Fast self-stabilizing k-independent dominating set construction

Colette Johnen

To cite this version:

Colette Johnen. Fast self-stabilizing k-independent dominating set construction. 2013. hal-00839357v2

HAL Id: hal-00839357
https://hal.science/hal-00839357v2
Submitted on 1 Oct 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract. We propose a fast silent self-stabilizing building a k-independent dominating set, named FID. The convergence of protocol FID is established for any computation under the unfair distributed scheduler. FID reaches a terminal (also legitimate) configuration in at most $4n + k$ rounds, where n is the network size. FID requires $(k + 1)\log(n + 1)$ bits per node.

keywords distributed computing, fault tolerance, self-stabilization, k-independent dominating set, k-dominating set, k-independent set

1 Introduction

In this paper, we consider the problem of computing a distance-k independent dominating set in a self-stabilizing manner in case where $k > 1$. A nodes set is a distance-k independent dominating set if and only if this set is a distance-k independent set and a distance-k dominating set. A set I of nodes is distance-k independent if every node in I is at distance at least $k + 1$ to any other node of I. A set of nodes D is distance-k dominating if every node not belonging to D is at distance at most k of a node in D. We propose a very simple and fast protocol, called FID. The protocol FID reaches a terminal configuration in at most $4n + k$ rounds, where n is the network size. FID requires $(k + 1)\log(n + 1)$ bits per node. The obtained distance-k independent dominating set contains at most $\lfloor 2n/k + 2 \rfloor$ nodes.

Related Works. Silent self-stabilizing protocols building distance-k dominating set are proposed in [51]. These protocols do not build a k-independent set.

In [67], Larsson and Tsigas propose self-stabilizing (l,k)-clustering protocols under various assumptions. These protocols ensure, if possible, that each node has l cluster-heads at distance at most k from itself.

* This work was partially supported by the ANR project Displexity.
In [2], a silent self-stabilizing protocol extracting a minimal distance-
\(k \)-dominating set from any distance-
\(k \)-dominating set is proposed. A minimal distance-
\(k \)-dominating set has no proper subset being a distance-
\(k \)-dominating set. The protocol converges in \(O(n) \) rounds, it requires at
least \(O(k \cdot \log(n)) \) bits per node.

The paper [4] presents a silent self-stabilizing protocol building a small
distance-
\(k \)-dominating set: the obtained dominating set contains at most
\(\lfloor n/(k+1) \rfloor \). The protocol of [4] converges in \(O(n) \) rounds, it requires
\(O(\log(n) + k \cdot \log(n/k)) \) bits per node. The protocol of [3] builds competitive
\(k \)-dominating sets: the obtained dominating set contains at most
\(1 + \lfloor (n-1)/(k+1) \rfloor \) nodes. The protocol of [3] converges in \(O(n) \) rounds, it
requires \(O(\log(2k \cdot 2(\Delta+1) \cdot 2n \cdot D)) \) bits per node, where \(D \) is the network
diameter, and \(\Delta \) is a bound on node degree. The protocols of [3,4] use
the hierarchical collateral composition of several silent self-stabilizing pro-
tocols whose a leader election protocol and a spanning tree construction
rooted to the elected leader. So their convergence time are larger than
\(4n + k \) rounds.

The presented protocol is simple: no use of the hierarchical collateral
composition, no need of leader election process, neither the building of
spanning tree. Therefore, the protocol \(\mathcal{FID} \) is fast.

2 Model and Concepts

A distributed system \(S \) is an undirected graph \(G = (V, E) \) where the
vertex set, \(V \), is the set of nodes and the edge set, \(E \), is the set of commu-
nication links. A link \((u, v) \in E \) if and only if \(u \) and \(v \) can directly com-
municate (links are bidirectional); so, the node \(u \) and \(v \) are neighbors. \(N_v \)
denotes the set of \(v \)'s neighbors: \(N_v = \{ u \in V \mid (u, v) \in E \} \). The distance
between the nodes \(u \) and \(v \) is denoted by \(\text{dist}(u, v) \). The set of nodes
at distance at most \(k \) of a node \(v \) is denoted by \(k\text{-neighborhood}(v) = \{ u \in V \mid \text{dist}(u, v) \in [1, k] \} \).

**Definition 1 (distance-
\(k \)-independent dominating set).** Let \(D \) be a
subset of \(V \); \(D \) is a **distance-
\(k \)-dominating set** if and only if \(\forall v \in V \setminus D \) we have \(k\text{-neighborhood}(v) \cap D \neq \emptyset \). Let \(I \) be a subset of \(V \); \(I \) is a
**distance-
\(k \)-independent set** if and only if \(\forall u \in I \) we have \(k\text{-neighborhood}(u) \cap I = \emptyset \). A subset of \(V \) is a distance-
\(k \)-independent dominating set if this
subset is a distance-
\(k \)-dominating set and a distance-
\(k \)-independent set.

To every node \(v \) in the network is assigned an identifier, denoted by
\(id_v \). Two distinct nodes have distinct identifier. It is possible to order the
identifier values. The symbol \perp denotes a value smaller than any identifier value in the network.

Each node maintains a set of shared variables. A node can read its own variables and those of its neighbors, but it can modify only its variables. The state of a node is defined by the values of its local variables. The cartesian product of states of all nodes determines the configuration of the system. The program of each node is a set of rules. Each rule has the form: Rule$_i$: $<$ Guard$_i$ $>$ \rightarrow $<$ Action$_i$ $>$. The guard of a v’s rule is a boolean expression involving the state of the node v, and those of its neighbors. The action of a v’s rule updates v’s state. A rule can be executed by a node v only if it is enabled, i.e., its guard is satisfied by the node v. A node is said to be enabled if at least one of its rules is enabled.

A configuration is terminal, if and only if no node can execute a rule. During a computation step from a configuration one or several enabled nodes perform simultaneously an action to reach another configuration. A computation e is a sequence of configurations $e = c_0, c_1, ..., c_i, ...$, where c_{i+1} is reached from c_i by a single computation step, $\forall i \geq 0$. A computation e is maximal if it is infinite, or if it reaches a terminal configuration.

Definition 2 (Silent Self-Stabilization). Let \mathcal{L} be a predicate on the configuration. A distributed system S is a silent self-stabilizing system to \mathcal{L} if and only if (1) all terminal configurations satisfy \mathcal{L}; (2) all computations reach a terminal configuration.

Stabilization time. We use the round notion to measure the time complexity. The first round of a computation $e = c_1, c_2, c_3, ...$ is the minimal prefix $e_1 = c_1, c_2, c_3, ...$ such that every enabled node in c_1 either executes a rule or it is neutralized during a computation step of e_1. A node v is neutralized during a computation step if v is disabled in the reached configuration.

Let e' be the suffix of e such that $e = e_1e'$. The second round of e is the first round of e', and so on.

The stabilization time is the maximal number of rounds needed by any computation from any configuration to reach a terminal configuration.

3 The protocol FID

The protocol FID, presented in protocol 1, builds a distance-k independent dominating set.
Notation 1 A node \(v \) is a head if \(\text{dom}[0](v) = id_v \); otherwise it is an ordinary node.

Once the network is stabilized, any ordinary node \(v \) has in its \(k \)-neighborhood a head having a largest identifier than its own identifier. And, the heads set is a distance-\(k \) independent set.

Protocol 1: \(FTD \): Fast distance-\(k \) independent dominating set construction

Shared variables
- \(\text{dom[\()](v) \) is a table of \(k + 1 \) members. A member is identifier value or ⊥.**

Predicates
- \(\text{resignation}(v) \equiv id_v < \max \{ \text{dom}[i](v) \mid 0 < i \leq k \} \)
- \(\text{toUpdate}(v) \equiv \exists i \in [1, k] \text{ such that } \text{dom}[i](v) \neq \max \{ \text{dom}[i-1](u) \mid u \in N_v \} \)
- \(\text{ordinaryToUpdate}(v) : \text{dom}[0](v) \neq ⊥ \)
- \(\text{headToUpdate}(v) : \text{dom}[0](v) \neq id_v \)

Rules
- \(\text{RU}(v) : \text{toUpdate}(v) \rightarrow \text{for } i \in [1, k] \text{ do } \text{dom}[i](v) := \max \{ \text{dom}[i-1](u) \mid u \in N_v \} ; \)

 if \(\text{resignation}(v) \) then \(\text{dom}[0](v) := ⊥ \); else \(\text{dom}[0](v) := id_v ; \)

- \(\text{RE}(v) : \neg \text{toUpdate}(v) \land \neg \text{resignation}(v) \land \text{headToUpdate}(v) \rightarrow \text{dom}[0](v) := id_v ; \)

- \(\text{RR}(v) : \neg \text{toUpdate}(v) \land \text{resignation}(v) \land \text{ordinaryToUpdate}(v) ; \rightarrow \text{dom}[0](v) := ⊥ ; \)

The value of \(\text{dom}[i](v) \) is \(⊥ \) if there is not a path of length \(i \) from a head to \(v \). Otherwise, the value of \(\text{dom}[i](v) \) is the largest head identifier such that there is a path of length \(i \) from this head to \(v \).

When an ordinary node \(v \) has not a head in its \(k \)-neighborhood then the table \(\text{dom[]} \) in \(v \) does not contain any identifier. Notice that in this case, the predicates \(\neg \text{resignation}(v) \) and \(\text{headToUpdate}(v) \) are verified. So, the node \(v \) can perform the rule \(\text{RE} \) or the rule \(\text{RU} \). Hence, the heads set is a distance-\(k \) dominating set in a terminal configuration.

The predicate \(\text{resignation}(v) \) is verified when the node \(v \) has in its \(k \)-neighborhood a head \(u \) having a larger identifier than \(v \)'s identifier (i.e. \(id_v < id_u \)). If the node \(v \) is a head then the predicate \(\text{ordinaryToUpdate}(v) \) is also verified. In this case, \(v \) can perform the rule \(\text{RR} \) or the rule \(\text{RU} \).
k=4. The head identifiers are underlined. In each node, the value of $\text{dom}[i]$ for $0 \leq i \leq 4$ is indicated except if the value is \perp. The color of a node is the color of the head in its k-neighborhood having the largest identifier.

Fig. 1. A terminal configuration of FID

Therefore, the heads set is a distance-k independent set, in any terminal configuration.

The figure presents the values of the tables $\text{dom}[\cdot]$ in a terminal configuration. The table $\text{dom}[\cdot]$ of node 82 contains the values (\perp, \perp, 70, 80, 90). So, in the node 78, we have $\text{dom}[3] \geq 70$ and $\text{dom}[4] \geq 80$. As $\text{dom}[4] \geq 80$, in the node 78; this node cannot become a head. The nodes 67 knows the existence of the single head in its 4-neighborhood having a larger identifier than its identifier (node 70) because $\text{dom}[3] \geq 70$, in the node 78.

4 Correctness of the protocol FID

In this section, we prove that the set of heads is a distance-k independent dominating set, in every terminal configuration of the FID protocol.
Observation 1 Let \(v \) be a node. In a terminal configuration, \(\text{dom}[0](v) = id_v \lor \text{dom}[0](v) = \bot \).

Definition 3. (OrdinaryPr(i)). For all \(i \in [1, k] \), the property OrdinaryPr(i) is defined as follow: if there is not a path of length \(i \) from a head to the node \(v \) then \(\text{dom}[i](v) = \bot \) otherwise \(\text{dom}[i](v) = id_u \) where \(id_u \) is the largest head identifier having a path to \(v \) of length \(i \).

Lemma 1. In a terminal configuration, the property OrdinaryPr(1) is verified.

Proof. According to observation 1 \(\text{dom}[0](u) \neq \bot \) if and only if \(u \) is a head (\(\text{dom}[0](u) = id_u \)).

Let \(v \) be an ordinary node, in a terminal configuration. If \(v \) has a not a head in its neighborhood then \(\text{dom}[0](u) = \bot, \forall u \in N_v \). So \(\text{dom}[1](v) = \bot \). \(\bot \) is smaller than any identifier value. So, if \(v \) has a head in its neighborhood then \(\text{dom}[1](v) = \max \{id_u \mid u \in N_v \text{ and } \text{dom}[0](u) = id_u \} \).

Lemma 2. Let \(i \) be a positive integer strictly smaller than \(k \). In a terminal configuration, if the property OrdinaryPr(i) is verified then the property OrdinaryPr(i+1) is verified.

Proof. Let \(v \) be an ordinary node, in a terminal configuration in which the property OrdinaryPr(i) is verified. There is not a path of length \(i + 1 \) from a head to \(v \) if and only if not \(v \)'s neighbor has a path of length \(i \) to a head. We have \(\text{dom}[i](u) = \bot, \forall u \in N_v \). So \(\text{dom}[i+1](v) = \bot \).

Let \(w \) be the head having the largest identifier such that there is a path of length \(i + 1 \) from \(w \) to \(v \). \(v \) has a neighbor, denoted by \(u \), on its path to \(w \). As OrdinaryPr(i) is verified, \(\text{dom}[i](u) = id_w \), and \(\text{dom}[i](u') \leq id_w \) for any node \(u' \in N_v \). So \(\text{dom}[i+1](v) = id_u \).

Theorem 1. Let \(c \) be a terminal configuration. In \(c \), any ordinary node \(u \) has a head in its \(k \)-neighborhood.

Proof. We will prove that if an ordinary node has not a head in its \(k \)-neighborhood then the configuration \(c \) is not terminal.

In \(c \), for all \(i \in [1, k] \), the property OrdinaryPr(i) is verified according to the lemma 1 and to the lemma 2. Let \(u \) be an ordinary node without any head in its \(k \)-neighborhood. So there is not path of length lesser than \(k + 1 \) between \(u \) and a head. We have \(\text{dom}[i](u) = \bot, \forall i \in [0, k] \). So the predicate ~resignation(u) \land headToUpdate(u) is verified in \(c \). The node \(u \) can perform the rule RE or the rule RU.
The following theorem establishes that the set of heads is a distance-k independent set.

Theorem 2. Let c be a terminal configuration. In c, a head has not head in its k-neighborhood.

Proof. We will prove that if a head has a head in its k-neighborhood then the configuration c is not terminal.

Let $wrongHeadSet$ the set of heads having one or several heads are in their k-neighborhood. Assume that $wrongHeadSet$ is not empty. v_1 denotes the node of $wrongHeadSet$ having the smallest identifier. v_2 denotes the closest head to v_1, and d denotes the distance between v_1 and v_2. We have $0 < d \leq k$. According to the property OrdinaryPr (d), $\text{dom}[d](v_1) \geq id_{v_2}$. So, in the configuration c, the predicate $\text{resignation}(v_1) \wedge \text{ordinaryToUpdate}(v_1)$ is satisfied. The node v_1 can perform the rule RR or the rule RU.

\[\square \]

5 **Termination of the protocol \mathcal{FID}**

In this section, we prove that all maximal computations under the unfair distributed scheduler are finite by reductio ad absurdum arguments.

5.1 **dom[0] values**

Assume that a node or several nodes modify infinitely often their value of $\text{dom}[0]$. We named Set^+ the set of nodes that infinitely often modify the value of $\text{dom}[0]$. We denoted by u^+ the node of Set^+ having the largest identifier.

Let e_2 be the suffix of e_1 in which no node having a larger identifier than u^+'s identifier modifies the value of $\text{dom}[0]$. According to the definition of predicate resignation, there is an integer i such that $\text{dom}[i](u^+) > id_{u^+}$ infinitely often (at time where u^+ becomes ordinary) and $\text{dom}[i](u^+) \leq id_{u^+}$ infinitely often (at time where u^+ becomes leader). So u^+ has a neighbor named u_{i-1} such that (i) the value of $\text{dom}[i-1](u_{i-1})$ is infinitely often greater than id_{u^+} and (ii) the value of $\text{dom}[i-1](u_{i-1})$ is infinitely often smaller than id_{u^+}. It is possible only if there is a path of i nodes, $u_{i-1}, u_{i-2}, u_{i-3}, ..., u_0$, such that (i) the value of $\text{dom}[i-j](u_{i-j})$ is infinitely often greater than id_{u^+} and (ii) the value of $\text{dom}[i-j](u_{i-j})$ is infinitely often smaller than id_{u^+} with $1 \leq j \leq i$. So, the value $\text{dom}[0](u_0)$ is infinitely often greater than id_{u^+}; and infinitely
often smaller than \(id_{u^+}. \dom[0](u_0) \) can only take two values: \(\perp \) or \(id_{u_0} \). As \(\perp \) is smaller than any identifier value: \(u_0 \) has a largest identifier than \(u^+ \), and \(u_0 \) changes infinitely often its value of \(\dom[0] \) during \(e_2 \). There is a contradiction. So \(e_2 \) has a suffix \(e_3 \) where no node changes its value of \(\dom[0] \).

5.2 \(\forall 0 < i \leq k, \dom[i] \) values

Let us name \(u_i \) a node that modifies infinitely often its value of \(\dom[i] \) with \(0 < i \leq k \) along \(e_3 \). It is possible only if there is a path of \(i \) nodes, \(u_{i-1}, u_{i-2}, u_{i-3}, ..., u_0 \), such that the value of \(\dom[i-j](u_{i-j}) \) changes infinitely often, for \(1 \leq j \leq i \). So, the value of \(\dom[0](u_0) \) changes infinitely often along \(e_3 \). There is a contradiction: \(\forall 0 < i \leq k \), no node modifies infinitely often its value of \(\dom[i] \).

We have established that \(e_3 \) has a suffix \(e_4 \) where all tables \(\dom[] \) have their final values. Any rule action by a node \(v \) modifies a value of its table \(\dom[] \). So, a terminal configuration is reached.

6 Convergence time

In this section, we establish that the convergence time is at most \(4n + k \) rounds.

Lemma 3. The size of a distance-\(k \) independent set is at most \(M = \max([2n/(k+2)], 1) \).

Proof. Let \(I \) be a \(k \)-independent set such that \(|I| > 1 \). Let \(v \) be a node of \(I \). We denote by \(\text{closest}(v) \) the set of nodes closer to \(v \) than any other node of \(I \).

Notice that \(\bigcup_{w \in I} \text{closest}(w) \subset V \) and \(\text{closest}(v) \cap \text{closest}(u) = \emptyset, \forall (u,v) \in I^2 \). Let \(u \) be the closest node to \(v \) that belongs to \(I \). Let \(x \) be node on the path from \(v \) to \(u \) such that \(0 \leq \text{dist}(v, x) \leq [k/2] \). Let \(w \) be a node of \(I \) other than \(v \). We have \(\text{dist}(w, x) > k - \text{dist}(v, x) \geq [k/2] \) because \(k < \text{dist}(w, v) \leq \text{dist}(v, x) + \text{dist}(x, w) \). So, \(\text{closest}(v) \) contains the first \([k/2] + 1 \) nodes in the path from \(v \) to \(u \). We conclude that \(|I| \leq \lfloor (2n)/(k+2) \rfloor \). ■

Notation 2 \(Set_0 = \emptyset; V_i = V - Set_i; vh_i \) is the node of \(V_i \) having the largest identifier; \(Set_{i+1} = Set_i \cup k\text{-neighborhood}(vh_i) \cup \{vh_i\}; \) \(T_i = 2i(k+1) \).
For all nodes \(u \), after the first round, the value of \(\text{dom}[0](u) \) is the identifier of a \(V \)’s node; this will stay true along the computation. For all nodes \(u \), after the second round, the value of \(\text{dom}[1](u) \) is also the identifier of a \(V \)’s node; this will stay true along the computation.

So, for all nodes \(u \), after the \(k+1 \) first rounds, the table \(\text{dom}[\cdot](u) \) contains only \(V \)’s identifier; this will stay true along the computation.

After one more round, \(\nu_0 \), the node having the largest identifier, \(\nu_0 \), is a head. It will stay a head along the computation (because \(\text{resignation}(\nu_0) \) is never verified). After \(k \) more rounds, all nodes of \(k\text{-neighborhood}(\nu_0) \), are and will stay ordinary because they verify forever \(\text{resignation} \).

So after the first \(T_1 = 2(k+1) \) first rounds, the nodes of \(\text{Set}_1 \) have their final status (ordinary or head).

After \(T_i + k + 1 \) rounds, for all \(l \in [0,k] \), we have \(\text{dom}[1](u_i) \in V_i \) for any node \(u_i \) of \(V_i \). This will stay true along the computation. So, after one more round, \(\nu_i \) is a head; and it will stay a head.

After \(k \) more rounds, all nodes of \(k\text{-neighborhood}(\nu_i) \), are and will stay ordinary (because they verify forever \(\text{resignation} \)).

So after the first \(T_{i+1} = 2(k+1) + T_i \) first rounds, the nodes of \(\text{Set}_{i+1} \) have their final status (ordinary or head).

The set \(HX = \{v \mid \exists i \text{ such that } v = \nu_i\} \) is a distance-\(k \) independent set. So \(V_M = \emptyset \).

We conclude that after at most the first \(2n < T_M < 4n \) first rounds, all nodes have their final status (ordinary or head). After \(k \) more rounds, in any node, the table \(\text{dom}[\cdot] \) has its final values.

References

