
HAL Id: hal-00838927
https://hal.science/hal-00838927

Submitted on 27 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards fast, generic video inpainting
Alasdair Newson, Matthieu Fradet, Patrick Pérez, Andrés Almansa, Yann

Gousseau

To cite this version:
Alasdair Newson, Matthieu Fradet, Patrick Pérez, Andrés Almansa, Yann Gousseau. Towards fast,
generic video inpainting. Proceedings of the 10th European Conference on Visual Media Production
- CVMP ’13, ACM SIGGRAPH, Nov 2013, London, United Kingdom. �10.1145/2534008.2534019�.
�hal-00838927�

https://hal.science/hal-00838927
https://hal.archives-ouvertes.fr


Towards fast, generic video inpainting

Alasdair Newson, Matthieu Fradet,
Patrick Pérez

Technicolor
1 Avenue Belle Fontaine

35, Cesson-Sévigné
alasdair.newson@technicolor.com
matthieu.fradet@technicolor.com
patrick.perez@technicolor.com

Andrés Almansa, Yann Gousseau
Télécom ParisTech - LTCI CNRS

43 rue Barrault
75013 Paris

andres.almansa@telecom-paristech.fr
yann.gousseau@telecom-paristech.fr

ABSTRACT
Achieving globally coherent video inpainting results in reasonable
time and in an automated manner is still an open problem. In this
paper, we build on the seminal work by Wexler et al. to propose an
automatic video inpainting algorithm yielding convincing results in
greatly reduced computational times. We extend the PatchMatch
algorithm to the spatio-temporal case in order to accelerate the
search for approximate nearest neighbours in the patch space.
We also provide a simple and fast solution to the well known
over-smoothing problem resulting from the averaging of patches.
Furthermore, we show that results similar to those of a supervised
state-of-the-art method may be obtained on high resolution videos
without any manual intervention. Our results indicate that globally
coherent patch-based algorithms are feasible and an attractive
solution to the difficult problem of video inpainting.
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1. INTRODUCTION AND PRIOR WORK
The goal of “image inpainting” [1] is to convincingly replace or
“disocclude” [2, 3] a region with some other image content. The
vast majority of inpainting methods find this information in the
image itself. One of the main difficulties of this task is the correct
reproduction of both geometric structures and textures. Video
inpainting is the problem of inpainting a spatio-temporal hole in
a video. This adds new technical challenges such as inpainting
foreground, background and moving objects. Additionally, the
execution time becomes a critical aspect, as certain video inpainting
algorithms which do not deal with this aspect specifically may take
days or even weeks to execute.

Generally speaking, video inpainting algorithms belong to either
the “object-based” or “patch-based” category. Object-based algo-
rithms usually segment the video into moving foreground and back-

ground that is either still or displays simple motion. These seg-
mented image sequences are then inpainted using separate algo-
rithms. The background is often inpainted using image inpainting
methods such as [4], whereas moving objects are often copied into
the occlusion as smoothly as possible. Unfortunately, such methods
often include restrictive hypotheses on the moving objects’ motion,
such as strict periodicity. Some object-based methods include [5,
6, 7, 8].

Patch-based methods are based on the intuitive idea of copying
and pasting small video “patches” (rectangular cuboids of video
information) into the occluded area. The first patch-based method
to ensure temporal coherency in video inpainting was described
by Wexler et al. in [9]. This is an iterative method that may be
seen as a heuristic to solve a global optimisation problem. The
high dimensionality of the problem makes the algorithm very slow,
requiring up to several days for a few seconds of VGA video.
Patwardhan et al. [5] also use a patch-based approach. This is a
greedy algorithm, and therefore cannot guarantee global coherency.

Pritch et al. [10] first proposed to use the discrete optimisation
algorithm called “graph cuts” [11] for the purpose of image
inpainting. This method optimises an energy functional of the shift
map to inpaint an image. The shift map is the mapping from the
set of pixels in the occlusion to a subset of the unoccluded pixels,
which corresponds to the nearest neighbours from a patch-based
point of view. Other image inpainting methods such as [12, 13]
have also used this sort of strategy. The idea of using graph cuts
for video inpainting was recently introduced by Granados et al. in
[14]. They propose a semi-automatic algorithm which optimises
the spatio-temporal shift map. This algorithm presents impressive
results on higher resolution images than are previously found in the
literature (up to 1120x754 pixels). However, in order to reduce the
large search space and high time complexity of the optimisation
method, manual tracking of moving occluded objects is required.
To the best of our knowledge, the inpainting results of Granados et
al. are the most convincing to date, and we shall therefore compare
our algorithm with these results.

Another recent method by Facciolo et al. [15] deals with video
editing in the gradient domain. However, the goal of this method
is to enforce temporal consistency given a certain inpainting result,
rather than producing the actual video inpainting result. Never-
theless, such post-processing methods could be used to refine the
results of video inpainting algorithms.

The seminal work of Wexler et al. [9] is widely cited and well-



known in the video inpainting domain, mainly because it ensures
global coherency in an automatic manner. Inpainting algorithms
as recent as [16] have presented variations of this work for image
inpainting purposes. However, due to extremely long execution
times, it is difficult to implement and experiment with, making
the setting of implementation details and parameters especially
tedious. This is in fact the greatest obstacle preventing the
progress of research in this direction. In this work, we wish to
produce an algorithm which is able to achieve the global coherence
of the algorithm presented in [17], while maintaining execution
times which are not prohibitive for experimentation and practical
use. For this, we build on Wexler’s central idea of iterative
aggregation of nearest neighbours in the patch space to obtain an
automatic algorithm with greatly reduced execution times. We
extend the PatchMatch algorithm to the spatio-temporal domain in
order to accelerate the search for approximate nearest neighbours.
Furthermore, we propose a simple solution to the well-known
over-smoothing problem due to the averaging of patches, and
also provide specific implementation details to make our work
reproducible. The resulting algorithm yields similar results to the
original one, with a speedup of up to 50 times, and, furthermore, is
able to successfully inpaint high resolution videos in an automatic
manner, which has not been done before. We reduce execution
times by an order of magnitude in comparison with the most recent
supervised method [14], with visually similar results.

2. PATCH-BASED GLOBAL OPTIMISATION
The generic video inpainting problem is that of reconstructing the
content of a spatio-temporal hole (occlusion) in a video. Our video
inpainting approach builds on the foundations laid out by Wexler et
al. in [17]. This algorithm fills a spatio-temporal volume using the
information in the unoccluded parts of the video. The solution is
obtained by the minimisation of a global patch-based functional.
To achieve this, the algorithm alternates between the search for
the nearest neighbours (NNs) of spatio-temporal patches in the
occluded region and the reconstruction of the inpainted volume
using these NNs. This process is iterated several times in order
to converge to a solution. As in many optimisation problems, a
multi-resolution spatio-temporal pyramid is used in order to avoid
local minima. We shall now present the algorithm of [17] in greater
detail.

2.1 The Space-Time Completion algorithm
As far as possible, we retain the notation found in [17]. Let H
be the spatio-temporal occlusion and D the data set (unoccluded
area). Furthermore, let D̃ be the region in which all patches are
completely outside of D. The ANN search is restricted to patches
belonging to D̃. Let p = (x,y, t) be a position in the video and
Wp a patch centred on p. Let us also define the NN shift map
φ : R2 → R2, which indicates that the NN (in terms of a given
patch distance) of Wp is centred at the position p + φ(p). We
define this NN patch as Wp+φ(p). Let Np be the spatio-temporal
positions in the patch centred on p. In the original paper, Wexler et
al. use 5x5x5 patches, with each position in a patch containing the
following vector of patch components : (R,G,B,βu,βv), where
R,G and B are the colour values, u and v are roughly estimated
optical flow components, and β is a scaling factor. The distance
d(Wp,Wp+φ(p)) is the sum of squared differences (SSD) of each of
the patch components.

The original algorithm of Wexler et al. contains three main
components:

• The search for NNs

• The reconstruction of a video using the NNs

• The implementation of the spatio-temporal pyramid.

As previously mentioned, the first two steps are iterated several
times, at each pyramid level.

An exhaustive search for exact NNs is obviously far too time-
consuming. Therefore, in order to make the algorithm feasible, the
work of Arya et al. [18] is used in [17] to find approximate nearest
neighbours (ANNs), rather than the exact nearest neighbours.

Concerning the reconstruction of the solution, Wexler et al. pro-
pose a scheme in which the colour value c of a pixel p ∈H is ob-
tained with a weighted mean of all the colours given by the ANNs
of the patches which contain p :

cp =
∑i∈Np

α i
psi

pci

∑i∈Np
α i

psi
p

(1)

with

si
p = exp−

d(Wi,Wi+φ(i))

2σ2 ,

where ci is the colour value in the ANN of Wi at the position
corresponding to p. The value α i

p is a weight given to the pixel
i which reflects the distance of i to the occlusion boundary. More
precisely, α i

p = γdist(p), where dist(p) is the distance from p to the
occlusion boundary, and γ is set to 1.3. Finally, σ is defined as
the 75th percentile of all the distances d(Wi,Wi+φ(i)), i ∈Np. One
drawback of the previous weighted mean is a blurred inpainting
result. Therefore, Wexler et al. propose another reconstruction
method which is a robust estimation of the value of cp using the
mean-shift algorithm. This mean-shift is carried out on points in
the RGB colour space, provided by ci. Each point is weighted
by α i

psi
p, and the dominant mode is found in this space. During

the algorithm, the bandwidth used for the mean shift is gradually
reduced. The goal of this scheme is to gradually decide on the best
ANN for each Wp. The mean shift algorithm is used in order to
make the reconstruction robust to poor ANNs found by the ANN
search, and also reduces the blurring effect in the final result.

Finally Wexler et al. use a spatio-temporal Gaussian pyramid
in order to improve the optimisation results, as is common in
inpainting algorithms. The downsampling scheme is not precisely
defined in [17]. The upsampling of a solution from one level to
another is done by propagating the current ANNs to the finer level.
The finer solution is then produced with the same reconstruction
scheme, using the new ANNs.

We now proceed to explain the details of the proposed algorithm.

2.2 Approximate nearest neighbour search
The search for ANNs is the most time-consuming part of the
algorithm, and thus the most important to work on to obtain faster
execution times. Quite recently, a very efficient ANN search
algorithm named “PatchMatch” was proposed by Barnes et al.
[19], specifically for the task of finding perceptually close patches
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Figure 1: Comparison of our results with the those of [17]. Visually, the obtained inpainted is very similar, but we are able to reduce the
ANN search time by a factor of up to 50 times.

in images. PatchMatch’s efficiency comes from the observation
that ANN shift maps are often very regular between images (in
fact they are piecewise constant), if the same image content is
present. Barnes et al. suggested the use of PatchMatch for image
inpainting purposes, and this algorithm was subsequently used for
this purpose in the “Content Aware Fill” tool by Photoshop CS5
[20], and more recently by Darabi et al. [16]. To the best of our
knowledge it has never been proposed for video inpainting. We
propose to extend the PatchMatch algorithm to the spatio-temporal
setting, in order to reduce the extremely long search times obtained
with the ANN search described in [18]. It seems quite natural to use
PatchMatch for video inpainting, since the piecewise constancy of
image ANN shift maps should work well in the present case, since
the image content is repeated throughout the video.

The original PatchMatch contains three steps : initialisation,
propagation and random search. The initialisation is done by
randomly associating an ANN to each patch Wp, with p = (x,y).
During propagation, the patches are sequentially scanned from low
to high indices, first in the x and then in the y dimension. For
a given patch Wx,y, the algorithm considers the following ANNs
: W(x,y)+φ(x−1,y) and W(x,y)+φ(x,y−1). If one of these ANNs has
a smaller patch distance with respect to W(x,y) than W(x,y)+φ(x,y),
then W(x,y)+φ(x,y) is replaced with the best new ANN. The scanning
order is reversed for the next iteration of the propagation (from high
to low), and the algorithm tests W(x,y)+φ(x+1,y) and W(x,y)+φ(x,y+1).
In the two different scanning orderings, the important point is
obviously to use the neighbours which have already been tested
in the current propagation step. The motivation for this step is the
idea that objects in images are spatially coherent, and therefore that
offsets which lead to good ANNs for a given patch are likely to
produce good ANNs in the proximity of this patch. The third step,
the random search, consists of randomly looking for better ANNs

of each Wp in an increasingly small area around Wp+φ(p), starting
with a maximum search distance. The random ANNs are centred
at the following positions :

q j = p+φ(p)+wρ
jR j, (2)

for all j ∈ N such that wρ j > 1, where w is the maximum search
radius around the Wp+φ(p), Ri is a pair of random variables in
[−1,1]× [−1,1] and ρ is the reduction factor of the search window
size. In the original PatchMatch, ρ is set to 0.5. This random search
avoids the algorithm getting stuck in local minima.

We now detail our generalisation of PatchMatch to the video
setting. Let W(x,y,t) be a spatio-temporal patch centred at (x,y, t).
We initialise the ANNs randomly in any position p ∈ D̃. We
redefine φ as the spatio-temporal ANN offset map : φ : R3→ R3.

For propagation, we need to define a scanning order of the patches.
As in [19], we scan in the x dimension and then the y dimension.
Lastly, we scan in the temporal dimension. For each W(x,y,t), we test
W(x,y,t)+φ(x−1,y,t), W(x,y,t)+φ(x,y−1,t) and W(x,y,t)+φ(x,y,t−1). As in
[19], between propagation iterations the scanning order is reversed,
and W(x,y,t)+φ(x+1,y,t), W(x,y,t)+φ(x,y+1,t) and W(x,y,t)+φ(x,y,t+1) are
tested. For this propagation step, it is important to know whether
the scanning order of the video dimensions has any influence on
the quality of the resulting ANNs. In particular, the regularity
properties (upon which the PatchMatch algorithm is based) may
be different for different dimensions. For example, if we suppose
that there is greater information redundancy along the t axis, then it
is preferable to analyse the ANNs along this axis before analysing
the others. This sort of consideration was not taken into account in
[19], since there is no reason a priori to suppose that the x and y
axes present different degrees of coherence. For a visual illustration
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Figure 2: Comparison of different reconstruction methods. We observe that the reconstruction using the best patch at the end of the algorithm
produces similar results to the use of the mean shift algorithm. Please note that the blurring effect is best viewed in the pdf version of the
paper.

of the neighbours used during the propagation step, see Figure 3.

Table 1 compares the average ANN error (in terms of the sum
of square differences) per patch component, for all the scanning
orderings (nine in total). The three standard sequences of Wexler
et al. [17] are analysed in this manner. We observe that the patch
error is very stable with respect to the scanning order. Therefore,
we have chosen (arbitrarily) to maintain the original scanning order
of PatchMatch, and add the t dimension afterwards.

The extension of the random search step is straightforward. Instead
of searching in a square around current ANNs, we search in a
cube, for all p ∈H. We keep the original window size reduction
parameter β = 0.5. In the current work, we allow the random
search to search the entire video, however this could possibly be
tuned to accelerate the algorithm further. We set the number of
iterations of propagation and random search to 10, which gives
good results on all the videos we tested. Between iterations of
ANN search and reconstruction, we initialise PatchMatch with the
previous ANNs.

In [17], the patches include rough estimations of an optical flow, u
and v. Having experimented with and without these elements, we
found that their influence was very small. Therefore, we only use
the colour components in our patches.

2.3 Reconstruction
As mentioned above, two reconstruction schemes are presented in
[17]: weighted averaging and a robust mean shift colour estimation.
While the mean shift has advantages such as avoiding blurring
in the final results, it complicates the algorithm and adds new

parameters, such as the speed at which the mean shift’s band width
is reduced, for which details are not given in [17].

Dealing with this blurring problem is particularly important if video
textures are present, such as the waves in the “Beach Umbrella” and
“Crossing Ladies” examples of Wexler et al. An important question
is whether the gradual reduction of the band-width of the mean shift
throughout the algorithm is necessary, or if this may be delayed
until the end of the algorithm. In terms of Equation (1), the mean
shift band-width reduction is very similar to reducing the parameter
σ throughout the iterations of ANN search and reconstruction.

After testing and comparing various reconstruction schemes, we
propose the following method. Throughout the algorithm we use
the weighted mean of Equation (1). Then, after convergence of
this scheme at the finest pyramid level, we reconstruct the video
using the Wi∈Np with the smallest distance for each Wp. This
reconstruction correctly “deblurs” the result, and is far simpler
to implement and use than the mean shift. With respect to
execution time, the mean shift algorithm has a time complexity of
O(T |Wp|2no), where T is the number of iterations of each mean
shift, |Wp| is the size of a patch, and no is the number of occluded
pixels. This mean shift is repeated at each iteration within each
pyramid level. The proposed reconstruction, on the other hand,
has a time complexity of O(|Wp|no), the same as the weighted
mean. Even though the ANN search represents the majority of
computation time, it is obviously preferable to use a reconstruction
scheme which is linear, rather than quadratic, with respect to the
patch size.

Figure 2 shows some visual comparisons of the inpainting results



Mean ANN patch error, per component
Propagation order t,y,x y,t,x t,x,y x,t,y y,x,t x,y,t Full search
Beach Umbrella 9.22 9.61 9.49 9.54 9.57 9.11 6.83
Crossing Ladies 7.53 7.44 7.42 7.51 7.50 7.35 6.14
Jumping Girl 6.48 6.52 6.40 6.49 6.50 6.45 4.80

Table 1: Comparison of propagation scanning ordering, in terms of average component error between a patch and its approximate nearest
neighbour. On the last row is the average error of the true nearest neighbour.

(x-1,y,t)

(x,y-1,t)

(x,y,t-1)

Neighbours tested at even 

propagation iterations

(x,y+1,t)

(x+1,y,t)

(x,y,t+1)

Neighbours tested at odd 

propagation iterations

t

y

x

Figure 3: A visual illustration of the neighbour whose shift
maps are tested during the propagation step of the spatio-temporal
PatchMatch. PatchMatch changes the neighbours used for testing
between odd and even iterations.

using different reconstruction schemes. The weighted mean, the
mean shift and the proposed reconstruction are compared. We
observe that the reconstruction using the best ANN (the proposed
reconstruction) is extremely similar to the result using the mean
shift. In this particular case, the use of the best patch at the end of
the algorithm corresponds to choosing one amongst a set of patches
which are randomly distributed around an average value. This, in
effect, recreates the “noise” which corresponds to the video texture
of the sea.

Another crucial part of the reconstruction is the initialisation of
the inpainting solution at the coarsest pyramid resolution. This
initialisation is left unspecified in [17]. To initialise the solution,
we inpaint at the coarsest level using an onion peel approach, with
a layer thickness of one pixel. The pixels within a given layer of the
occlusion are inpainted in parallel, using Equation (1). Since the
information available in each patch on the border of the occlusion
is incomplete, we only compare the unoccluded pixels of a patch
during the ANN search. Once these ANNs are found, we must
choose which one should be used for reconstruction. Some will be
quite unreliable, as only a small part of the patches are compared.
In our implementation, we only use the ANNs of patches whose
centres are located outside the current occlusion layer. For a
spherical occlusion, this means that roughly half of the available
patches are used.

Finally, in [17] the number of iterations in a pyramid level is
fixed. In the interest of robustness, we use the average pixel
colour difference in each channel between iterations as a stopping
criterion. If this falls below a certain threshold, we stop the iteration
at the current level. We set this threshold to 0.1.

2.4 Spatio-temporal subsampling
The last part of the algorithm concerns the implementation of
the multi-resolution spatio-temporal pyramid. As noted in [14],
temporal subsampling may produce undesirable effects. We do
not temporally subsample either, apart from cases where objects
are occluded for a long time, which was done on only one video

(“Jumping girl”) in this paper. Before downsampling, we filter the
video by averaging 2x2 image blocks.

The use of a spatio-temporal pyramid implies two further details:
the upsampling of the current solution and whether or not to pass
an upsampled version of the current ANNs as an initialisation to
the PatchMatch at the finer level. We keep the same solution
upsampling procedure as in [17], which is able to preserve fine
details. However, we do not initialise PatchMatch at a finer level
using the coarse level ANNs. This avoids biasing the finer ANNs
towards certain spatio-temporal positions. Since certain details
may not be visible at coarser levels, we prefer to let PatchMatch
find the best ANNs at each level independently.

3. RESULTS
Since the main goal of our work is to achieve generic video
inpainting with good results in reduced time, we evaluate our
algorithm in terms of both execution time and visual results. In
this section, we shall compare our work to that of Wexler et al.
[17] and the most recent video inpainting method of Granados et
al. [14].

In all of our experiments, we have retained the parameters as they
are presented in the main body of the paper. In particular, we keep
the patch size of 5x5x5 as used in [17]. We use ten iterations
of propagation/random search during the PatchMatch algorithm
and set the window size reduction factor β to 0.5. During the
construction of the spatio-temporal pyramid, we do not subsample
temporally in any of the videos, apart from “Jumping girl”.

In [17], neither the initialisation of the occluded area nor the
number of iterations per pyramid level are precisely defined. Since
total execution time greatly depends on these details, we shall only
compare our algorithm to Wexler’s in terms of ANN search time.
This represents the majority of total time (in [17], it takes up 95
percent of execution time), thus it makes sense to compare these
timings. While our reconstruction scheme also reduces execution
time, it will not represent as great a speed-up as the ANN search
time, so we do not compare reconstruction timings. We also
provide our total execution times, for reference.

Comparisons with Granados’s methods are more difficult, as it is
semi-automatic. However, several execution times are provided in
[14] and we compare our timings to these.

We recall that Wexler uses the method of [18] to search for ANNs.
This method uses a parameter, ε , which determines the accuracy
of the ANNs. As this parameter is not given in [17], we set it
to produce the same average error per component as the spatio-
temporal PatchMatch. This is the same evaluation method used by
Barnes et al. in [19]. Specifically, we set ε to 10. In Table 2, the
ANN search time comparisons may be seen. We obtain a speedup
of 20-50 times over the method of [18].



Original frame : “Duo” Original frame : “Museum”

Inpainting result from [14]
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Figure 4: We achieve similar results to those of [14] in an order of magnitude less time, without user intervention. The occlusion masks are
highlighted in green. Result videos are viewable at http://www.enst.fr/~gousseau/videoinpainting



Algorithm
Approximate nearest neighbour execution times, for all occluded pixels at full resolution.
Beach Umbrella Crossing Ladies Jumping Girl Duo Museum

264x68x200 170x80x87 300x100x239 960x704x154 1120x754x200
Wexler 985 s 942 s 7877 s - -
Ours 50 s 28 s 155 s 2515 s 3958 s

Algorithm Total execution time
Granados 11 hours - - - 90 hours

Ours 21 mins 6 mins 62 mins 7.1 hours 8.64 hours

Table 2: Partial and total inpainting execution times on different examples. The partial inpainting times represent the time taken for the ANN
search for all occluded patches at the full resolution. Note that for the “museum” example, Granados’s algorithm is parallelised over the
different occluded objects and the background, whereas ours is not.

In comparison to the work of [14] our method took 8h38m on the
longest example (“Museum”), while Granados et al. report a total
execution time of 90 hours, with a similar computer architecture
to ours. We used a 64-bit machine with a 2.67 GHz Intel Xeon
processor. For fairness, only one core of the processor was used
(as in [14]). However, in Granados’s work each occluded object
and the background are inpainted separately, in parallel, whereas
we treat all objects simultaneously. In the “Museum” example
Granados reports [21] seven objects plus the background, meaning
that the real workload is several times greater.

We now compare the time complexity of our algorithm with that of
[21]. The patch match algorithm runs in O(6Qnodp+Qnolog2(N))
time, where (as above) no is the number of occluded pixels, dp is
the dimension of the patches, N is the maximum random search
space size, and Q is the number of iterations of propagation/random
search. The reconstruction runs in O(nodp) time. In comparison,
Granados et al. report a time complexity of O(n3

oN). This explains
the quite long execution times reported in [14] and in particular the
need to restrict the search space manually.

It is interesting to note that the search space restriction used in [14]
may not only reduce execution times, but might in fact improve
inpainting results. Liu et al. [13], who used graph cuts for the
purpose of image inpainting, have reported that inpainting results
are often degraded when the entire image is used as a search space.
In the case of image inpainting, restricting the search space is
not a significant problem, since in the vast majority of cases the
necessary information is situated around the occlusion. On the
other hand, this is not the case for video inpainting. For example, if
an object displays periodic motion with a particularly large period,
then the video information may be situated at a correspondingly
large spatio-temporal distance. In the proposed algorithm, we do
not restrict the search space and we are able to produce coherent
results. Finally, in the case of graph cut based inpainting schemes
such as [10, 13, 14], it is not possible to use patches of arbitrary
size, due to execution time issues. This is an extremely limiting
factor, and is a strong argument in favour of inpainting schemes
such as that which have presented in this work.

Figure 1 and Figure 4 present visual comparisons of our results with
those of [17] and the high resolution results of [14]. We observe
that our results are qualitatively very similar. These results were
obtained in highly reduced execution times, and in a generic man-
ner, without manual user intervention, validating the initial goal of
our work. The complete comparison videos may be viewed at the
following address : http://www.enst.fr/~gousseau/videoinpainting.

4. FURTHER WORK
Though we have shown that automatic generic video inpainting
with reduced execution times is possible, there are several points
in the proposed algorithm which could be improved upon. In
particular, the use of a spatio-temporal pyramid means that certain
comparisons may be ambiguous at coarse resolutions. Liu et
al. [13] introduce new components in the patch comparison to
avoid this problem, and this could possibly be extended to the
video context. Furthermore, we have not exploited the parallel
aspect of both the random search step and the reconstruction.
A parallel implementation of these steps could further decrease
the execution times, making results available more quickly and
increasing experimental possibilities. Finally, recent work [12]
on nearest neighbour searches claims to accelerate PatchMatch
by a factor of 10-20 in the 2D case, by using a kd-tree and
dimensionality reduction. Extending these ideas to spatio-temporal
patches presents new challenges, such as choosing a basis which
is effective in terms of dimensionality reduction and computational
cost.

5. CONCLUSION
We have shown that automatic video inpainting with global optimi-
sation of a patch-based functional in reasonable execution times is
possible, even for high resolution videos. By extending the Patch-
Match algorithm to the case of spatio-temporal patches, we are able
to provide a fast, useable video inpainting algorithm. Furthermore,
we have proposed a fast, simple solution to the problem of over-
smoothing of video inpainting results which is particularly prob-
lematic in the case of video textures. We have compared our results
with those of [17] and [14] and found that our algorithm produces
very similar results in an order of magnitude less time. This work
should help to make experimentation with automatic, generic video
inpainting easier and therefore make further progress in the domain
possible.
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