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Abstract— In this work, a novel method based on the cyclo-
stationary properties of electrocardiogram (ECG) signals is in-
troduced in order to classify independent subspaces into com-
ponents reflecting the electrical activity of the foetal heart and
those corresponding to mother’s heartbeats, while the remain-
ing ones are mainly due to noise. This research is inspired from
multidimensional independent component analysis (MICA), a
method that aims at grouping together into independent mul-
tidimensional components blind source separated signals from
a set of observations. Given an input set of observations, in-
dependent component analysis (ICA) algorithms estimate the
latent source signals which are mixed together. In the case of
ECG recordings from the maternal thoracic and abdominal ar-
eas, the foetal ECGs (FECGs) are contaminated with maternal
ECGs (MECG), electronic noise, and various artifacts (respi-
ration, for example). When ICA-based methods are applied to
these measurements, many of the output estimated sources have
the same physiological origin: the mother’s or the foetus’ heart-
beats. Thereby, we show that a procedure for automatic classi-
fication in independent subspaces of the extracted FECG and
MECG components is feasible when using a criterion based on
the cyclic coherence (CC) of the signal of interest.

Keywords— foetal electrocardiogram, cyclostationarity, cyclic
coherence, multidimensional independent component analysis

I. INTRODUCTION

Electrocardiogram (ECG) is one of the most popular diag-
nostic tools for heart monitoring. Non-invasive electrical ac-
tivity measurement devices, like electrodes, offer clinicians a
versatile tool, without heavy constraints, for preventing com-
plications or diseases due to heart defects. When these mea-
surements come from the thoracic or abdominal regions of
a pregnant woman, detecting and separating the foetal elec-
trocardiogram (FECG) from the maternal one (MECG) is not
such an easy task, since the FECG has a very low amplitude
voltage signal compared to the MECG, and, moreover, the
activity measured by the cutaneous electrodes is disturbed by
other noise signals, such as random instrumentation noise,

power line signal, breathing or baseline wandering.
In these last decades, various signal processing techniques

have emerged and many of them have been customized for
FECG extraction purposes ([1], [2], [3]). Among them are
blind source separation (BSS) techniques [4] and the underly-
ing mathematical tool which is independent component anal-
ysis (ICA). It aims at separating unknown source signals of
interest from a mixture of them, observed with the aid of sen-
sors. Numerous methods can be found in the dedicated liter-
ature, but only a few make use of the concept of multidimen-
sional independent component analysis (MICA), introduced
in the late 90’s. Interested readers can find a recent review on
FECG signal processing in [5].

In the rest of the paper, we first present the MICA con-
cept. An introduction to the cyclostationary nature of ECGs
and a description of a cyclostationarity measure, called cyclic
coherence, follows. Next, a novel FECG classification proce-
dure is proposed and validated on a real world FECG dataset;
it is based on the cyclic coherence computation of the ICA
estimated components from a set of sensor signals. Finally,
conclusions are drawn from this work.

II. ICA AND THE MULTIDIMENSIONAL ICA
(MICA) CONCEPT

A. Blind source separation problem formulation and ICA

Jutten et al first proposed a simple 2× 2 neural network-
based self-adaptive algorithm ([6], [7]) as a solution to the
separation of independent source signals, and introduced the
concept of independent component analysis, which has been
theoretically investigated few years later by Comon [8]. The
problem in blind source separation (BSS) states as follows:
given a set of M observed signals xi(t), i ∈ [1,M], find the N
unknown sources si(t), i ∈ [1,N], with N ≤ M, that are hidden
in the observations. In matrix form, the problem writes:

x(t) = As(t). (1)

where x(t) = [x1(t),x2(t), ...,xM(t)]† and s(t) =
[s1(t),s2(t), ...,sN(t)]† denote the mixture vector and



the unknown source vector, respectively, with † the transpose
operator and with A an unknown M × N full rank mixing
matrix. The mixture model of eq.1 is the linear instanta-
neous noiseless one, which is widely used in the literature
and which only assumes statistically independent source
components si and at most one Gaussian entry.

B. Multidimensional ICA

A source subspace separation method for FECG extraction
has been presented in [9]. In this work, authors use second-
order statistics based on the singular value decomposition
(SVD) of the observed ECG data matrix to estimate the un-
derlying source subspaces, assuming that the latent bioelec-
tric phenomena generating the foetal and the mother heart-
beats are statistically independent. Then, they enhance the
accuracy of the proposed algorithm by introducing a higher-
order singular value decomposition (HOSVD) technique.

A similar technique is proposed by Cardoso in [10] named
multidimensional independent component analysis (MICA).
It can be seen as a generalization of the ICA model to mul-
tidimensional components. The author illustrates his method
with real FECG data. First, he estimates the unknown sources
by applying the well known ICA algorithm JADE [11] to a
3-channel real ECG data of an expectant mother. After ex-
traction of the independent components (ICs), he groups two
of them into a bi-dimensional component corresponding to
the MECG; the choice of these two components is done only
after visual inspection and, in this case, that works because
mother’s and foetus’ contributions are clearly distinguish-
able. After computing the orthogonal projection matrices for
each one of the two estimated multidimensional components,
a back-projection to the original input space permits to recon-
struct the mother and foetal signal contributions to the mix-
tures.

We demonstrate below how to establish an automated pro-
cedure based on the cyclostationary properties of the ECG
signals, in order to classify ICA-based extracted ICs into mul-
tidimensional components.

III. CYCLOSTATIONARITY MEASURES

A. The cyclostationarity property

The main assumption for this procedure to succeed, is that
the foetus’ as well as the mother’s heartbeats, if they do not
exhibit a strict period, they are at least repetitive, i.e. cyclo-
stationary at the frequency α0 of the heartbeats. A cyclosta-
tionary signal is not strictly periodic, but some of its statisti-
cal properties are periodic. This same assumption of FECG

cyclostationarity used in previous work [12], together with
the a priori estimation of the foetus’ fundamental cyclic fre-
quency, provided very promising results with regard to the
foetal PQRST extraction.

In this context, we use a statistical measure of cyclosta-
tionarity as a criterion to decide whether an ICA estimated
IC corresponds to the FECG rather than to the MECG sub-
space. This measure is the cyclic coherence.

B. The cyclic coherence measure

In this work, we use a spectral version of the simple co-
herence [13] which is a measure of the correlation degree be-
tween two signals, x(t) and y(t), at each frequency value f . It
is called the cyclic coherence (CC) and it has been introduced
in [14]:

Cα
x ( f ) =

E[X( f )X∗( f −α)](
E
[
|X( f |2

]
E
[
|X( f −α)|2

]) 1
2
, (2)

where X( f ) and X( f −α) are the Fourier Transforms of
x(t) and alpha value frequency-shifted x(t), respectively.

The CC measure is normalised. A CC value near to one for
a frequency f , indicates a strong coherence between compo-
nents of signal x(t) at frequencies f and ( f −α).

IV. THE PROPOSED METHOD AND
ILLUSTRATION WITH REAL WORLD DATA

To illustrate the proposed method, we worked on the same
dataset as in the original MICA work [10], i.e. the well-
known DaISy database [15], but we considered the whole
recordings set. This is an eight-channel cutaneous recordings
set from an expectant mother. The first five potentials come
from electrodes placed at different locations in the abdomi-
nal region of the mother, while the last three recordings come
from her thoracic region. All eight signals are recorded si-
multaneously at a sampling rate of 500Hz and each one of
them lasts 5sec (Figure 1).

A. The classification procedure

We first applied the JADE algorithm to the whole obser-
vations vector and then we computed the CCs of the esti-
mated components. A visual inspection of the obtained CCs
leads to a preliminary classification of extracted components
{3,5} into the FECG subspace, components {1,4} into the
noise subspace and the remaining components {2,6,7,8} into
the MECG subspace (Figures 2, 3 and 4, respectively). In-
deed, in Figure 2 one clearly notices the high values over all



All 8 DaISy channels
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Fig. 1: Eight surface electrodes recordings

the spectral frequencies range, for cyclic frequency around
4.5Hz that corresponds to the fundamental cyclic frequency
of the foetus’ heart [12], while the second high-valued spec-
tral line corresponds to its second harmonics. On the contrary,
no ( f ,α) couple has a significantly high value in the CCs
of JADE extracted components 1 and 4, as one can observe
in Figure 3. This is in agreement with the kurtosis values of
these two CCs: 4.94 and −0.54, for components 1 and 4, re-
spectively, while kurtosis values for all other component’s CC
vary between 22.17 and 43.26. Lower kurtosis values may
correspond to noisy background.

CCs of JADE estimated components 3 (left) and 5 (right)
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Fig. 2: The 2-dimensional FECG subspace

Things get a little bit different for the MECG subspace.
CCs of JADE estimates 2, 6 and 8 exhibit distinct higher val-
ues for cyclic frequency around 2.7Hz into the spectral fre-
quency range [20,80]Hz (Figure 4); all three span the sub-

CCs of JADE estimated components 1 (left) and 4 (right)
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Fig. 3: The 2-dimensional noise subspace

space of the MECG components. On the other hand, the CC
of the JADE estimated component number 7, shows also high
values for cyclic frequencies different from the mother’s fun-
damental one and its harmonics. That needs more investiga-
tions to interpret, but it is not decisive for the classification
procedure of foetal components that this work suggests.

CCs of JADE estimated components 2 and 6 (upper left and right) −  7 and 8 (lower left and right)
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Fig. 4: The 4-dimensional MECG subspace

Next, we integrate the cyclic frequencies for each
CC of the ICA estimated components over the spec-
tral frequencies to obtain the integrated CC (iCC). At
this stage to automate the extraction of the noise sub-
space components, one can compute the standard deviation
of each iCC; standard deviation values for this example
are {0.68;3.59;5.29;0.69;2.41;4.20;4.44;1.92} for the 1st

through to the 8th JADE extracted IC. Looking for standard



deviation values below a low-valued threshold, is an efficient
way for isolating ICs whose iCCs do not contain significant
information.

iCC minus max(iCC) for each JADE extracted component
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Fig. 5: The two null values of the remaining 6 transformed iCCs do
correspond to the FECG’s and the MECG’s fundamental cyclic frequencies

(4.5Hz and 2.7Hz, respectively)

Then, from each one of the previously computed iCCs,
one subtracts its maximum value as shown in Figure 5. This
is implemented only for extracted components that they do
not span the noise subspace, i.e., JADE extracted compo-
nents {2,3,5,6,7,8}. One remarks that the yellow (JADE3)
and red (JADE5) data plots of Figure 5 exhibit both a null
value for the same cyclic frequency equal to 4.5Hz (i.e., the
foetus’ heart cyclic frequency) while the four remaining com-
ponents have a modified iCC of zero value at 2.7Hz (i.e.,
the mother’s heart cyclic frequency). Finally, one can group
blind-separated ICs into 3 independent subspaces: the FECG
one spanned by ICs {3,5}, a noise one spanned by ICs {1,4}
and the MECG subspace spanned by ICs {2,6,7,8}.

V. CONCLUSION

This work proposes an automated classification procedure
of blindly separated independent foetal components from ma-
ternal ECG recordings, that consists of four steps:

1. Apply a BSS/ICA algorithm to extract ICs from raw ECG
data.

2. Compute the CC and then the iCC for each extracted in-
dependent component at the previous step.

3. Classify ICs whose standard deviation value of their iCC
is below a threshold into a subspace corresponding to the

noise.
4. Compute the difference between each iCC and its maxi-

mum value, and group into the same independent source
subspaces the corresponding ICs exhibiting null values
for the same cyclic frequencies.

The method is tested on the real world DaISy dataset and
gave very promising results. Future research work concerns
the validation of this method to simulated foetal ECGs, as
well as further investigations about the computed CCs of the
MECG source subspace components.

REFERENCES

1. Zarzoso V, Nandi A K. Noninvasive Foetal Electrocardiogram Ex-
traction: Blind Separation Versus Adaptive Noise Cancellation IEEE
Transactions on Biomedical Engineering. 2001;48(1):12-18.

2. Sameni R, Jutten C, Shamsollahi M B. Multichannel Electrocardio-
gram Decomposition Using Periodic Component Analysis IEEE Trans-
actions on Biomedical Engineering. 2008;55(8):1935-1940.

3. Martín-Clemente R, Camargo-Olivares J L, Ornillo-Mellado S, Helena
M, Román I. Fast Technique for Noninvasive Fetal ECG Extraction
IEEE Transactions on Biomedical Engineering. 2001;58(2):227-230.

4. Herault J, Jutten C, Ans B. Détection de grandeurs primitives dans
un message composite par une architecture neuromimétiuqe en ap-
prentissage non supervisé in Actes 10ème Colloque GRETSI(Nice,
France):1017-1022 1985.

5. Sameni R, Clifford G D. A Review of Fetal ECG Signal Processing
Issues and Promising DIrections The Open Pacing, Electrophysiology
& Therapy journal. 2010;3:4-20.

6. Jutten C, Herault J. Blind separation of sources, part I: An adap-
tive algorithm based on neuromimetic architecture Signal Perocessing.
1991;24(1):1-10.

7. Jutten C, Herault J. Blind separation of sources, part II: Problems state-
ment Signal Processing. 1991;24(1):11-20.

8. Comon P. Independent Component Analysis, a New Concept Signal
Processing, Special Issue on Higher Order Statistics. 1994;36(3):287-
314.

9. Lathauwer L De, Moor B De, Vanderwalle J. Fetal Electrocardiogram
Extraction by Source Subspace Separation in Proceedings IEEE Sig-
nal Processing / Athos Workshop on Higher-Order Statistics:134-138
1995.

10. Cardoso J F. Multidimensional independent component analysis in Pro-
ceedings of the 1998 IEEE International Conference on Acoustics,
Speech and Signal Processing;4:1941-1944 1998.

11. Cardoso J F, Souloumiac A. Blind beamforming for non Gaussian sig-
nals in Radar and Signal Processing, IEE Proceedings F;140(6):362-
370 1993.

12. Haritopoulos M, Capdessus C, Nandi A K. Foetal PQRST Extrac-
tion from ECG Recordings using Cyclostationary-Based Source Sep-
aration Method in 32 Annual International Conference of the IEEE
EMBS:1910-1913 2010.

13. Max J, Lacoume J L. Méthodes et techniques de traitement du signal
et application aux mesures physiques. Tome 1 : Principes généraux et
méthodes classiques. fifth ed. 1996.

14. Hurd H L. An investigation of periodically correlated stochastic pro-
cesses. PhD thesisDuke University 1970.

15. ESAT/SISTA K. U. Leuven. DaISy; Database for the Identification of
Systems at http://homes.esat.kuleuven.be/ smc/daisy/ 1999.


