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Abstract

The Solvency 2 advent and the best-estimate methodology in future cash-flows valuation lead insurers to fo-

cus particularly on their assumptions. In mortality, hypothesis are critical as insurers use best-estimate laws

instead of standard mortality tables. Backtesting methods, i.e. ex-post modelling validation processes, are

encouraged by regulators and rise an increasing interest among practitioners and academics. In this paper,

we propose a statistical approach (both parametric and non-parametric models compliant) for mortality

laws backtesting under model risk. Afterwards, we’ll introduce a specification risk supposing the mortality

law true in average but subject to random variations. Finally, the suitability of our method will be assessed

within this framework.

Résumé
L’avénement de Solvabilité 2 et de l’évaluation best estimate des flux de trésorerie futurs pour le calcul des

provisions techniques conduit les assureurs à porter une attention toute particulière aux hypothèses utilisées.

C’est particulièrement le cas en matière de lois de mortalité puisque les assureurs sont invités à utiliser des

lois best estimate en lieu et place des tables prudentes imposées par la réglementation. Dans le cadre de la

justification de ces hypothèses, les méthodes de backtesting, c’est à dire de validation ex post des hypothèses

de modélisation, sont mises en avant par le régulateur et sont sujettes à une attention croissante de la part

des professionnels comme des universitaires. Dans cet article, nous proposons une démarche (compatible

avec les modèles de mortalité paramétriques et non paramétriques) articulée autour de tests statistiques

dans le cas d’une loi de mortalité en présence de risque de modèle. Ensuite, un risque de spécification est

progressivement ajouté, supposant que le modèle est correct en moyenne mais que la loi résulte de variations

aléatoires autour de celui-ci. Enfin, nous étudierons la pertinence de la démarche à l’identification d’une

erreur de spécification de la loi de mortalité.
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1 Introduction

An impressive quantitative step has been made these last 25 years in mortality
analysis since the review Pollard (1987). Nowadays, 3 different approaches co-
exist: Expectation where mortality relies on expert predictions, Extrapolation
with statistical regression models (see Booth and Tickle (2008) and Planchet
and Therond (2011) for different reviews) and Explanation which considers
mortality as the result of identified main causes of death (see Tabeau and al.
(1999)) for example).

In practice, the majority of actuarial models for mortality analysis are extrap-
olative. These regression forms can be classified under 3 families: parametric,
semi-parametric and non-parametric. The first set considers that the underly-
ing risk is driven by a finite set of parameters (not being always easy to inter-
pret) and uses graduation (see Haberman and Renshaw (1996)) to fit data. For
example, the classical Makeham-Gompertz model considers that death rates
are the result of an exponentially age-dependent factor and an accidental rest.
In the most recent academic work, models with 3 factors (age, cohort and
period) as generalized Lee Carter (see Tabeau et al. (2002) p.16) are being
developed. Semi-parametric models such as Cox consider that mortality can
be derived from a given hazard function and applied to different population
by parametric extensions. The last category is non-parametric, considering
that dimension of parametric models is insufficient to fit such erratic and un-
expected phenomenon. One can find a review of these specific methods in
Tomas (2012).

If extrapolation is the most used method by practitioners and academics,
the associated Model risk is too largely neglected. A good practice would
challenge underlying hypothesis to historical data as often as possible, that’s
what Backtesting is about. As extrapolation is a statistical approach, the
testing theory should be a good candidate to derive such techniques.

From this finding, the Solvency 2 directive (art. 83, Comparison against ex-
perience) imposes that undertakings develop processes to ensure that Best-
Estimate calculations and underlying hypothesis are regularly compared against
experience. In Life insurance and particularly in annuity computations, mor-
tality models validation is of key importance.

In this context, we consider the following simple question: How does an insurer
verify that his mortality hypothesis are Best-Estimate ? In a first part, a
reminder of mortality analysis and models is provided. These statistical models
are adequate foundations to develop and support testing processes that detects
if prediction errors are the result of sampling variations or an unidentified
trend. According to these models, a first set of tests are reviewed. Among
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these, are presented asymptotic tests such as Wald, Score or Likelihood ratio
and a few Standardized mortality ratio based tests.

Usual tests are defined for finite sets of observations and not usually repeated.
If an insurer repeats such tests on a growing set of data (every month during
3 years for example), the first term error probability converges to one with
the number of repetition if no correction is taken on the significance level.
That’s why a simple method is presented in the third part of this paper. The
backtesting processes are designed to periodically compare observation (i.e.
experience) to hypothesis. Even if this category of tests allows for future ob-
servations to be treated, the total number of trials and the overall significance
level should be fixed in advance. A first numerical application presents how
all these tests perform when the mortality law is actually best-estimate. The
second application is realized under a simulated specification risk.

2 Models & assumptions

In mortality analysis, life time is considered as a positive random variable T .
Considering sufficiently large groups of individuals, mortality risk is assumed
mutualized and mathematical models are employed to describe the global
behavior. Writing S and h the survival and hazard functions respectively, the
probability of death between age x and x+ 1 (i.e. at age x) can be expressed
as in equation 1 (see Planchet and Therond (2011)):

qx = P (T ≤ x+ 1|T > x) = 1− S(x+ 1)

S(x)
= 1− exp

(
−
∫ x+1

x
h(u)du

)
. (1)

If one wants to predict the number of deaths in a population for a fixed period
(without any other causes of population reduction), a minimal segmentation
is needed to obtain homogeneous groups an apply statistical modeling. The
most classical segmentation is to distinguish people by their age. In this case,
the number of deaths Dx at age x among a population of nx individuals is a
binomial random variable. Considering a population between age x1 and xp,
it comes:

∀x ∈ [x1, xp], Dx ∼ B(nx, qx), (2)

in case of annual predictions. For a monthly analysis, annual death rates qx
have to be adapted. In this framework, we consider that population under
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risk is renewed at every time-steps.Considering that death rates are constant
during one year, it’s possible to derive monthly mortality rates as follows:

mqx = 1− mpx = 1− (1− qx)
1
12 , (3)

mqx being the desired monthly death rate. As a convention in this document,
single letters designate vectors over ages (for example, d = (dx1 , ..., dxp) and
the subscript x designate a specific age dx). From a statistical point of view,
all mortality models can be considered as parametric models (Y ,PQ) with Y
the set of all possible observations and P a family of probability distribution
on Y (see Gourieroux and Monfort (1996) for detailed developments). In fact,
previous assumptions can be rewritten as the following model:

MB =
(
Y = Np,PQ = ⊗xpx=x1

B (nx, qx) |q ∈ Q
)
, (4)

with Q = [0, 1]p. If this generic model is well defined, one can find alternatives
in the literature (see Planchet and Therond (2011)) for large portfolios, where
deaths are approximated using the central limit theorem (see equation A.1 in
appendix):

∀x ∈ [x1, xp],
√
nx

q̂x − qx√
qx(1− qx)

L−→ N (0, 1) . (5)

Even though this result is asymptotic (i.e. for large n), it’s commonly used as
the Gaussian law provides ease at use. Again, this new assumption conducts
to the following statistical model:

MG = (Y = Rp,PQ = Np (µ,Σ) |q ∈ Q) , (6)

with ∀x ∈ [x1, xp], µx = nxqx and (Σ)x = nxqx(1 − qx) a diagonal matrix. In
the rest of this paper, we’ll consider the binomial modelMB as it’s exact for
any portfolio size. As S and h are non observable in practice, one can consider
multiple mathematical functions to fit data, leading to different sub-models
(or mortality models). These functions can be parametric (i.e. defined through
different parameters such as age, cohort, period and shape (see Lee Carter 3
factors in Tabeau et al. (2002) for example) or simply assume that mortality
should be "smooth" over ages and apply semi-parametric and non-parametric
methods (see Tomas (2012) for a detailed presentation).

In this paper, both approaches are treated under a global parametric model.
Actually, if one considersMB orMG, the vector of mortality rates q belongs to
the set Q = [0, 1]p, p being the number of ages considered. Specify a mortality
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model can then be interpreted as choosing a subset Γ ∈ Q for mortality rates.
In case of parametric sub-models, the subset can be indexed: ΓΘ = {q(θ)|θ ∈
Θ ∈ Rr}, with q a differentiable function from Θ (the set of parameters)
to Q (corresponding to an explicit hypothesis, see p.570 in Gourieroux and
Monfort (1996)). Now that our framework for mortality models is defined, we
shall present what our backtesting procedure is.

3 Backtesting a mortality law

Backtesting can be defined as an ex-post model validation method. In statis-
tics, this classical problem is addressed as the decision theory (see Gourieroux
and Monfort (1996) or Saporta (2006) for further description). The idea of
such method is to reject a modeling hypothesis if observations are statistically
unlikely (according to a specific confidence level). Historical observations can
be interpreted as a vector d of the possible observations set Y . Supposing that
there exists a true probability distribution P0 ∈ PQ, the backtesting process
developed in this paper is designed as a multidimensional composite test with
null hypothesis H0 = {P0 ∈ PΓ} (the model is adapted) and its alternative
H1 = H̄0. A backtest is then a mapping ξ from the set of observations Y to
{δ0, δ1} where δ0 is the decision of keeping H0 and δ1 it’s opposite (rejecting
the model). Alternatively, tests can be defined by their rejection regionW ∈ Y
as they’re supra.

In case of p > 1 (i.e. multiple ages in the portfolio) and especially for composite
tests, optimality theorems can’t be easily applied (see Gourieroux and Mon-
fort (1996)) which makes nearly impossible to find a uniformly most powerful
test. Our motivation is to present a few and compare their statistical power
against a specification risk. Because insurers generally possess large portfo-
lios, asymptotic tests are of primary interest as they’re convergent and have
asymptotic coverage (definition in Gourieroux and Monfort (1996)).

In practice, it’s difficult to test directly H0 = {P0 ∈ PΓ} in case of non-
parametric models because PΓ is hard to define, our method consists then in
testing whether a predefined set of death probabilities qγ is a Best-estimate
of the underlying mortality law q0 (i.e. H0 = {qγ = q0}) according to obser-
vations d. In its implicit form, the previous hypothesis can be rewritten as
follows H0 = {g(q) = 0} with g(q) = q − qγ a differentiable function from Q
to Rp (useful formulation in practice). In the following, q̂ designates the un-
constrained likelihood estimator of q0 (i.e. ∀x ∈ [x1, xp], q̂x = dx

nx
also known

as gross mortality rates) and L(D, q) the model likelihood function.

Since our motivation is operational, we consider the problematic of an insurer
motivated to compare his experience against hypothesis as often as possible. In
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this case, we consider a mortality portfolio with monthly observations during
3 years (evolution in mortality is neglected during this time). This specific
case is treated in a dedicated section.

3.1 Classical significance tests

In this first part, we apply Likelihood based tests, Standardized Mortality
Ratio (SMR) based tests and Lindeberg’s Central Limit Theorem (see annex
equation A.2) alternative tests to our decision problem. All these statistical
tests suppose a unique trial, repetition being treated in the next section.

3.1.1 Likelihood based tests (Wald, Score and Likelihood ratio)

In the literature, the most classical asymptotic tests are the Wald, Score
and Likelihood ratio. If their formulation differ, they all are convergent, have
asymptotic coverage and are asymptotically equivalent (full developments are
given in Gourieroux and Monfort (1996)). Wald, Score and Likelihood ratio
statistics are all asymptotically chi-squared distributed and defined respec-
tively as ξW , ξS and ξR in this work (notation adopted from Gourieroux and
Monfort (1996)).

In particular, the Wald test ensures that the distance between qγ and q0 is
null (the constraint is verified, g(q̂) = 0). The Wald statistic is the following:

ξW = (q̂ − qγ)tI (q̂) (q̂ − qγ)

=
xp∑

x=x1

nx(q̂x − qγx)2

q̂x(1− q̂x)
.

(7)

ξW can be seen as a quadratic distance, weighted by the estimated Fisher
information. In other words, the more an age has a statistically important
information (in sense of Fisher), the more its distance is considered. The chi-
squared asymptotic law is obtained considering the projection of a quadratic
Gaussian form. It is interesting to remark that a direct application of the
classical CLT (with approximate standard deviation) at each age leads to
a similar result. In this particular case, the chi-square goodness of fit test
statistic with estimated proportions is equal.

The second asymptotic test of this section is the Score test (also known as the
Lagrangian multiplier test). The idea of this test is to verify that the likelihood
function is at maximum (i.e. the Score is null). This method is particularly
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powerful for small deviations. The Score statistic is based on the likelihood
function gradient (i.e. the Score) and is computed thereby:

ξS =
∂ lnL(D, qγ)

∂q

t

I−1(qγ)
∂ lnL(D, qγ)

∂q

=
xp∑

x=x1

nx(q̂x − qγx)2

qγx(1− qγx)
.

(8)

In this case, the Score and the Wald statistics are really close. The main
difference is that the Score uses the true Fisher information under H0 while
Wald considers an estimator, thus the test coverage should converge faster
under H0. Again, the Chi-square is similar for exact proportions.

Finally, the Likelihood ratio test compares the likelihood function in qγ and
q̂. Under H0, this ratio must be close to 1 as one vector should be a good
estimator of the second. The test statistic is the following:

ξR = 2(lnL(q̂)− lnL(q̂γ))

=
xp∑

x=x1

Dx ln

(
q̂

qγ

)
+ (nx −Dx) ln

(
1− q̂
1− qγ

)
.

(9)

All previous statistics are asymptotically chi-square distributed, resulting in
the common following rejection region:

W = {ξ > χ2
1−α(p)}, (10)

p being the number of ages considered in the portfolio, α the level of test
significance and χ2

1−α(p) the chi-square quantile with p-degrees of freedom
and 1− α level.

3.1.2 Standardized Mortality Ratio significance test

The Standardized Mortality Ratio (SMR - see Liddell (1984) and Rosner
(2011)) is defined as the ratio between observed and expected deaths:

SMR =

∑xp
i=x1 Di∑xp

i=x1 E(Di)
. (11)

If one considers that the number of death can be approximated with a Poisson
distribution (assuming a piecewise constant hazard function for example), the
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SMR is Poisson distributed (As a sum of independent Poisson variates). Under
H0, the SMR calculation gives:

SMR =

∑xp
i=x1 Di

λ
, (12)

with λ =
∑xp
i=x1 −ni ln(1− qi). An exact test (i.e. at finite distance or small

portfolios) can be derived (see Liddell (1984)) for the SMR (composite test for
the Poisson distribution parameter). The two-sided test consists in computing
the following p-values distinguishing cases when the SMR is greater than 1
or not. If the SMR is greater than 1 (i.e. D > E, excess of deaths), the test
p-value is:

p = min

[
2

(
1−

D−1∑
k=0

e−λλk

k!

)
, 1

]
, (13)

otherwise:

p = min

[
2

D∑
k=0

e−λλk

k!
, 1

]
. (14)

3.1.3 Lindeberg’s CLT based tests

In this section, we consider asymptotic approximations using Lindeberg’s Cen-
tral Limit Theorem (see annex). Considering the previously defined SMR,
asymptotic results can be obtained for both Binomial and Poisson distribu-
tions. Under H0 and supposing a Poisson distribution the SMR is computed
thereby:

SMR =

∑xp
i=x1 Di

λ
, (15)

with λ =
∑xp
i=x1 −ni ln(1− qi). With these notations, the following statistic is

asymptotically chi-squared distributed (see Rosner (2011) p. 253-254):

ξSMRp = λ (SMR− 1) =

(∑xp
i=x1 Di − λ

)2

λ
. (16)

From this idea, one can release the Poisson hypothesis considering the binomial
distribution, the SMR is then:

SMR =

∑xp
i=x1 Di∑xp
i=x1 niqi

. (17)
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For small death probabilities q, the two different SMR are approximately
equals (see Taylor developments). Then, the following statistic is also asymp-
totically chi-squared distributed:

ξSMRb =

(∑xp
i=x1 Di − niqi

)2

∑xp
i=x1 niqi(1− qi)

. (18)

Finally, the rejection regions are defined as follows:

W = {ξ > χ2
1−α(1)}. (19)

The main difference with the Likelihood based tests seen infra is that the
distance is evaluated for the whole portfolio and not age by age. This fact
provides a better Gaussian approximation (as all individuals are considered
at once) and a faster convergence of the test coverage. This is particularly
important for small portfolios.

3.2 Repeated tests on accumulating data

In this section, we consider the problem of an insurer wanting to test each
month his mortality law. The context is an insurer wanting to periodically
compare his assumptions with experience. In mathematical terms, this method
is known as sequential analysis (first developed in Wald (1947), see Sigmund
(1985) for a more recent review). Every month, the insurer tests a new null
hypothesis mH0 (possibly dependent from previous ones) on the basis of all
observations available. In this paper, two situations are investigated. The first
is based on independent hypotheses resulting from the consideration the cur-
rent month information only. This first process achieve low power due to an
evident loss of information. On the contrary, the second process considers all
available information and gives promising results.

In this paper, the sequential procedure is a repetition of previous tests on vary-
ing set of data. The null hypothesis is rejected at the first monthly hypothesis
rejection mH0 or after the n-th trial. Let’s kd designate deaths occurring during
the k-th period. A pure repetition of previous statistical tests every time-step
increases the overall first term error probability.

As presented in previous section, single tests produce a controlled first type
error probability (may it be asymptotic). For example, the first test on 1d
gives:
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P (ξ(1d) ∈ W ) = α. (20)

If H0 is rejected, the process stops and there are no more opportunities to
have a type 1 error, the test significance is known. On the opposite, if the the
first test isn’t statistically significant, further tests are proceeded. A process
running until the end gives the following overall type 1 error probability (αG,
also called the Family wise error rate):

αG = P (ξ(1d) ∈ W1) + ...

+ P (ξ(1d) 6∈ W1 ∩ ξ(1d, 2d) 6∈ W2... ∩ ξ(1d, ..., nd) ∈ Wn)

= P (ξ(1d) ∈ W1 ∪ ξ(1d, 2d) ∈ W2... ∪ ξ(1d, ..., nd) ∈ Wn),

(21)

clearly higher than α. The most popular method to control (i.e. to specify
an upper bound) this overall first type error probability is the Bonferonni’s
correction, directly derived from Boole’s inequality and assuming equal signif-
icance repartition:

α ≤ αG
n
. (22)

This relation also holds for an unequal significance repartition:

n∑
i=1

αi ≤ αG, (23)

where αi is the i-th test significance level. If this method is highly conserva-
tive, no independence hypothesis between tests is needed. Moreover, this sim-
ple method is applicable without knowing all tests outcomes thus adapted to
chronological approach (in contrast with all methods based on p-values order-
ing see Benjamini and Hochberg (1995)). Still, the process needs a predefined
maximum number of trials and a specific family wise error rate (FWER).

In the specific case of statistics taking only observations of the current month
in account, tests are independent and under equal repartition, the overall first
term error probability is a geometric series of ratio (1− α) and first term α:

αG = P (ξ(1d) ∈ W1) + ...

+ P (ξ(1d) 6∈ W1)P (ξ(2d) 6∈ W2)...P (ξ(nd) ∈ Wn)

= α + ...+ α(1− α)n−1

= 1− (1− α)12.

(24)
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It’s also possible to distribute the significance between tests, as a geometric
series for example. Naturally, the power of such process is highly reduced in
comparison with a unique test on all observations the last month. In return, im-
portant deviations can be detected more quickly and countermeasures applied
immediately. Finally, this simple process can be applied with all significance
tests presented before.

One can notice that Bonferroni’s upper bound is really close to the Sidak’s
method for low significance levels. On the contrary, if the FWER is known in
the independent case, the Bonferonni’s method only gives an upper bound.
The real family wise error rate is smaller but test dependent and hard to
compute. Furthermore, the power of a process considering all information at
each test is higher than repeated independent tests. In conclusion, even if
the FWER isn’t clearly specified due to dependent tests, it’s controlled for
repeated tests.

4 Numerical applications

Two different applications are derived from previous framework. The first
consists in repeated tests on independent observations with a known family
wise error, the second on all information available each months using Bonfer-
roni’s upper bound. Tests are conducted under different levels of specification
risk (methodology developed supra) and different portfolio sizes. The testing
methodology is presented in figure 1 and repeated 10 000 times.

4.1 Specification risk

Specification risk occurs when the model used to fit data doesn’t include the
true probability distribution (i.e. H1 holds). In this case, if q0 is the real
mortality law, qγ the model and ε the error term it comes:

q0 = f(qγ, ε), (25)

where f is an unknown function and ε a random deviate. In this application,
our methodology consists in choosing a specific function f and a probability
distribution for the error term to produce specification risk. In this work,
the error term is a controlled gaussian white noise applied to the pre-defined
mortality law logits:
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∀x ∈ [x1, xp], logit(q
0
x) = logit(qγx) + εx, (26)

with ε ∼ Np(0, σId). In other words, the real mortality law is randomly dis-
tributed around the pre-defined qγ but equal in average (E(q0) = E(qγ)).
Thus, the function f is the following:

∀x ∈ [x1, xp], q
0
x =

eεxqγx
1 + qγx(eεx − 1)

− E
(

eεxqγx
1 + qγx(eεx − 1)

− qγ
)
. (27)

Finally, an illustration is given of multiple q0 randomly distributed around qγ
(see figure 2).

Now that specification risk is simulated, the second objective is to find a
business interpretation of σ. Indeed, if it’s quantitatively defined in previous
equations, what impact does-it have on real indicators ? The following table
1 shows correspondence between remaining life expectancy incertitude δ and
σ (see annex for detailed computation of δ).

4.2 Data simulation and portfolio structure

Numerical applications are based on a virtual portfolio which structure reflects
the French Insee demographic table RP2009 between 18 and 62 years-old for
different sizes N =

∑
x nx (see figure 3).

The initial mortality law is simply generated with a Makeham-Gompertz
model adjusted on the TH00-02 mortality table.

4.3 Independent tests

In this first part, different significance tests are applied to reject a miss-
specified mortality law at monthly time-step during 3 years. Each test consid-
ers only the last month observed deaths thus the tests are independent. The
family wise error is fixed through Sidak’s hypothesis (regularly distributed
significance). A first series of tests is realized without specification risk for dif-
ferent portfolios sizes N , while the second series is applied for different levels
of noise.
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4.3.1 Different portfolio sizes

First tests (Tables 2, 3 and 4) consist in backtesting a correctly defined law (i.e.
setting qγ = q0 or σ = 0) for different population sizes (N =

∑
x nx) during

36 months. In a first time, a very large portfolio is used (N = 109) which is
never encountered in practice, but still a good numerical example and method
to check algorithm implementation. The two others portfolios represent those
of a typical large and small companies.

For the very large portfolio (see Table 2), empirical rejection rates are close
to the theoretical αG, it validates algorithm implementation.

For large portfolios (see Table 3), tests using approximation as the Wald are
unreliable. Indeed, if the portfolio is important, monthly gross death rates
are too small which cause over-rejection rates. When there are no deaths in at
least one age, the Likelihood ratio statistic isn’t defined which makes it difficult
to apply in practice. Concerning the Score test, the coverage is significantly
higher than expected, causing too many type 1 errors. Finally, the SMR and
the two tests based on the Lindeberg’s CLT are the most performing tests.

For small portfolios (see Table 4), all tests loose coverage quality. Likelihood
based tests are rejecting null hypothesis almost surely which makes them use-
less. Lindeberg’s CLT based tests results are too important coverages, depend-
ing on the desired significance. In case of important α, the coverage can be 2
to 4 times to important while lower values are more violated. For the SMR
test, all coverages are smaller than expected. On this difficult case, only CLT
based and SMR tests can be use with particular caution. Dependent tests give
better results for small portfolios.

In conclusion to this first series of tests, we decide not to consider Wald and
Likelihood ratio tests for next series of tests as they are unadapted to our
problem.

4.3.2 Different levels of specification risk

The following tests are realized on independent observations for a large port-
folio (N = 106) and different levels for σ.

Globally, empirical rejection rates increase with the level of noise. SMR and
CLT based tests are equivalent but their power is really low (84% of rejection
for σ = 0.4, see correspondance table). Concerning the Score test, all rejection
rates are more important than all other tests (except for σ = 10%) as it starts
from a higher level in case of null hypothesis. Even though, the over-important
rejection rate makes it less reliable than other tests. Globally, the SMR and
CLT based tests demonstrate better results for mortality law backtesting in
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case of monthly information.

4.4 Dependent tests on accumulating information

In this section, tests are realized considering each month all information avail-
able from the beginning. This situation is typically what an insurer faces in
mortality monitoring. The overall significance computation is complex but the
Bonferonni’s upper bound is used to control it.

4.4.1 Different portfolio sizes

As we’ve done for the first process, different portfolio sizes are tested with a
correctly defined mortality law.

For the very large portfolio, we observe rejection rates far lower than the
boundary for asymptotic tests. This result is coherent as the family wise error
(FWE) is unknown but bounded. On the contrary, the SMR test crosses the
bonferonni’s boundary for small αG values. This last point is natural as the
test encounters difficulties for portfolios of large size.

For the large portfolio, all asymptotic rejection rates increase but remain far
from the boundary. Concerning the SMR test, rejection rates have decreased,
respecting the upper Bonferonni’s limit. SMR and CLT tests are relatively
closed in coverage for this portfolio.

Equivalently to the first process, the Score test is over-reacting due to a lack of
data in case of small portfolios. On the other side, this process gives satisfying
results for SMR and CLT based tests in case of small, large and very large
portfolios. Considering that information becomes consistent with time, the
Score test might even be applicable for large portfolios. Globally, this process
shows lower first type errors while assuring the same FWE.

4.4.2 Different levels of specification risk

As previously, the process is tested on a large portfolio with specification risk.

From table 12, we observe that the Score is the most powerful test by far. The
rejection is almost certain for σ = 10%. All other tests are performing better
than in previous process but don’t perform as well as the Score do.

The results show that this process is globally more powerful than the previous
based on independent observations. For σ = 10%, the empirical rejection rate
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of SMR and CLT tests are 72% against 31% in the previous method while the
Score test allows for almost certain rejections. In particular, we observe that
SMR and CLT based tests are equivalent for all tested σ.

5 Conclusion

In conclusion, the mathematical framework presented in first part of this work
allows insurer to apply statistical significance tests to mortality law backtest-
ing. Our test benchmark includes asymptotic tests, SMR tests and Lindeberg’s
CLT based tests but additional tests can be applied to this exercise. Among
these, asymptotic tests have shown operational weaknesses for monthly analy-
ses as deaths are rare events. On the contrary, these tests are the most powerful
in single testing. In addition of applications consisting in unique tests, we pro-
pose two different backtesting processes to monitor model risk in a mortality
analysis. These two processes allow the insurer to periodically test if his mor-
tality law is Best-estimate according to a pre-defined significance level. We
particularly recommend the process considering all information in combina-
tion with the Score test. On the basis of our observations, it’s clearly the most
powerful process of this paper.

A Central Limit Theorems

This section presents the two most-known versions of the Central Limit The-
orem (see Saporta (2006)).

A.1 Classical

Let (Xn) be a sequence of independent random variables with equal expected
value µ and standard deviation σ, then:

1√
n

(
X1 + ...+Xn − nµ

σ

)
L−→ N (0, 1). (A.1)

A.2 Lindeberg

Let (Xn) be a sequence of independent random variables with respective ex-
pected value µi, standard deviation σi and cdf FXi

. If one writes S2
n =

∑n
i=1 σ

2
i
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and the following (Lindeberg’s) condition is verified:

lim
n→∞

[
1

S2
n

n∑
i=1

∫
|x|>εSn

x2dFi(x)

]
= 0, (A.2)

it comes:

∑
iXi − µi
Sn

L−→ N (0, 1). (A.3)

B Fisher information in Binomial model MB

Considering modelMB defined in equation 4, the associated fisher information
is computed in this section. From the following log-likelihood function:

lnL(D, q) =
∑
x

Dx ln(qx) + (nx −Dx) ln(1− qx), (B.1)

the Fisher information matrix can be derived:

(IB(q))x = E

(
−∂

2 lnL(D, q)

∂q2
x

)
=

nx
qx(1− qx)

.
(B.2)

C Fisher information in Gaussian model MG

In theMG model, D is multinormal and it’s likelihood function is the follow-
ing:

L(D, q) =
1

(2π)
p
2 |Σ| 12

exp
(
−1

2
(D − µ)tΣ−1.(D − µ)

)
. (C.1)

The Fisher information is computed thereby:
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(IG(q))x = E

(
−∂

2 lnL(D, q)

∂q2
x

)

=
nx

qx(1− qx)
− 1

2

(
1

q2
x

+
1

(1− qx)2

)

= (IB(q))x −
1

2

(
1

q2
x

+
1

(1− qx)2

)
.

(C.2)

D Logit noise effect on remaining life expectancy

In order to understand what σ represents in terms of remaining life expectancy,
let’s consider a 65 years old person. One can compute his remaining life ex-
pectancy as follows:

e65 =
1

S(65)

120∑
j=66

S(j), (D.1)

with S(x) =
∏x−1
i=1 (1− qi) the survival function. Considering e65 as a function

of ε, here is a measure of the deviation of e65:

δ =
q95%(e65)− E(e65)

E(e65)
. (D.2)
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Figure 1. Testing methodology algorithm.

Figure 2. Example of different levels of specification risk (0, 5%, 10%).
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Table 1
Correspondence between σ and δ for a 65 years old person and N = 106

σ e δ

0% 16.21 0.00000

5% 16.34 0.00708

10% 16.48 0.01556

20% 16.75 0.03051

30% 17.00 0.04770

40% 17.23 0.06508
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Figure 3. Population repartition over ages in proportions.

Table 2
Empirical rejection rates in case of H0 = {qγ = q0} and N = 109.

αG 10% 5% 1% 0.5%

CLT Binomial 9.87 5.02 1.11 0.50

CLT Poisson 9.85 5.01 1.10 0.49

SMR 10.93 5.69 1.19 0.63

Wald 9.99 4.77 0.92 0.52

Score 9.88 4.70 0.93 0.44

Ratio 9.75 4.71 0.90 0.46
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Table 3
Empirical rejection rates in case of H0 = {qγ = q0} and N = 106.

αG 10% 5% 1% 0.5%

CLT Binomial 9.52 4.57 1.03 0.39

CLT Poisson 9.52 4.57 0.85 0.39

SMR 8.66 4.06 0.79 0.34

Wald 100 100 100 100

Score 20.52 12.28 3.97 2.49

Ratio . . . .

Table 4
Empirical rejection rates in case of H0 = {qγ = q0} and N = 104.

αG 10% 5% 1% 0.5%

CLT Binomial 17.12 17.12 5.79 5.79

CLT Poisson 17.12 17.12 5.79 5.79

SMR 1.72 1.72 0.38 0.08

Wald 100 100 100 100

Score 99.89 99.83 99.30 98.88

Ratio . . . .

Table 5
Empirical rejection rates in case of H1, N = 106 and σ = 10%.

αG 10% 5% 1% 0.5%

CLT Binomial 31.12 18.45 5.02 3.08

CLT Poisson 31.12 18.45 5.02 3.08

SMR 34.02 21.06 6.90 4.05

Score 29.03 18.56 6.65 4.11

Table 6
Empirical rejection rates in case of H1, N = 106 and σ = 20%.

αG 10% 5% 1% 0.5%

CLT Binomial 64.50 52.77 30.17 23.52

CLT Poisson 64.50 52.77 30.10 23.52

SMR 66.95 55.45 35.20 27.80

Score 84.63 73.80 48.28 38.75
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Table 7
Empirical rejection rates in case of H1, N = 106 and σ = 30%.

αG 10% 5% 1% 0.5%

CLT Binomial 78.17 70.70 54.98 48.99

CLT Poisson 78.17 70.70 54.90 48.99

SMR 79.39 72.12 58.60 52.55

Score 99.78 99.35 96.40 93.92

Table 8
Empirical rejection rates in case of H1, N = 106 and σ = 40%.

αG 10% 5% 1% 0.5%

CLT Binomial 83.39 78.17 67.11 62.55

CLT Poisson 83.39 78.17 66.94 62.55

SMR 84.03 78.86 69.59 65.20

Score 100 100 100 100

Table 9
Empirical rejection rates in case of H0 and N = 109

αG 10% 5% 1% 0.5%

CLT Binomial 2.44 1.44 0.26 0.18

CLT Poisson 2.44 1.42 0.26 0.18

SMR 6.12 3.88 1.25 0.72

Score 3.16 1.61 0.39 0.19

Table 10
Empirical rejection rates in case of H0 and N = 106

αG 10% 5% 1% 0.5%

CLT Binomial 2.67 1.43 0.42 0.24

CLT Poisson 2.67 1.43 0.41 0.24

SMR 2.63 1.40 0.37 0.23

Score 4.01 2.39 0.66 0.42
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Table 11
Empirical rejection rates in case of H0 and N = 104

αG 10% 5% 1% 0.5%

CLT Binomial 3.07 2.00 0.49 0.37

CLT Poisson 3.07 2.00 0.49 0.37

SMR 1.76 0.90 0.24 0.09

Score 32.09 28.56 22.10 19.77

Table 12
Empirical rejection rates in case of H1, N = 106 and σ = 10%.

αG 10% 5% 1% 0.5%

CLT Binomial 72.07 68.45 60.16 57.37

CLT Poisson 72.07 68.45 60.13 57.31

SMR 72.58 68.95 60.99 57.95

Score 99.95 99.95 99.79 99.66

Table 13
Empirical rejection rates in case of H1, N = 106 and σ = 20%.

αG 10% 5% 1% 0.5%

CLT Binomial 88.30 87.03 83.93 82.72

CLT Poisson 88.30 87.02 83.93 82.71

SMR 88.51 87.28 84.25 82.90

Score 100 100 100 100
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