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Resonance-assisted tunnelling is investigated within the framework of one-dimensional integrable
systems. We present a systematic recipe, based on Hamiltonian normal forms, to construct one-
dimensional integrable models that exhibit resonance island chain structures with accurately con-
trolled sizes and positions of the islands. Using complex classical trajectories that evolve along
suitably defined paths in the complex time domain, we construct a semiclassical theory of the
resonance-assisted tunnelling process. This semiclassical approach yields a compact analytical ex-
pression for tunnelling-induced level splittings which is found to be in very good agreement with
the exact splittings obtained through numerical diagonalisation.
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I. INTRODUCTION

In quantum theory, the term tunnelling defines clas-
sically forbidden processes – i.e. which cannot be de-
scribed by real solutions of Hamilton’s equations of mo-
tion – and was originally employed to characterize tran-
sitions which were forbidden by energy barriers. It has
been thereafter extended to dynamical tunnelling which
refers to any quantum transition between two classically
distinct regions in phase space [1, 2] where the inhibi-
tion of a classical transition between these two regions
is not necessarily restricted to the constraint of energy
conservation. Indeed, focusing first on the simple case of
integrable systems with one degree of freedom, the devel-
opment of semiclassical techniques [3] have permitted a
deeper qualitative and quantitative understanding of tun-
nelling in terms of classical trajectories. In particular, its
complete semiclassical description requires, in addition
to real orbits, to take into account also complex classical
trajectories [4, 5]. For instance, studying scattering phe-
nomena involved in chemical reactions, Freed [6], George
and Miller [7, 8] incorporated complex orbits, evolving
along suitable paths in the complex time domain, in or-
der to compute the Green function G(qf , qi, E) giving rise
to the tunnelling transmission with an energy E below
the top of a potential barrier.

A few years later, Coleman [9] (see also Ref. [10]) de-
veloped an approach suited for the simplest bounded sys-
tems, where tunnelling is generally identified in the spec-
trum as small splittings between doublets of nearly de-
generate discrete eigenergies. In the context of field the-
ories, he introduced the notion of instantons which cor-
responds to classical solutions of the Hamilton dynamics
once a Wick rotation t → −it has been performed. For

systems with the standard form of the Hamiltonian

H(p, q) =
p2

2
+ V (q), (1)

where p and q are the canonical variables, this transfor-
mation on the time leads to an inversion of the potential
V (q) → −V (q). The classical trajectories in the new po-
tential allow to evaluate quantum observables associated
with the lowest energies (ground-state doublet or mul-
tiplet), such as the frequency of oscillation between an
arbitrary number of identical minima, or the decay rate
of a metastable state that is initially defined in a local
minimum of the potential and decays via the coupling to
a continuum of unbounded states.
The method has been recently generalized [11], using

again the idea of a suitably parametrized complex time
path, in order to embrace more general situations in-
volving, e.g., an arbitrary energy and/or Hamiltonians
not necessary of the form (1). For instance, resonant
tunnelling, which has been widely investigated in one-
dimensional (1D) open systems with two consecutive bar-
riers [12–14], is thus explained in terms of constructively
interfering repetitions of complex orbits. This is shown
for the simple case of a triple-well potential where the
presence of a deeper middle well (which prevents the ap-
plication of the standard instanton techniques based on
the complete Wick rotation recalled above) can create gi-
ant fluctuations of the tunnelling period between the two
symmetric outer wells [15], namely whenever a third en-
ergy level, associated with a state that is localized in this
middle well, comes close to a doublet that is associated
with the two outer wells.
If the number of the degrees of freedom exceeds one,

we generically deal with non-integrable Hamiltonians
whose phase space contains regular islands foliated with
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Kolmogorov-Arnold-Moser (KAM) tori and surrounded
by chaotic seas. In that case, tunnelling is drastically
modified and yields erratic fluctuations (by several or-
ders of magnitude) of the associated rates and time scales
when varying a parameter of the system [16, 17]. These
fluctuations have the same origin in the quantum spec-
trum as the ones observed in the one-dimensional reso-
nant case. However, the appearance of natural bound-
aries [18] prevents the analytical continuation of the in-
variant classical KAM tori into the complex plane of the
classical phase space, and the methods at work for one-
dimensional systems fail. Despite some important break-
throughs in that direction during the last decades [19–
21], a full semiclassical description in terms of complex
classical structures is still missing. On the other hand, a
considerable effort has been made to combine, within a
perturbative framework, statistical descriptions of chaos-
assisted tunnelling due to the influence of the classical
chaotic sea [21–23] with the theory of resonance-assisted
tunnelling (RAT) [24–29] that is based on the presence
of nonlinear resonances within the regular regions. This
approach has been shown to provide rather accurate
semiclassical predictions of quantum tunnelling rates in
kicked model systems [29].

In this paper, we present and discuss a semiclassi-
cal formula for resonance-assisted tunnelling splittings in
one dimensional integrable systems that exhibit a pair
of symmetric regions of bounded motion in the classical
phase space, each of them being surrounded by a reso-
nant island chain. The study of such models is clearly
inspired by the recent idea to mimic regular regions of
mixed systems with a fictitious integrable approximation
in order to predict regular-to-chaotic tunnelling [30, 31],
although we are not aiming here at approximating a given
non-integrable system by such a model. Instead, our
motivation is to obtain a fully semiclassical (and non-
perturbative) description of resonance-assisted tunnelling
through the analytical continuation of invariant classical
manifolds to the complex domain, which is permitted by
the integrability of the Hamiltonian. This will allow us to
understand how the island chains in the phase space are
at work to create fluctuations in the tunnelling-induced
level splittings when varying a parameter of the system,
and what are the semiclassical conditions for resonant
tunnelling.

The paper is organized as follows. In section II, we con-
struct a class of models that fulfil the classical properties
mentioned above using the theory of Hamiltonian nor-
mal forms. Section III is dedicated to the computation of
tunnelling splittings. In Subsection III B, we shall inves-
tigate the complex manifold of our integrable model and
identify the relevant complex classical trajectories, de-
fined along well-suited complex time paths, that give rise
to a semiclassical formula [Eq. (21) below] for resonance-
enhanced level splittings. The perturbative RAT method
is then applied to our system in Subsection III C and com-
pared with the complex paths approach. We discuss the
validity of the two methods in both limits of small and

large sizes of the island chains.

II. THE MODEL

A. Normal form theory

The Hamiltonian normal forms in classical mechan-
ics [32, 33] have been originally developed by Birkhoff [34]
and extended by Gustavson [35] with the aim to classify
the classical dynamics in the neighbourhood of the peri-
odic orbits in non-integrable systems with several degrees
of freedom. This classification relies on canonical equiva-
lence and provides the simplest (local) form of the Hamil-
tonian where the only terms that are kept are those that
are sufficient to supply the intrinsic “skeleton” of the dy-
namics, i.e. those terms that cannot be eliminated by a
canonical transformation because they genuinely encap-
sulate the geometrical features of the dynamics. Hamil-
tonian normal forms have helped later on to predict the
quantum energy spectra of such systems [36, 37].
Normal form approaches are based on the combination

of Fourier and Taylor expansions of the non-integrable
Hamiltonian in the neighbourhood of a periodic orbit.
Order by order, beyond the quadratic terms, a sequence
of canonical transformations can be explicitely built to
eliminate all terms but the resonant ones. The latter
may give rise to divergencies manifesting in the above
construction procedure, which is well-known as the prob-
lem of small denominators. Those resonant terms inhibit
the integration of systems of ordinary differential equa-
tions, and generally the procedure to obtain an accurate
approximation of the dynamics does not converge, which
is a signature of the non-integrability of the system. Nev-
ertheless, this procedure enables one to extract some es-
sential information about the fine structure of the phase
space as it provides a description not only of the regular
part but also of the resonant layout where chaos emerges
from, thereby leading to the simplest local integrable ap-
proximation of the system.
Specifically, let us consider an autonomous system

with two degrees of freedom (or a periodically time-
dependent system with one degree of freedom) depending
of one control parameter ǫ. In the neighbourhood of a
non-degenerate stable orbit, a transverse coordinate sys-
tem (p, q) in the so-called Poincaré surface of section can
be chosen [38] such that the transverse dynamics is gov-
erned by a Hamiltonian whose normal form is given by
(see Ref. [38] for an exhaustive and systematic study on
this matter)

h(ℓ)(p, q; ǫ) =
ω(ǫ)

2
(p2 + q2) +

⌊ℓ/2⌋
∑

k=2

ak(ǫ)(p
2 + q2)k

+ bℓ(ǫ)Re[(p+ iq)ℓ] + higher order terms , (2)

where ω, {ak} and bℓ are real parameters, ⌊·⌋ denotes the
integer part, and the index ℓ ≥ 3 represents the order of
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the first angle-dependent resonant term occuring in the
expansion. It can be rewritten in terms of the action-
angle variables I = (p2 + q2)/2 and θ = tan−1(q/p) asso-
ciated with the one-dimensional harmonic oscillator:

h̃(ℓ)(I, θ; ǫ) = ω(ǫ)I +

⌊ℓ/2⌋
∑

k=2

ak(ǫ)(2I)
k

+ bℓ(ǫ)(2I)
ℓ/2 cos (ℓθ) + higher order terms . (3)

It is straightforward to see that the resonant term creates,
for appropriate values of the parameters, an island chain
of ℓ islands in the transverse dynamics around the origin
(p, q) = (0, 0) where the periodic orbit of the 2D system
intersects the Poincaré surface of section.

B. The Hamiltonian

Let us rewrite the normal form (2) as

h(ℓ)(p, q)
def
= h

(ℓ)
0 (p2 + q2) + v(ℓ)(p, q) (4)

with

h
(ℓ)
0 (I)

def
= a1I +

⌊ℓ/2⌋
∑

k=2

ak(2I)
k , (5a)

v(ℓ)(p, q)
def
= Re [b(p+ iq)ℓ] , (5b)

where the {ak} are real parameters and b ≡ |b| exp (iφ) is
a complex parameter. From now on, we consider h

(ℓ)
0 to

be the unperturbed part while v(ℓ) has to be understood
as a perturbation. Starting from h(ℓ), we construct a
doubly periodic system by performing the substitution
(p, q) 7→ (cos p, cos q). For a suitable choice of {ak} and b,
a lattice of main islands tiles the 2π-periodic (in both p
and q) phase space of the new Hamiltonian

H(ℓ)(p, q)
def
= h(ℓ)(cos p, cos q) , (6)

each of these islands being surrounded by a (ℓ : 1) res-
onant chain. We then restrict H(ℓ)(p, q) to the torus
[−π, π]× [−π, π] enclosing four elementary cells centered
at (p, q) = (±π/2,±π/2), as illustrated in Fig. 2. While
the modulus |b| controls the size of the island chains, we
can tune the relative orientation of the main islands by
smoothly rotating the (ℓ : 1) resonances via the phase φ
(see Fig. 2).
Focusing now on the simplest case ℓ = 4 [53], we obtain

a model with (4 : 1) resonances:

h(p, q)
def
= h(4)(p, q) , (7)

=
a1
2
(p2 + q2) + a2(p

2 + q2)2 +Re [b(p+ iq)4] .

The Hamiltonian that we shall work with is given by

H(p, q)
def
= H(4)(p, q) = H0(p, q) + V (p, q) , (8a)

Figure 1: Graph of (p, q) 7→ H(p, q) on the fundamental do-
main [−π, π]×[−π, π] where H is given by Eq. (8) with a1 = 1,
a2 = −0.55, φ = 0 and (a) b = 0 ; (b) |b| = 0.05.

q

π−π
−π

c) d) πφ=π p

a) b) φ=π/2φ=0

φ=3π/4

Figure 2: Phase space of the Hamiltonian (8) with a1 = 1,
a2 = −0.55, |b| = 0.05 for different values of the phase (a) φ =
0, (b) φ = π/4, (c) φ = π/2, (d) φ = π.

with

H0(p, q) =
a1
2
(cos2 p+ cos2 q) + a2(cos

2 p+ cos2 q)2 ,

(8b)

V (p, q) = |b|
{

(cos4 p+ cos4 q − 6 cos2 p cos2 q) cosφ

−4(cos3 p cos q − cos3 q cos p) sinφ
}

.(8c)

Choosing a1 > 0 and a2 < 0, the energy profile (p, q) 7→
H(p, q) exhibits four symmetric volcano-like patterns
within the torus [−π, π]× [−π, π], each one having a lo-
cal minimum located at the center (±π/2,±π/2) of the
corresponding elementary cell and four identical maxima
situated along the crown of the volcanos (see Fig. 1).
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III. TUNNELLING SPLITTINGS

A. Quantum mechanics

For bounded Hamiltonians H(p, q) with a two-fold
symmetry, the spectrum is made of discrete energies E±

n

which can be classified according to their parity (±).
They are determined from the stationary Schrödinger
equation

H(p̂, q̂) |φ±
n 〉 = E±

n |φ±
n 〉 (9)

(with p̂ and q̂ denoting the momentum and position op-
erator, respectively) where the natural integer n sorts the
corresponding eigenstates |φ±

n 〉 which form an orthonor-
mal basis. In the limit ~ → 0 (when Planck’s constant
is much smaller than the classical phase space areas),
the association of the quantum states |φ±

n 〉 with classical
phase space structures can be visualized using the semi-
classical Wigner or Husimi distributions [39–41]. In the
case of regular classical dynamics, the states are sharply
localized (up to order O(~)) along invariant tori in the
classical phase space.
For instance, in the simple case of a 1D Hamiltonian of

the standard form (1) with a potential V (q) that exhibits
two symmetric local minima, the eigenstates |φ±

n 〉 with
energiesE±

n below the top of the barrier between the min-
ima are mainly localized on symmetric tori in the wells
characterized by the classical energy En ≃ E+

n ≃ E−
n . A

quantum state that is given by the symmetric or anti-
symmetric linear combination of the eigenstates |φ±

n 〉 is
no longer stationary, but gives rise to oscillations from
one well to the other with the period τ = 2π~/∆En

where ∆En
def
= |E−

n − E+
n | is the splitting of the levels

E±
n in the spectrum. This splitting represents, for both

integrable and non-integrable bounded systems, a char-
acteristic signature of tunnelling between two classically
separated regions in the phase space.
The Hamiltonian Ĥ of our quantum model is de-

rived from a straightforward quantization of the classical
model (8) with the simple symmetrization rule

f(p)g(q) 7→ 1

2

[

f(p̂)g(q̂) + g(q̂)f(p̂)
]

(10)

for the product of two functions f(p) and g(q) [42, 43].
From the quantization of (8), the periodicity of the
Hamiltonian allows us to use the Floquet-Bloch theorem
and to restrict, for integer values of 2π/~, the analy-
sis to the finite-dimensional Hilbert space H spanned by
strictly periodic eigenstates in both position and momen-
tum on the torus [−π, π]× [−π, π].
As we see in Fig. 2, two independent two-fold sym-

metries are relevant in our model. It is natural to as-
sociate these two symmetries with the antiunitary op-
erators Π̂q and Π̂p that perform mirror operations with
respect to the p and q axes, respectively, and that are de-
fined through Π̂qf(p̂, q̂)Π̂q = f(p̂,−q̂) and Π̂pf(p̂, q̂)Π̂p =
f(−p̂, q̂) for any function f of the canonical operators p̂

and q̂. Obviously, Π̂p is the standard time reversal opera-

tor, while Π̂q is the time reversal operator composed with

the usual unitary parity operator. By construction, Π̂q,

Π̂p, and Ĥ mutually commute with each other. However,
the time reversal invariance of the Hamiltonian cannot be
exploited to discriminate among its eigenstates; it only
allows one to choose the latter to be entirely real. This
particular phase convention fixes the spectrum of Π̂q to
be identical to the spectrum of the parity operator, such
that we can classify the eigenstates of the Hamiltonian
according to their parity: Π̂q |φ±

n 〉 = ± |φ±
n 〉.

In contrast to conventional double well systems, how-
ever, the eigenenergies associated with the four main is-
lands within the unit cell are organized in quartets, and
the parity alone is not sufficient to unambiguously specify
the doublet whose level splitting is determined by tun-
nelling along, say, the q direction. To lift this ambiguity,
we numerically construct four states |±,±〉 from the local
n-th excited harmonic oscillator eigenstates |R/L,U/D〉
that are centered at (q, p) = (±π/2,±π/2) [with L (R)
referring to the left (right) column and U (D) to the up-
per (lower) row within the unit cell depicted in Fig. 2],
namely through

|++〉 def
=

1

2

(

|RU〉+ |LU〉+ |LD〉+ |RD〉
)

; (11a)

|−+〉 def
=

1

2

(

|RU〉 − |LU〉 − |LD〉+ |RD〉
)

; (11b)

|+−〉 def
=

i

2

(

|RU〉+ |LU〉 − |LD〉 − |RD〉
)

; (11c)

|−−〉 def
=

i

2

(

|RU〉 − |LU〉+ |LD〉 − |RD〉
)

. (11d)

Being eigenstates of the parity operator (with the eigen-
values 1 for |++〉 and |−−〉, and −1 for |+−〉 and |−+〉)
[54], these states closely mimic the quartet of eigenstates
of the Hamiltonian that are localized within the centres
of the four islands. In order to focus on tunnelling along
the q direction, we therefore select those two eigenstates
of Ĥ that have a maximal numerical overlap with |++〉
and |−+〉.

B. Semiclassical theory

By construction of the Hamiltonian (8a), the unper-
turbed case b = 0 gives rise to a tunnelling problem
that is equivalent to the one of a symmetric 1D dou-
ble well system. This scenario has been intensively in-
vestigated using JWKB analysis in order to connect two
approximated eigenstates, the so-called quasimodes, each
of them being localised on a distinct real torus [44, 45].
Up to a prefactor of order 1, the level splitting ∆En as-
sociated with the doublet at energy En is essentially de-
termined as [46, 47]

∆En ∼
~→0

~ωne
−Σ(En)/(2~) , (12)
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where ωn is the frequency of classical oscillation on the
torus with energy En within the left or right well, and
Σ(En) is the imaginary action of a closed complex path
that connects the two symmetric tori.
The simplest bounded model inducing quantum reso-

nances can be obtained [15] for a Hamiltonian of the form
(1) with a potential V that has three wells, two symmet-
ric outer ones, say, that are separated by a deeper central
well. In such a system, resonant tunnelling arises due to
the constructive interference of classical paths that are
bouncing back and forth between the two tunnelling bar-
riers. It was shown in Ref. [11] that these relevant or-
bits can be obtained from a suitable complex time path
s 7→ Re t(s) + i Im t(s) where, unlike for a pure Wick
rotation, both the real and the imaginary part of the
complex time are necessary to concatenate the primitive
orbits that constitute the complex trajectories. For the
resonance-assisted tunnelling problem presented by the
model (8) with b 6= 0, we shall, in the same spirit, in-
troduce a generic type of concatenated complex paths
that connect two real symmetric tori inside the main is-
land of each cell. This set of orbits will be used to pre-
dict tunnelling splittings between states that are localized
within these islands. For a given real parametrization
s 7→ t(s) of a complex time path, it can be easily shown
[11, § III.A], using the analyticity of the Hamiltonian H
with respect to (p, q, t), that the complex Hamiltonian
equations

dp

ds
= −∂H

∂q

dt

ds
; (13a)

dq

ds
=

∂H

∂p

dt

ds
(13b)

are equivalent to the set of real Hamiltonian equations

d(Re q)

ds
=

∂

∂(Re p)

[

Re

(

H
dt

ds

)]

; (14a)

d(Im q)

ds
=

∂

∂(− Im p)

[

Re

(

H
dt

ds

)]

; (14b)

d(Re p)

ds
= − ∂

∂(Re q)

[

Re

(

H
dt

ds

)]

; (14c)

d(− Im p)

ds
= − ∂

∂(Im q)

[

Re

(

H
dt

ds

)]

, (14d)

that describes the evolution of a system with the four real
canonical variables (Re p,− Im p) and (Re q, Im q) under
the Hamiltonian Re[H(dt/ds)].
In our case of resonance-assisted tunnelling, we start

from an initial point (pi, qi) ≡
(

p(si), q(si)
)

at time
ti ≡ t(si) on a real inner torus Γin inside the eye of one of
the two main islands and choose a time path t(s) with the
shape of a descending staircase as sketched in Fig. 3. This
time path is not restricted to lie all along the imaginary
axis as imposed by the theory of instantons. Instead,
it successively evolves along the real and imaginary di-
rections (characterized by a real and imaginary dt/ds,

-3 -2 -1  0  1  2  3
 0

 1

 2

 3
 0

 0.4

 0.8

 1.2

Im p

Re p

Re q

C Γ′
inΓin

ρout

Γ′
out

C ′C̃

ρ̃out ρ′inρinρi

ρf

Γout

ρ̃′outρ′out

Im t(s)

0

Re t(s)

T

Figure 3: Phase space of the Hamiltonian (8) (black lines), for
a1 = 1, a2 = −0.55, |b| = 0.05 and φ = π/4, plotted together
with two different complex trajectories at energy E ≃ 0.035
that connect an arbitrarily chosen initial point ρi ≡ (pi, qi)
on the real torus Γin with an arbitrarily chosen final point
ρf ≡ (pf , qf ) on the symmetric counterpart Γ′

in (both tori are
plotted in green). The (red and yellow) arcs are half of the

complex orbits (ii) C, C′, and (iv) C̃ described in the text.
Together with the connecting pieces of Γout and Γ′

out, they
consitute a complex trajectory that results from the time path
depicted in the upper right inset. The blue line is a complex
orbit lying on a part of the complex manifold that directly
connects the symmetric tori Γin and Γ′

in (see figure 4). These
two trajectories are plotted in a reduced three-dimensional
complex phase space spanned by (Re p,Re q, Im p).

respectively), such that the complex trajectory ends, af-
ter a time T , at the final point (pf , qf ) on the real torus
Γ′
in that corresponds to the counterpart of Γin in the sym-

metric island. The freedom in the choice of t(s) can be
justified from the fact that the semiclassical contribu-
tions to tunnelling, as obtained through the stationary
phase approximation of the time propagator G(qf , qi, T ),
arise from action integrals along complex classical tra-
jectories that join qi and qf in a time T and fulfil the
equations (14). McLaughlin showed [48] that these in-
tegrals are independent of the time path t(s) as long as
no bifurcations of trajectories are encountered while de-
forming the path, and as long as Im t(s) does not increase
with s in order to guarantee the boundedness of any in-
termediate evolution operator.

Tuning properly the length of the stairs as we depict
in Fig. 3, complex trajectories can be then described as
a continuous concatenation of pieces of the following dis-
tinct orbits:

(i) the two symmetric real periodic orbits lying on the
inner tori Γin and Γ′

in with the real energy E, the real
period Tin(E) = T ′

in(E), and the real action Sin(E) =
S′
in(E);

(ii) the two symmetric complex periodic orbits C and
C′ with the imaginary period iTc(E) = iT ′

c
(E) and the

imaginary action iσc(E) = iσ′
c
(E) with σc(E) > 0, which



6

connect the real inner tori Γin and Γ′
in with the outer

ones Γout and Γ′
out, respectively;

(iii) the two symmetric real periodic orbits lying on the
outer tori Γout and Γ′

out with the real period Tout(E) =
T ′
out(E) and the real action Sout(E) = S′

out(E) > 0;

(iv) a complex periodic orbit C̃ defined on the com-
plex manifold that connects the outer tori Γout and Γ′

out,
with the imaginary action iσ̃c(E) with σ̃c(E) > 0 and the

imaginary period iT̃c(E).
The closed orbits (i) – (iv) are geometrical objects with

the property that the values of the associated actions do
not depend on the choice of the canonical coordinates.
Those actions are given in the (p, q)-representation by

Sin(E) =

∮

Γin

Re p d(Re q) ; (15a)

Sout(E) =

∮

Γout

Re p d(Re q) ; (15b)

σc(E) =

∮

C

[Re p d(Im q) + Im p d(Re q)] ; (15c)

σ̃c(E) =

∮

C̃

[Re p d(Im q) + Im p d(Re q)] . (15d)

For the two last actions, the contours can be continu-
ously deformed according to Cauchy’s theorem as long
as no singularities of the transformation q 7→ p(q, E) are
crossed (see figure 4).
Starting first with a portion of real time (dt/ds > 0),

the trajectory evolves from the initial point ρi ≡ (pi, qi)
along the torus Γin until it reaches a certain point
ρin. Then the time varies along the imaginary direction
(idt/ds > 0), driving the trajectory into the complex do-
main until it reaches again the real phase space, namely
at the point ρout on the outer torus Γout. The length
of this time step is equal to |Tc(E)/2| such that only a
half of the closed orbit C is followed in order to reach
the outer torus. Another portion of real time is again
spent to evolve on the real torus Γout and reach the real
point ρ̃out. Then again, thanks to an imaginary time step
with the length |T̃c(E)/2|, the trajectory evolves on the

complex manifold and joins, after a half of a loop C̃, the
torus Γ′

out at a point ρ̃′out on the other side of the main
separatix delimiting the two main islands. By symme-
try, this procedure is repeated to connect consecutively
the real phase-space points ρ′out and ρ′in (for simplicity
they can be taken as the symmetric partners of ρout and
ρin, respectively, though this is not necessary) and finally
ρf ≡ (pf , qf ). Invoking again Cauchy’s theorem, the ex-
act location of ρin, ρout, ρ

′
in, and ρ′out on the real plane

is not important as long as no singularity is encountered
when moving them along the corresponding real tori (see
Fig. 4)
We now use the different parts of the generic complex

trajectory we have just described in order to split the
tunnelling process up into two main steps, namely (I)
to cross the separatrices that delimit the resonant chains
and (II) to pass over the separatrix structure that divides
the two main islands.

Figure 4: Visualization of the complex manifold associated
with a pair of inner real tori Γin, Γ

′

in and the corresponding
outer real tori Γout, Γ

′

out at energy E ≃ 0.035 (all the four are
plotted with thick green lines) for the Hamiltonian (8) with
a1 = 1, a2 = −0.55, and (a) |b| = 0.05, φ = π/2; (b) |b| =
0.05, φ = 3π/4; (c) |b| = 0.001, φ = π/4. An exemplary set of
complex orbits starting from different initial points on Γin and
Γout is projected onto the real phase space (using the same
color code as in Fig. 3), in order to illustrate the topology of
this complex manifold. While there are two distinct families
of (orange) complex orbits that connect the outer real tori
of the two islands in (b), only the lower family (at p < π/2)
contributes to the tunneling process as its imaginary action
is significantly smaller than the one of the upper family (at
p > π/2).

(I) From its very construction, the global Hamiltonian
(8a) can be approximated by the normal form (7) in the
neighbourhood of (q, p) = (±π/2, π/2) and rewritten in
action-angle coordinates using the canonical transforma-
tion (p = π/2 +

√
2I cos θ, q = ±π/2 +

√
2I sin θ) with

I > 0 and θ ∈ [0, 2π]. This finally yields a modified
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mathematical pendulum

Hloc(I, θ) = K0 +
(I − Iℓ:1)

2

2mℓ:1
+ 2V (I) cos (ℓθ + φℓ:1) ,

(16)
which is parametrized by coefficients that are given by
the parameters of the exact global Hamiltonian:

K0 = −a21/(16a2) , Iℓ:1 = −a1/(8a2) , (17a)

φℓ:1 = φ , mℓ:1 = 1/(8a2) , V (I) = 2|b|I2 . (17b)

This pendulum structure provides a dynamical tunnel
coupling between the inner torus Γin and the outer torus
Γout.
To describe this tunnelling process by means of the

JWKB theory, we represent the global quasimode |Ψ〉 lo-
calized on the quantized torus Γin, which is characterized
by the energy En and the oscillation period Tin(En) in
angle representation as [25, Appendix C]

Ψ(θ) ≃ 1
√

Tin(En)|θ̇|

[

eiSin(θ,En)/~ +AT e
i[Sout(θ,En)/~+µ]

]

(18)

where θ̇ denotes the time derivative of the angle coor-
dinate. The additional phase µ comes from the consis-
tency with Langer connection formulas [49] and is re-
lated to the Maslov index counting the number of caus-
tics encountered along the classical trajectory with the

corresponding real action Sin(θ, En) =
∫ θ

0
I(θ′, En)dθ

′

where I(θ′, En) indicates the action coordinate along the
torus Γin. By construction, the action over a period,
which is given by Eq. (15a), is quantized according to
Sin(En) ≡ Sin(2π,En) = 2π~(n + 1/2). On the other
hand, the torus Γout on the outer side of the resonance
chain, with the action Sout(En) given by Eq. (15b), is
not a priori quantized and thus Sout(En)/(2π~)− 1/2 is
not an integer in general. The coupling amplitude AT ,
which characterizes the tunnelling-induced admixture of
the component associated with Γout to the quasimode on
the inner torus Γin, can then be evaluated as [25]

AT =
e−σc(En)/(2~)

2 sin [(Sin(En)− Sout(En))/(2ℓ~)]
, (19)

where the half of the imaginary action iσc(En) of the
closed loop C defined by (15c) is involved.
(II) We now make use of the part of the trajectory that

connects the outer torus Γout, which has the same energy
E = En as Γin, to its symmetric counterpart Γ′

out in the
other cell. Replacing within Eq. (12) Σ by the action

of the closed orbit C̃ and ωn by the frequency ωout of
the outer tori, and taking into account the periodicity of
our system (which gives rise to an additional factor two
in the splitting formula as compared to simple double-
well tunnelling), we evaluate the level splitting associated
with the tori Γout and Γ′

out at the energy E due to direct
tunnelling across the main separatrix as

δE(E) =
2~ωout

π
e−σ̃c(E)/(2~). (20)
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Figure 5: (Color online) Quantum and semiclassical level
splittings ∆En plotted in a semilogarithmic scale versus the
integer N ≡ π/(2~) for the Hamiltonian (8) with a1 = 1,
a2 = −0.55, |b| = 0.05 for the following phases and levels (a)
φ = 0, n = 0; (b) φ = π/2, n = 0; (c) φ = 3π/4, n = 0; (d)
φ = π, n = 0; (e) φ = 3π/4, n = 1; (f) φ = 3π/4, n = 2. The
(black) dots represent the exact numerical results while the
(blue) solid lines show the predictions obtained by the semi-
classical formula (21) [52]. The (red) dashed line is the per-
turbative RAT prediction obtained with the expression (22)
which does not depend on φ. The diagonal straight lines (plot-
ted in magenta) correspond to the unperturbed semiclassical
prediction (12) while the (magenta) dots on top show the ex-
act splittings for the case b = 0. The dips in the unperturbed
splittings around N ≃ 3, 9, 15 respectively for n = 0, 1, 2 arise
when the unperturbed quantized torus is located right on the
crown of the volcanos. In that case, the classical frequency of
the torus vanishes and, as a consequence, Eq. (12) predicts a
vanishing level splitting.

Collecting the results (19) and (20), we obtain as a key
statement of our paper the semiclassical prediction

∆En = |AT |2δE(En) (21)

for the level splitting associated with the states |φ±
n 〉 [25].

By symmetry, one needs to take into account twice the
first step, leading to the square of the transmitted am-
plitude AT .

C. Comparison and discussion

A comparison of the formula (21) with the exact split-
tings, which are obtained through numerical diagonalisa-
tion, yields a very good agreement as is shown in Figs. 5
and 6. Peaks appear in the splitting whenever the de-
nominator of AT vanishes, that is to say when Γout is
a EBK quantized torus with a quantum number ñ that
satisfies ñ = n+ νℓ with integer ν. In that case, the area
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Figure 6: (Color online) Quantum and semiclassical level
splittings ∆E0 associated with the eigenstates that are most
strongly localized on the centres of the four symmetric is-
lands, for the Hamiltonian (8) with a1 = 1, a2 = −0.55,
|b| = 0.05. The splittings are plotted versus the phase φ for
different values of N ≡ π/(2~) = 22 (upper left panel), 23 (up-
per right panel), 24 (lower left panel), 27 (lower right panel).
The (black) dots represent the exact numerical results while
the (blue) solid lines are the semiclassical predictions obtained
from Eq. (21).

Sout(En)−Sin(En) enclosed by the two tori Γin and Γout

corresponds to exactly νℓ Planck cells of size 2π~.

For finite values of the perturbation strength |b|, the
rotation angle φ of the classical resonant chains clearly
influences the splittings, which exhibit a symmetry axis
at φ = π as shown in Fig. 6. Indeed, this behaviour
can be explained in terms of complex paths. Keeping
in mind the local pendulum approximation (16), the real
tori and the complex orbits C, C′ that cross the resonance
chains are not appreciably affected by a variation of φ
which essentially corresponds to a rotation of the reso-
nance structures in the phase space. Correspondingly,
the peaks observed in the splittings remain globally at
the same position when φ is varied (although they may
be shifted a bit, see the upper right panel of Fig. 6).

On the other hand, the imaginary action of the orbit C̃
that crosses the main separatrix between the islands is
significantly modified under variation of φ. As one can
indeed see in Fig. 4, the complex “bridge” (plotted in or-
ange) that connects the two outer symmetric tori of the
main islands is shifted farther away from the horizontal
symmetry axis as φ is increased, which is naturally ac-
companied by an increase of the corresponding imaginary
action. This is responsible for the drastic decrease of the
splitting (by three orders of magnitude for N ∼ 25 as is
seen in Fig. 6) as φ is varied from 0 to π.

It is instructive to compare the exact splittings and
their semiclassical prediction also with the perturbative
theory of resonance-assisted tunnelling (RAT), which was
first introduced for 1D time-periodic Hamiltonians in the

quasi-integrable regime [24, 25] and later on extended to
mixed regular-chaotic systems [26, 28, 50]. Following the
derivation described in Appendix A, the level splitting
associated with the eigenstates |φ±

n 〉 of the Hamiltonian
is given by

∆En = ∆E(0)
n +

kc
∑

k>0

|Bn,kℓ|2∆E
(0)
n+kℓ , (22)

with ℓ ≡ 4 and

Bn,kℓ =

k
∏

p=1

An+pℓ,n+(p−1)ℓ

E
(0)
n − E

(0)
n+pℓ

; (23)

An+pℓ,n+(p−1)ℓ = 2|b|eiφ~pℓ/2
√

(n+ pℓ)!

[n+ (p− 1)ℓ]!
,(24)

where the E
(0)
n+pℓ denote the unperturbed energies (i.e.

for b = 0) and

∆E
(0)
n+kℓ ≃

2~ω
(0)
n+kℓ

π
e−σ

(0)
n+kℓ

/2~ (25)

the unperturbed splittings. The latter are determined
through a numerical evaluation of the oscillation frequen-

cies ω
(0)
n+kℓ and the imaginary actions σ

(0)
n+kℓ associated

with the unperturbed invariant tori at energy E0. Using
the quadratic approximation (A3), one notices that the
denominators of the coefficients (23) are proportional to
the quantized action variables of the unperturbed system:

(E
(0)
n − E

(0)
n+pℓ) ∝ (In − In+pℓ)(In + In+pℓ − 2Iℓ:s). The

coupling between the unperturbed states |n〉 and |n+ pℓ〉
is therefore maximized when the quantized tori In and
In+pℓ are symmetrically located with respect to the res-
onant island chain which is approximately localized at
Iℓ:s. This then leads to significant local enhancements of
the splittings.
However, the above formulation of the perturbative

RAT theory does not account for a modification of the

imaginary actions σ
(0)
n+kℓ due to the presence of the res-

onance chain. While this approximation is well justi-
fied in generic near-integrable systems which generally
exhibit perturbatively small resonance chains [24, 25], it
fails in our special case of integrable resonance-assisted
tunnelling with macroscopically large resonance islands.
As is seen in Fig. 5, the perturbative RAT predictions are
still in approximate agreement with the exact splittings
for φ = 0, while they drastically overestimate the latter
for φ = π.
Let us finally discuss the interplay of resonance-

assisted tunnelling with direct tunnelling in the deep per-
turbative regime. With decreasing |b|, the splittings are
less and less sensitive to a variation of the phase φ and the
resonance peaks become less and less pronounced. Direct
tunnelling becomes the dominant mechanism in the limit
|b| → 0, and the splittings display a purely exponential
decrease with 1/~, which can be evaluated as

δE(d)
n =

2~ωin

π
e−Σ(En)/(2~), (26)
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Figure 7: (Color online) Quantum and semiclassical level
splittings ∆E0 associated with the eigenstates that are most
strongly localized on the centres of the four symmetric is-
lands, for the Hamiltonian (8a) with the parameters a1 = 1,
a2 = −0.55 and |b| = 0.001, plotted versus N ≡ π/(2~)
for φ = π/4 (left panel) and φ = 3π/4 (right panel). The
(black) dots represent the exact results, the dark (blue) solid
lines correspond to the resonance-assisted semiclassical split-
tings obtained with the semiclassical formula (21), and the
light (green) straight lines show the direct splittings given by
Eq. (26). The effect of the resonance is significantly reduced
as compared to Fig. 5, and the splittings do no longer display
systematic variations as a function of the rotation angle φ.

where iΣ(En) [with Σ(En) > 0] is the imaginary action
of the complex manifold (plotted in blue in Fig. 4) that
directly connects the real tori Γin and Γ′

in, and ωin is the
frequency of those two tori. In the limit |b| → 0, the ac-
tion iΣ(En) coincides with the unpertubed one iΣ(0)(En)

and hence δE
(d)
n approaches the unperturbed splittings

∆E
(0)
n .

In the context of the RAT theory, Löck et al [28] de-
veloped a quantitative criterion providing, for a given
strength of the perturbation, the characteristic value ~res
of Planck’s constant that separates the “direct” regime
(~ > ~res) in which direct tunnelling dominates from the
“resonance-assisted” regime (~ < ~res) in which the rel-
evant mechanism is resonance-assisted tunnelling. This
criterion is given by the equality

(∆Aℓ:s)
2

ℓ~resAℓ:s

√

√

√

√

∆E
(0)
n+ℓ(~res)

∆E
(0)
n (~res)

1

(~res/~peak)− 1
=

256

π
, (27)

where ∆Aℓ:s = 16
√
2mℓ:sVℓ:s is the area covered by the

island chain [26] as derived from the pendulum approx-
imation (16), Aℓ:s = 2πIℓ:s is the area enclosed by the
approximate resonant torus of the unperturbed system,
and ~peak is the value of Planck’s constant at which
the first peak in the splittings ∆En appears. Using
~peak ≡ π/(2Npeak) with Npeak ≃ 13.5(, 20, 26.25) for
the level n = 0(, 1, 2), as extracted from Figs. 5 and 7,
we obtain Nres ≡ π/(2~res) ≃ 9(, 12, 14) for |b| = 0.05
and Nres ≡ π/(2~res) ≃ 13 for |b| = 0.001, which is in
rather good agreement with Figs. 5 and 7, respectively.

IV. CONCLUSIONS

In summary, we discussed a semiclassical theory
of resonance-assisted tunnelling in integrable systems,
which is based on the analytic continuation of the invari-
ant classical tori of the system to the complex domain.
To this end, we showed how to construct a class of 1D
integrable Hamiltonians, based on the normal form the-
ory, that exhibit islands of bounded motion surrounded
by chains that mimic the resonance structures arising
in Poincaré sections of non-integrable systems. We then
studied tunnelling between two symmetric islands in such
integrable systems. Our semiclassical theory, which is es-
sentially expressed by Eqs. (19) and (21), is found to re-
produce the numerically computed tunnelling splittings
with rather good accuracy. In contrast to the standard
implementation of the RAT theory which is based on
quantum perturbation theory, Eqs. (19) and (21) pro-
vide reliable predictions of level splittings also in the
non-perturbative regime characterized by rather well-
developed resonance island chains. In that case, a ro-
tation of the resonance chain with respect to the main
separatrix of the system may have a significant impact
on the tunnelling rates of the system, due to the associ-
ated displacement of the invariant manifolds that cross
the separatrix and govern direct tunnelling outside the
resonance chain.

Even though a full derivation of our semiclassical the-
ory is not presented here, the similarity of Eqs. (19) and
(21) with the analytical expression for the level splittings
in a triple-well potential derived in Ref. [11] [see Eq. (66)
there] suggests that our main result (21) could eventually
be recovered using the semiclassical framework developed
in Ref. [11] [see Eq. (40) there]. Indeed, we expect that
the resonance peaks observed in the splittings arise due
to constructive Fabry-Pérot type interferences between
topologically distinct complex trajectories that connect
the two islands via the periodic orbits introduced in Sec-
tion III B, which are frequented with distinct repetitions.
The main difficulty in establishing such a semiclassical
framework in the spirit of Ref. [11] comes from the selec-
tion of the class of complex orbits that brings the main
contribution. For a Hamiltonian of the form (1), the
restriction to complex periodic orbits along which one
canonical variable remains purely real provides a useful
help. However, an analogous restrictive criterion is not
known to us for the resonance-assisted tunnelling prob-
lem under consideration.

Through recursive application of the basic principle of
resonance-assisted tunnelling, one may expect to derive
a generalized semiclassical expression for level splittings
between islands that contain R > 1 different (ℓr : sr)
island chains for r = 1, . . . , R. Such a semiclassical ex-
pression is expected to be of the form

∆En =

[

R
∏

r=1

∣

∣A(ℓr:sr)
T (~)

∣

∣

2

]

δE(En) , (28)
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where δE(En) is the direct splitting (20) associated with
the outermost torus involved in this multi-resonance
transition process. In the perturbative regime, the in-

dividual coupling amplitudes A(ℓr :sr)
T (~) can be approxi-

mately evaluated using a local pendulum approximation
for each (ℓr : sr) resonance chain (see also Eq. (76) in
Ref. [25]). However, there is no guarantee that this ap-
proach remains valid in the presence of nonperturbatively
large resonance chains. A careful investigation of the
complex manifolds will be required in that case in order
to determine which type of complex paths are relevant
depending on the relative size of the chains with respect
to Planck’s constant.
Finally, our theory may provide a useful starting point

for developing a quantitative semiclassical description of
tunnelling also in nonintegrable systems that exhibit a
mixed regular-chaotic phase space structure. In analogy
with the perturbative RAT study of Ref. [28], resonance-
assisted transitions will, in that case, have to be com-
bined with direct regular-to-chaotic tunnelling [30] for
which a fully semiclassical theory in terms of complex
paths was recently presented in Ref. [51]. It seems
straightforward to incorporate the effect of nonlinear
resonances into this latter semiclassical framework of
Ref. [51], in order to extend its applicability to the deep
semiclassical regime in which resonances generically play
a role.
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Appendix A: Theory of resonance-assisted

tunnelling for 1D integrable systems

In this appendix, we review the main steps of the
perturbative approach to describe resonance-assisted
tunnelling (RAT) applied to the simple case of one-
dimensional integrable Hamiltonians. In analogy with
the procedure described in Ref. [29] (see also Refs. [24, 25,
28]), we start with a 1D time-independent Hamiltonian
H(p, q) (which is assumed to be an analytical function in
p and q) that exhibits in the phase space two main sym-
metric regions, each of them surrounded by one ℓ:s res-
onant island chain. Approximate action-angle variables
(I, θ), which result from (p, q) via a canonical transforma-

tion, can be defined locally within each of the two regions.
Their time evolution is governed by a Hamiltonian of the
form

H(I, θ) = H0(I) + V (I, θ) (A1)

[for the sake of simplicity, we shall keep the same nota-
tion H(·, ·) for both the (p, q) and the (I, θ) representa-
tions], where the angle-dependent perturbation V (I, θ) is
responsible for the generation of the resonant chain. We
now expand the perturbation as a Fourier series

V (I, θ) =

∞
∑

j=1

2Vj(I) cos (jℓθ + φj) , (A2)

and perform a harmonic approximation of the angle-
independent part of the Hamiltonian near the resonant
chain,

H0(I) ≃ H0(Iℓ:s) +
(I − Iℓ:s)

2

2mℓ:s
+O[(I − Iℓ:s)

3] , (A3)

where Iℓ:s is the action variable at the resonance and
1/mℓ:s ≡ d2H0/dI

2 at I = Iℓ:s. By definition, the fre-
quency of oscillations Ω ≡ dH0/dI vanishes at the res-
onance. Combining Eqs. (A2) and (A3) [and omitting
the constant H0(Iℓ:s)], H(I, θ) is reduced to a modified
generalised pendulum of the form

Hpend(I, θ)
def
=

(I − Iℓ:s)
2

2mℓ:s
+

∞
∑

j=1

2Vj(I) cos (jℓθ + φj) .

(A4)
Treating V (I, θ) as a small perturbation, one can now

apply the time-independent quantum perturbation the-
ory. Using the eigenstates |n〉 (with n ∈ N0) of the oper-

ator Î = −i~∂/∂θ̂ which fulfil

Î |n〉 = In |n〉 = ~(n+ 1/2) |n〉 , (A5)

H0(Î) |n〉 = E(0)
n |n〉 , (A6)

one can notice that V̂ (Î , θ̂) induces only couplings be-
tween the unperturbed states |n〉 and |n+ jℓ〉 through
the matrix elements

An+jℓ,n
def
= 〈n+ jℓ|Hpend(Î , θ̂) |n〉 . (A7)

In this basis, the true eigenstates of Hpend(Î , θ̂) can be
approximated by the following expression

|Ψn〉 ≃ |n〉+
∑

k

An+kℓ,n

E
(0)
n − E

(0)
n+kℓ

|n+ kℓ〉

+
∑

k,k′

An+kℓ,n+k′ℓ

E
(0)
n − E

(0)
n+kℓ

An+k′ℓ,n

E
(0)
n − E

(0)
n+k′ℓ

|n+ kℓ〉+ · · · .

(A8)

As the perturbation is analytic, one can safely assume
that the coefficients Vj(I) decrease exponentially with
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j [25]. This property is used in Ref. [25] to show that
the coupling between |n〉 and |n+ kℓ〉 via the k-steps
process involving the matrix elements An+ℓ,n, An+ℓ,n+2ℓ,
. . . , An+(k−1)ℓ,n+kℓ is generally much stronger than the
direct coupling via the matrix element An+kℓ,n. This
allows us thus to retain only the first term j = 1 in
Eq. (A4) and to reduce the Hamiltonian to a modified
mathematical pendulum

H(I, θ) ≃ (I − Iℓ:s)
2

2mℓ:s
+ 2V1(I) cos (ℓθ + φ1) . (A9)

The perturbed eigenstates can thus be expressed as

|Ψn〉 ≃ |n〉+
∑

k>0

Bn,kℓ |n+ kℓ〉 , (A10)

with

Bn,kℓ =

k
∏

p=1

An+pℓ,n+(p−1)ℓ

E
(0)
n − E

(0)
n+pℓ

. (A11)

The next step is to evaluate the coefficients Vj(I).
Using the analyticity of H(p, q), one can define a lo-
cal canonical transformation (p, q) 7→ (P,Q) such that

exp (±ijθ) = [(Q ∓ iP )/
√
2I]j . In the new coordinates,

the perturbation (A2) reads

V (P,Q) =

∞
∑

j=1

Vj(I)

(2I)jℓ/2
[(Q− iP )jℓeiφj + (Q+ iP )jℓe−iφj ] ,

(A12)
where the Vj(I) must be at least of order Ijℓ/2 to be con-
sistent with the normal form theory described in § II A.
Making the assumption that Vj(I) = vjI

jℓ/2, we obtain

V (P,Q) =
∞
∑

j=1

vj
2jℓ/2

[(Q− iP )jℓeiφj + (Q+ iP )jℓe−iφj ] .

(A13)

The corresponding quantum operators (P̂ , Q̂) can be ex-
pressed in terms of the ladder operators (â, â†) that are
associated with the eigenstates |n〉 through the relations

â =
1√
2
(Q̂+ iP̂ ) ; (A14)

â† =
1√
2
(Q̂− iP̂ ) . (A15)

Using these relations in the quantization of the pertur-
bation (A13), the matrix elements (A7) become finally

An+jℓ,n = vj~
jℓ/2eiφj

√

(n+ jℓ)!

n!
. (A16)

In our case, this expression does not represent an approx-
imation since the action dependence Vj(I) = vjI

jℓ/2 of
the perturbation is, as shown Sec. II B, imposed by the
construction procedure of the Hamiltonian through the
framework of normal forms.
Coming back to the original Hamiltonian H(p̂, q̂), one

can define in each symmetric well two distinct quasi-
modes |ΨL

n〉 and |ΨR
n 〉 that are constructed on the sym-

metric tori with the energy En. This energetic de-
generacy is lifted due to tunnelling between the wells,
and the level splitting ∆En is evaluated as the cou-
pling matrix element between the quasimodes: ∆En =
〈ΨL

n |H(p̂, q̂) |ΨR
n 〉. Using Eqs. (A10), (A11) and (A16),

the splitting for an arbitrary level can finally be written
as

∆En = ∆E(0)
n +

kc
∑

k=1

|Bn,kℓ|2∆E
(0)
n+kℓ . (A17)

For a standard double well system, we would have

∆E
(0)
n+kℓ ≃

~ω
(0)
n+kℓ

π
e−σ

(0)
n+kℓ

/~ (A18)

as the splitting for the (n + kℓ)-th doublet of the un-
perturbed system H0(p̂, q̂), while an additional factor 2
arises on the right-hand side of Eq. (A18) in our case

of a periodic array of wells. σ
(0)
n+kℓ is the action of the

instanton-like trajectory connecting the two symmetric

tori with energy E
(0)
n+kℓ, and ω

(0)
n+kℓ is the corresponding

oscillation frequency. By construction, the RAT process
may only couple quasi-modes that are localized within
the same region of regular oscillations. The index kcℓ
labels the most highly excited state that can be involved
in a perturbative coupling scheme starting from the n-th
excited state. Defining by A the area one of those regions
(which in Fig. 2 corresponds to the area enclosed by the
separatrices within each cell), we have

kc =

⌊

1

ℓ

( A
2π~

− 2n+ 1

2

)⌋

, (A19)

where ⌊·⌋ stands for the integer part of a real number.
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