
HAL Id: hal-00839357
https://hal.science/hal-00839357v2

Submitted on 1 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast self-stabilizing k-independent dominating set
construction
Colette Johnen

To cite this version:
Colette Johnen. Fast self-stabilizing k-independent dominating set construction. 2013. �hal-
00839357v2�

https://hal.science/hal-00839357v2
https://hal.archives-ouvertes.fr

Fast self-stabilizing k-independent dominating
set construction?

Labri Technical Report RR-1472-13

Colette Johnen

Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France

Abstract. We propose a fast silent self-stabilizing building a k-independent
dominating set, named FID. The convergence of protocol FID, is es-
tablished for any computation under the unfair distributed scheduler.
FID reaches a terminal (also legitimate) configuration in at most 4n+k
rounds, where n is the network size. FID requires (k + 1)log(n+ 1) bits
per node.

keywords distributed computing, fault tolerance, self-stabilization, k-
independent dominating set, k-dominating set, k-independent set

1 Introduction

In this paper, we consider the problem of computing a distance-k inde-
pendent dominating set in a self-stabilizing manner in case where k > 1.
A nodes set is a distance-k independent dominating set if and only if this
set is a distance-k independent set and a distance-k dominating set. A
set I of nodes is distance-k independent if every node in I is at distance
at least k + 1 to any other node of I. A set of nodes D is distance-k
dominating if every node not belonging to D is at distance at most k of
a node in D. We propose a very simple and fast protocol, called FID.
The protocol FID reaches a terminal configuration in at most 4n + k
rounds, where n is the network size. FID requires (k + 1)log(n+ 1) bits
per node. The obtained distance-k independent dominating set contains
at most b2n/k + 2c nodes.

Related Works. Silent self-stabilizing protocols building distance-k dom-
inating set are proposed in [5,1]. These protocols do not build a k-independent
set.

In [6,7], Larsson and Tsigas propose self-stabilizing (l,k)-clustering proto-
cols under various assupmtions. These protocols ensure, if possible, that
each node has l cluster-heads at distance at most k from itself.

? This work was partially supported by the ANR project Displexity.

1

In [2], a silent self-stabilizing protocol extracting a minimal distance-k
dominating set from any distance-k dominating set is proposed. A min-
imal distance-k dominating set has no proper subset being a distance-k
dominating set. The protocol converges in O(n) rounds, it requires at
least O(k.log(n)) bits per node.
The paper [4] presents a silent self-stabilizing protocol building a small
distance-k dominating set : the obtained dominating set contains at most
dn/(k + 1)e. The protocol of [4] converges in O(n) rounds, it requires
O(log(n) + k.log(n/k)) bits per node. The protocol of [3] builds compet-
itive k-dominating sets : the obtained dominating set contains at most
1+b(n−1)/(k+1)c nodes. The protocol of [3] converges in O(n) rounds, it
requires O(log(2k.2(∆+ 1).2n.D)) bits per node, where D is the network
diameter, and ∆ is a bound on node degree. The protocols of [3,4] use
the hierachical collateral composition of several silent self-stabilizing pro-
tocols whose a leader election protocol and a spanning tree construction
rooted to the elected leader. So their convergence time are larger than
4n+ k rounds.
The presented protocol is simple : no use of the hierachical collateral
composition, no need of leader election process, neither the building of
spanning tree. Therefore, the protocol FID is fast.

2 Model and Concepts

A distributed system S is an undirected graph G = (V,E) where the
vertex set, V , is the set of nodes and the edge set, E, is the set of commu-
nication links. A link (u, v) ∈ E if and only if u and v can directly com-
municate (links are bidirectional); so, the node u and v are neighbors. Nv

denotes the set of v’s neighbors: Nv = {u ∈ V | (u, v) ∈ E}. The distance
between the nodes u and v is denoted by dist(u, v). The set of nodes
at distance at most k of a node v is denoted by k-neigborhood(v) =
{u ∈ V | dist(u, v) ∈ [1, k]}.

Definition 1 (distance-k independent dominating set). Let D be a
subset of V ; D is a distance-k dominating set if and only if ∀v ∈ V/D
we have k-neigborhood(v) ∩ D 6= ∅. Let I be a subset of V ; I is a
distance-k independent set if and only if ∀u ∈ I we have k-neigborhood(u)∩
I = ∅. A subset of V is a distance-k independent dominating set if this
subset is a distance-k dominating set and a distance-k independent set.

To every node v in the network is assigned an identifier, denoted by
idv. Two distinct nodes have distinct identifier. It is possible to order the

2

identifier values. The symbol ⊥ denotes a value smaller than any identifier
value in the network.

Each node maintains a set of shared variables. A node can read its own
variables and those of its neighbors, but it can modify only its variables.
The state of a node is defined by the values of its local variables. The
cartesian product of states of all nodes determines the configuration of
the system. The program of each node is a set of rules. Each rule has
the form: Rulei :< Guardi >−→< Actioni >. The guard of a v’s rule
is a boolean expression involving the state of the node v, and those of
its neighbors. The action of a v’s rule updates v’s state. A rule can be
executed by a node v only if it is enabled, i.e., its guard is satisfied by the
node v. A node is said to be enabled if at least one of its rules is enabled.
A configuration is terminal, if and only if no node can execute a rule.

During a computation step from a configuration one or several enabled
nodes perform simultaneously an action to reach another configuration.
A computation e is a sequence of configurations e = c0, c1, ..., ci, ..., where
ci+1 is reached from ci by a single computation step, ∀i > 0. A computa-
tion e is maximal if it is infinite, or if it reaches a terminal configuration.

Definition 2 (Silent Self-Stabilization). Let L be a predicate on the
configuration. A distributed system S is a silent self-stabilizing system to
L if and only if (1) all terminal configurations satisfy L; (2) all compu-
tations reach a terminal configuration.

Stabilization time. We use the round notion to measure the time com-
plexity. The first round of a computation e = c1, ..., cj , ... is the minimal
prefix e1 = c1, ..., cj , such that every enabled node in c1 either executes
a rule or it is neutralized during a computation step of e1. A node v
is neutralized during a computation step if v is disabled in the reached
configuration.
Let e′ be the suffix of e such that e = e1e

′. The second round of e is the
first round of e′, and so on.
The stabilization time is the maximal number of rounds needed by any
computation from any configuration to reach a terminal configuration.

3 The protocol FID

The protocol FID, presented in protocol 1, builds a distance-k indepen-
dent dominating set.

3

Notation 1 A node v is a head if dom[0](v) = idv; otherwise it is an
ordinary node.

Once the network is stabilized, any ordinary node v has in its k-neigborhood
a head having a largest identifier than its own identifier. And, the heads
set is a distance-k independent set.

Protocol 1 : FID: Fast distance-k independent dominating set construc-
tion

Shared variables
• dom[](v) is a table of k + 1 members. A member is identifier value or ⊥.

Predicates
• resignation(v) ≡ idv < max {dom[i](v) | 0 < i ≤ k}
• toUpdate(v) ≡ ∃ i ∈ [1, k] such that

dom[i](v) 6= max {dom[i-1](u) | u ∈ Nv}
• ordinaryToUpdate(v) : dom[0](v) 6= ⊥
• headToUpdate(v) : dom[0](v) 6= idv

Rules
RU(v) : toUpdate(v) −→

for i ∈ [1, k] do dom[i](v) := max {dom[i-1](u) | u ∈ Nv} ;
if resignation(v) then dom[0](v) := ⊥ ; else dom[0](v) := idv ;

RE(v) : ¬toUpdate(v) ∧ ¬resignation(v) ∧ headToUpdate(v) −→
dom[0](v) := idv ;

RR(v) : ¬toUpdate(v) ∧ resignation(v) ∧ ordinaryToUpdate(v);−→
dom[0](v) := ⊥ ;

The value of dom[i](v) is ⊥ if there is not a path of length i from a head
to v. Otherwise, the value of dom[i](v) is the largest head identifier such
that there is a path of length i from this head to v.

When an ordinary node v has not a head in its k-neighborhood then the
table dom[] in v does not contain any identifier. Notice that in this case,
the predicates ¬resignation(v) and headToUpdate(v) are verified. So,
the node v can perform the rule RE or the rule RU. Hence, the heads
set is a distance-k dominating set in a terminal configuration.

The predicate resignation(v) is verified when the node v has in its
k-neigborhood a head u having a larger identifier than v’s identifier (i.e.
idv < idu). If the node v is a head then the predicate ordinaryToUpdate(v)
is also verified. In this case, v can perform the rule RR or the rule RU.

4

70

dom[0]=70

dom[2]=70

dom[4]=70

89

dom[1]=90

dom[3]=90

dom[4]=80

80

dom[0]=80

dom[2]=80

dom[4]=80

90

dom[0]=90

dom[2]=90

dom[4]=90

88

dom[2]=90

dom[3]=80

dom[4]=90

87

dom[3]=90

dom[4]=80

86

dom[4]=90

85

dom[1]=80

dom[3]=80

dom[4]=90

84

dom[2]=80

dom[3]=90

dom[4]=80

83

dom[3]=80

dom[4]=90

76

dom[4]=80

79

dom[1]=70

dom[3]=70

dom[4]=80

82

 dom[2]=70

dom[3]=80

dom[4]=90

77

dom[3]=70

dom[4]=80

66

dom[4]=70

69

dom[4]=70

78

dom[3]=70

dom[4]=80

67

dom[4]=70

 k=4. The head identifiers are underlined. In each node, the value of dom[i]

for 0 ≤ i ≤4 is indicated except if the value is  . The color of a node is the

color of the head in its k-neighborhood having the largest identifier.

Fig. 1. A terminal configuration of FID

Therefore, the heads set is a distance-k independent set, in any terminal
configuration.

The figure 1 presentes the values of the tables dom[] in a terminal con-
figuration. The table dom[] of node 82 contains the values (⊥, ⊥, 70,
80, 90). So, in the node 78, we have dom[3] ≥ 70 and dom[4] ≥ 80. As
dom[4] ≥ 80, in the node 78; this node cannot become a head. The nodes
67 knows the existence of the single head in its 4-neighborhood having a
larger identifier than its identifier (node 70) because dom[3] ≥ 70, in the
node 78.

4 Correctness of the protocol FID

In this section, we prove that the set of heads is a distance-k independent
dominating set, in every terminal configuration of the FID protocol.

5

Observation 1 Let v be a node. In a terminal configuration, dom[0](v) =
idv ∨ dom[0](v) = ⊥

Definition 3. (OrdinaryPr(i)). For all i ∈ [1, k], the property OrdinaryPr(i)
is defined as follow: if there is not a path of length i from a head to the
node v then dom[i](v) = ⊥ otherwise dom[i](v) = idu where idu is the
largest head identifier having a path to v of length i.

Lemma 1. In a terminal configuration, the property OrdinaryPr(1) is
verified.

Proof. According to observation 1, dom[0](u) 6= ⊥ if and only if u is a
head (dom[0](u) = idu).
Let v be an ordinary node, in a terminal configuration. If v has a not a
head in its neigborhood then dom[0](u) = ⊥, ∀u ∈ Nv. So dom[1](v) =
⊥. ⊥ is smaller than any identifier value. So, if v has a head in its neig-
borhood then dom[1](v) = max {idu | u ∈ Nv and dom[0](u) = idu}.
�

Lemma 2. Let i be a positive integer strictly smaller than k. In a ter-
minal configuration, if the property OrdinaryPr(i) is verified then the
property OrdinaryPr(i+1) is verified.

Proof. Let v be an ordinary node, in a terminal configuration in which
the property OrdinaryPr(i) is verified. There is not a path of length i+ 1
from a head to v if and only if not v’s neighbor has a path of length i to
a head. We have dom[i](u) = ⊥, ∀u ∈ Nv. So dom[i+1](v) = ⊥.
Let w be the head having the largest identifier such that there is a path
of length i+1 from w to v. v has a neighbor, denoted by u, on its path to
w. As OrdinaryPr(i) is verified, dom[i](u) = idw, and dom[i](u′) ≤ idw
for any node u′ ∈ Nv. So dom[i+1](v) = idw. �

Theorem 1. Let c be a terminal configuration. In c, any ordinary node
u has a head in its k-neigborhood.

Proof. We will prove that if an ordinary node has not a head in its k-
neigborhood then the configuration c is not terminal.
In c, for all i ∈ [1, k], the property OrdinaryPr(i) is verified according
to the lemma 1 and to the lemma 2. Let u be an ordinary node without
any head in its k-neighborhood. So there is not path of length lesser than
k + 1 between u and a head. We have dom[i](u) = ⊥, ∀i ∈ [0, k]. So the
predicate ¬resignation(u)∧headToUpdate(u) is verified in c. The node
u can perform the rule RE or the rule RU. �

6

The following theorem establishes that the set of heads is a distance-k
independent set.

Theorem 2. Let c be a terminal configuration. In c, a head has not head
in its k-neigborhood.

Proof. We will prove that if a head has a head in its k-neigborhood then
the configuration c is not terminal.
Let wrongHeadSet the set of heads having one or several heads are
in their k-neigborhood. Assume that wrongHeadSet is not empty. v1
denotes the node of wrongHeadSet having the smallest identifier. v2
denotes the closest head to v1, and d denotes the distance between v1
and v2. We have 0 < d ≤ k. According to the property OrdinaryPr(d),
dom[d](v1) ≥ idv2. So, in the configuration c, the predicate resignation(v1)∧
ordinaryToUpdate(v1) is satisfied. The node v1 can perform the rule RR
or the rule RU. �

5 Termination of the protocol FID

In this section, we prove that all maximal computations under the unfair
distributed scheduler are finite by reductio ad absurdam arguments.

5.1 dom[0] values

Assume that a node or several nodes modify infinitely often their value of
dom[0]. We named Set+ the set of nodes that infinitely often modify the
value of dom[0]. We denoted by u+ the node of Set+ having the largest
identifier.

Let e2 be the suffix of e1 in which no node having a larger identifier than
u+’s identifier modifies the value of dom[0].
According to the definition of predicate resignation, there is an integer i
such that dom[i](u+) > idu+ infinitely often (at time where u+ becomes
ordinary) and dom[i](u+) ≤ idu+ infinitely often (at time where u+

becomes leader). So u+ has a neighbor named ui−1 such that (i) the value
of dom[i-1](ui−1) is infinitely often greater than idu+ and (ii) the value
of dom[i-1](ui−1) is infinitely often smaller than idu+ . It is possible only
if there is a path of i nodes, ui−1, ui−2, ui−3, ..., u0, such that (i) the value
of dom[i-j](ui−j) is infinitely often greater than idu+ and (ii) the value
of dom[i-j](ui−j) is infinitely often smaller than idu+ with 1 ≤ j ≤ i. So,
the value dom[0](u0) is infinitely often greater than idu+ ; and infinitely

7

often smaller than idu+ . dom[0](u0) can only take two values: ⊥ or idu0 .
As ⊥ is smaller than any identifier value: u0 has a largest identifier than
u+, and u0 changes infinitely often its value of dom[0] during e2.
There is a contradiction. So e2 has a suffix e3 where no node changes its
value of dom[0].

5.2 ∀ 0 < i ≤ k, dom[i] values

Let us name ui a node that modifies infinitely often its value of dom[i]
with 0 < i ≤ k along e3. It is possible only if there is a path of i nodes,
ui−1, ui−2, ui−3, ..., u0, such that the value of dom[i-j](ui−j) changes in-
finitely often, for 1 ≤ j ≤ i. So, the value of dom[0](u0) changes infinitely
often along e3. There is a contradiction: ∀0 < i ≤ k, no node modifies
infinitely often its value of dom[i].

We have established that e3 has a suffix e4 where all tables dom[] have
their final values. Any rule action by a node v modifies a value of its table
dom[]. So, a terminal configuration is reached.

6 Convergence time

In this section, we establish that the convergence time is at most 4n+ k
rounds.

Lemma 3. The size of a distance-k independent set is at most M =
max(b2n/(k + 2)c, 1).

Proof. Let I be a k-independent set such that |I| > 1. Let v be a node of
I. We denote by closest(v) the set of nodes closer to v than any other
node of I.
Notice that

⋃
w∈I closest(w) ⊂ V and closest(v) ∩ closest(u) =

∅, ∀(u, v) ∈ I2. Let u be the closest node to v that belongs to I. Let
x be node on the path from v to u such that 0 ≤ dist(v, x) ≤ bk/2c. Let
w be a node of I other than v. We have dist(w, x) > k−dist(v, x) ≥ bk/2c
because k < dist(w, v) ≤ dist(v, x) + dist(x,w). So, closest(v) contains
the first bk/2c + 1 nodes in the path from v to u. We conclude that
|I| ≤ b(2n)/(k + 2)c. �

Notation 2 Set0 = ∅; Vi = V − Seti; vhi is the node of Vi having
the largest identifier; Seti+1 = Seti ∪ k-neighborhood(vhi) ∪ {vhi};
Ti = 2i(k + 1).

8

For all nodes u, after the first round, the value of dom[0](u) is the identi-
fier of a V ’s node; this will stay true along the computation. For all nodes
u, after the second round, the value of dom[1](u) is also the identifier of
a V ’s node; this will stay true along the computation.
So, for all nodes u, after the k+1 first rounds, the table dom[](u) contains
only V ’s identifier; this will stay true along the computation.
After one more round, vh0, the node having the largest identifier, vh0, is a
head. It will stay a head along the computation (because resignation(vh0)
is never verified). After k more rounds, all nodes of k-neighborhood(vh0),
are and will stay ordinary because they verify forever resignation.
So after the first T1 = 2(k + 1) first rounds, the nodes of Set1 have their
final status (ordinary or head).

After Ti + k+ 1 rounds, for all l ∈ [0, k], we have dom[l](ui) ∈ Vi for any
node ui of Vi. This will stay true along the computation. So, after one
more round, vhi is a head; and it will stay a head.
After k more rounds, all nodes of k-neighborhood(vhi), are and will stay
ordinary (because they verify forever resignation).
So after the first Ti+1 = 2(k + 1) + Ti first rounds, the nodes of Seti+1

have their final status (ordinary or head).

The set HX = {v | ∃i such that v = vhi} is a distance-k independent
set. So VM = ∅.
We conclude that after at most the first 2n < TM < 4n first rounds, all
nodes have their final status (ordinary or head). After k more rounds, in
any node, the table dom[] has its final values.

References

1. E. Caron, A. K. Datta, B. Depardon, and L. L. Larmore. self-stabilizing k-clustering
algorithm for weighted graphs. Journal of Parallel and Distributed Computing,
70:1159–1173, 2010.

2. A. Datta, S. Devismes, and L. Larmore. A self-stabilizing O(n)-round k-clustering
algorithm. In 28th IEEE Symposium on Reliable Distributed Systems (SRDS’09),
pages 147–155, 2009.

3. A. K. Datta, L. L. Larmore, S. Devismes, K. Heurtefeux, and Y. Rivierre. Compet-
itive self-stabilizing k-clustering. In IEEE 32th International Conference on Dis-
tributed Computing (ICDCS’12), pages 476–485, 2012.

4. A. K. Datta, L. L. Larmore, S. Devismes, K. Heurtefeux, and Y. Rivierre. Self-
stabilizing small k-dominating sets. International Journal of Networking and Com-
puting, 3(1):116–136, 2013.

9

5. A. K. Datta, L. L. Larmore, and P. Vemula. A self-stabilizing O(k)-time k-clustering
algorithm. The Computer Journal, 53(3):342–350, 2010.

6. A. Larsson and P. Tsigas. A self-stabilizing (k,r)-clustering algorithm with multiple
paths for wireless ad-hoc networks. In IEEE 31th International Conference on Dis-
tributed Computing Systems, (ICDCS’11), pages 353–362. IEEE Computer Society,
2011.

7. A. Larsson and P. Tsigas. Self-stabilizing (k,r)-clustering in clock rate-limited sys-
tems. In 19th International Colloquium Structural Information and Communication
Complexity, (SIROCCO’12), Springer, LNCS 7355, pages 219–230, 2012.

10

	Fast self-stabilizing k-independent dominating set constructionThis work was partially supported by the ANR project Displexity. Labri Technical Report RR-1472-13

