e is the
first round of e′, and so on.
The stabilization time is the maximal number of rounds needed by any
computation from any configuration to reach a terminal configuration.

3 The protocol FID

The protocol FID, presented in protocol 1, builds a distance-k indepen-
dent dominating set.
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Notation 1 A node v is a head if dom[0](v) = idv; otherwise it is an
ordinary node.

Once the network is stabilized, any ordinary node v has in its k-neigborhood
a head having a largest identifier than its own identifier. And, the heads
set is a distance-k independent set.

Protocol 1 : FID: Fast distance-k independent dominating set construc-
tion

Shared variables
• dom[](v) is a table of k + 1 members. A member is identifier value or ⊥.

Predicates
• resignation(v) ≡ idv < max {dom[i](v) | 0 < i ≤ k}
• toUpdate(v) ≡ ∃ i ∈ [1, k] such that

dom[i](v) 6= max {dom[i-1](u) | u ∈ Nv}
• ordinaryToUpdate(v) : dom[0](v) 6= ⊥
• headToUpdate(v) : dom[0](v) 6= idv

Rules
RU(v) : toUpdate(v) −→

for i ∈ [1, k] do dom[i](v) := max {dom[i-1](u) | u ∈ Nv} ;
if resignation(v) then dom[0](v) := ⊥ ; else dom[0](v) := idv ;

RE(v) : ¬toUpdate(v) ∧ ¬resignation(v) ∧ headToUpdate(v) −→
dom[0](v) := idv ;

RR(v) : ¬toUpdate(v) ∧ resignation(v) ∧ ordinaryToUpdate(v);−→
dom[0](v) := ⊥ ;

The value of dom[i](v) is ⊥ if there is not a path of length i from a head
to v. Otherwise, the value of dom[i](v) is the largest head identifier such
that there is a path of length i from this head to v.

When an ordinary node v has not a head in its k-neighborhood then the
table dom[] in v does not contain any identifier. Notice that in this case,
the predicates ¬resignation(v) and headToUpdate(v) are verified. So,
the node v can perform the rule RE or the rule RU. Hence, the heads
set is a distance-k dominating set in a terminal configuration.

The predicate resignation(v) is verified when the node v has in its
k-neigborhood a head u having a larger identifier than v’s identifier (i.e.
idv < idu). If the node v is a head then the predicate ordinaryToUpdate(v)
is also verified. In this case, v can perform the rule RR or the rule RU.
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for 0 ≤ i ≤4  is indicated except if the value is  . The color of a node is the 

color of the head in its k-neighborhood having the largest identifier. 

Fig. 1. A terminal configuration of FID

Therefore, the heads set is a distance-k independent set, in any terminal
configuration.

The figure 1 presentes the values of the tables dom[] in a terminal con-
figuration. The table dom[] of node 82 contains the values (⊥, ⊥, 70,
80, 90). So, in the node 78, we have dom[3] ≥ 70 and dom[4] ≥ 80. As
dom[4] ≥ 80, in the node 78; this node cannot become a head. The nodes
67 knows the existence of the single head in its 4-neighborhood having a
larger identifier than its identifier (node 70) because dom[3] ≥ 70, in the
node 78.

4 Correctness of the protocol FID

In this section, we prove that the set of heads is a distance-k independent
dominating set, in every terminal configuration of the FID protocol.
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Observation 1 Let v be a node. In a terminal configuration, dom[0](v) =
idv ∨ dom[0](v) = ⊥

Definition 3. (OrdinaryPr(i)). For all i ∈ [1, k], the property OrdinaryPr(i)
is defined as follow: if there is not a path of length i from a head to the
node v then dom[i](v) = ⊥ otherwise dom[i](v) = idu where idu is the
largest head identifier having a path to v of length i.

Lemma 1. In a terminal configuration, the property OrdinaryPr(1) is
verified.

Proof. According to observation 1, dom[0](u) 6= ⊥ if and only if u is a
head (dom[0](u) = idu).
Let v be an ordinary node, in a terminal configuration. If v has a not a
head in its neigborhood then dom[0](u) = ⊥, ∀u ∈ Nv. So dom[1](v) =
⊥. ⊥ is smaller than any identifier value. So, if v has a head in its neig-
borhood then dom[1](v) = max {idu | u ∈ Nv and dom[0](u) = idu}.
�

Lemma 2. Let i be a positive integer strictly smaller than k. In a ter-
minal configuration, if the property OrdinaryPr(i) is verified then the
property OrdinaryPr(i+1) is verified.

Proof. Let v be an ordinary node, in a terminal configuration in which
the property OrdinaryPr(i) is verified. There is not a path of length i+ 1
from a head to v if and only if not v’s neighbor has a path of length i to
a head. We have dom[i](u) = ⊥, ∀u ∈ Nv. So dom[i+1](v) = ⊥.
Let w be the head having the largest identifier such that there is a path
of length i+1 from w to v. v has a neighbor, denoted by u, on its path to
w. As OrdinaryPr(i) is verified, dom[i](u) = idw, and dom[i](u′) ≤ idw
for any node u′ ∈ Nv. So dom[i+1](v) = idw. �

Theorem 1. Let c be a terminal configuration. In c, any ordinary node
u has a head in its k-neigborhood.

Proof. We will prove that if an ordinary node has not a head in its k-
neigborhood then the configuration c is not terminal.
In c, for all i ∈ [1, k], the property OrdinaryPr(i) is verified according
to the lemma 1 and to the lemma 2. Let u be an ordinary node without
any head in its k-neighborhood. So there is not path of length lesser than
k + 1 between u and a head. We have dom[i](u) = ⊥, ∀i ∈ [0, k]. So the
predicate ¬resignation(u)∧headToUpdate(u) is verified in c. The node
u can perform the rule RE or the rule RU. �
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The following theorem establishes that the set of heads is a distance-k
independent set.

Theorem 2. Let c be a terminal configuration. In c, a head has not head
in its k-neigborhood.

Proof. We will prove that if a head has a head in its k-neigborhood then
the configuration c is not terminal.
Let wrongHeadSet the set of heads having one or several heads are
in their k-neigborhood. Assume that wrongHeadSet is not empty. v1
denotes the node of wrongHeadSet having the smallest identifier. v2
denotes the closest head to v1, and d denotes the distance between v1
and v2. We have 0 < d ≤ k. According to the property OrdinaryPr(d),
dom[d](v1) ≥ idv2. So, in the configuration c, the predicate resignation(v1)∧
ordinaryToUpdate(v1) is satisfied. The node v1 can perform the rule RR
or the rule RU. �

5 Termination of the protocol FID

In this section, we prove that all maximal computations under the unfair
distributed scheduler are finite by reductio ad absurdam arguments.

5.1 dom[0] values

Assume that a node or several nodes modify infinitely often their value of
dom[0]. We named Set+ the set of nodes that infinitely often modify the
value of dom[0]. We denoted by u+ the node of Set+ having the largest
identifier.

Let e2 be the suffix of e1 in which no node having a larger identifier than
u+’s identifier modifies the value of dom[0].
According to the definition of predicate resignation, there is an integer i
such that dom[i](u+) > idu+ infinitely often (at time where u+ becomes
ordinary) and dom[i](u+) ≤ idu+ infinitely often (at time where u+

becomes leader). So u+ has a neighbor named ui−1 such that (i) the value
of dom[i-1](ui−1) is infinitely often greater than idu+ and (ii) the value
of dom[i-1](ui−1) is infinitely often smaller than idu+ . It is possible only
if there is a path of i nodes, ui−1, ui−2, ui−3, ..., u0, such that (i) the value
of dom[i-j](ui−j) is infinitely often greater than idu+ and (ii) the value
of dom[i-j](ui−j) is infinitely often smaller than idu+ with 1 ≤ j ≤ i. So,
the value dom[0](u0) is infinitely often greater than idu+ ; and infinitely
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often smaller than idu+ . dom[0](u0) can only take two values: ⊥ or idu0 .
As ⊥ is smaller than any identifier value: u0 has a largest identifier than
u+, and u0 changes infinitely often its value of dom[0] during e2.
There is a contradiction. So e2 has a suffix e3 where no node changes its
value of dom[0].

5.2 ∀ 0 < i ≤ k, dom[i] values

Let us name ui a node that modifies infinitely often its value of dom[i]
with 0 < i ≤ k along e3. It is possible only if there is a path of i nodes,
ui−1, ui−2, ui−3, ..., u0, such that the value of dom[i-j](ui−j) changes in-
finitely often, for 1 ≤ j ≤ i. So, the value of dom[0](u0) changes infinitely
often along e3. There is a contradiction: ∀0 < i ≤ k, no node modifies
infinitely often its value of dom[i].

We have established that e3 has a suffix e4 where all tables dom[] have
their final values. Any rule action by a node v modifies a value of its table
dom[]. So, a terminal configuration is reached.

6 Convergence time

In this section, we establish that the convergence time is at most 4n+ k
rounds.

Lemma 3. The size of a distance-k independent set is at most M =
max(b2n/(k + 2)c, 1).

Proof. Let I be a k-independent set such that |I| > 1. Let v be a node of
I. We denote by closest(v) the set of nodes closer to v than any other
node of I.
Notice that

⋃
w∈I closest(w) ⊂ V and closest(v) ∩ closest(u) =

∅, ∀(u, v) ∈ I2. Let u be the closest node to v that belongs to I. Let
x be node on the path from v to u such that 0 ≤ dist(v, x) ≤ bk/2c. Let
w be a node of I other than v. We have dist(w, x) > k−dist(v, x) ≥ bk/2c
because k < dist(w, v) ≤ dist(v, x) + dist(x,w). So, closest(v) contains
the first bk/2c + 1 nodes in the path from v to u. We conclude that
|I| ≤ b(2n)/(k + 2)c. �

Notation 2 Set0 = ∅; Vi = V − Seti; vhi is the node of Vi having
the largest identifier; Seti+1 = Seti ∪ k-neighborhood(vhi) ∪ {vhi};
Ti = 2i(k + 1).
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For all nodes u, after the first round, the value of dom[0](u) is the identi-
fier of a V ’s node; this will stay true along the computation. For all nodes
u, after the second round, the value of dom[1](u) is also the identifier of
a V ’s node; this will stay true along the computation.
So, for all nodes u, after the k+1 first rounds, the table dom[](u) contains
only V ’s identifier; this will stay true along the computation.
After one more round, vh0, the node having the largest identifier, vh0, is a
head. It will stay a head along the computation (because resignation(vh0)
is never verified). After k more rounds, all nodes of k-neighborhood(vh0),
are and will stay ordinary because they verify forever resignation.
So after the first T1 = 2(k + 1) first rounds, the nodes of Set1 have their
final status (ordinary or head).

After Ti + k+ 1 rounds, for all l ∈ [0, k], we have dom[l](ui) ∈ Vi for any
node ui of Vi. This will stay true along the computation. So, after one
more round, vhi is a head; and it will stay a head.
After k more rounds, all nodes of k-neighborhood(vhi), are and will stay
ordinary (because they verify forever resignation).
So after the first Ti+1 = 2(k + 1) + Ti first rounds, the nodes of Seti+1

have their final status (ordinary or head).

The set HX = {v | ∃i such that v = vhi} is a distance-k independent
set. So VM = ∅.
We conclude that after at most the first 2n < TM < 4n first rounds, all
nodes have their final status (ordinary or head). After k more rounds, in
any node, the table dom[] has its final values.
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