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Abstract—The EEG is a system to measure electrical brain
activity using multiple electrodes placed on the scalp. Unfortu-
nately, the signal can be easily contaminated by a lot of noises
called artifacts. These can be generated by various actions such
as eye blinks, eye movements, muscle activities or small electrode
movements. This paper presents a global artifact removal method
corresponding to an evolution of the AFOP method (Adaptive
Filtering by Optimal Projection) in order to improve its stability.
This evolution automatically filters ocular, muscular and heart
beat artifacts. The results are validated on long duration EEG
recordings containing pathological activity. An expert analysis
shows that the cerebral signal is well conserved while a lot of
artifacts are removed.

I. INTRODUCTION

Artifacts represent a major problem on Electroencephalog-

raphy analysis. Artifacts are defined by signal alterations

caused by non-cerebral activity and can have several origins.

There are the ocular artifacts that appear when the patient

blinks or moves his eyes, muscular artifacts that appear when

the patient contracts his jaw or his forehead, and electrode

artifacts (including heart beat artifact) generated by electrode

mechanical movement.

Artifact amplitude is often much higher than EEG ampli-

tude, thus making the analysis difficult and making the auto-

matic processing impossible. Our team has been working on

this subject for years [1] in order to improve automatic treat-

ment of EEG for anticipated detection of epilepsy seizures.

This paper deals with the filtering of long duration EEG

recordings (3 to 6 hours) for clinical application in order to

ease the neurophysiologic interpretation. The long duration ex-

aminations are often more artifacted than standard examination

(20 min) because the patient are not asked to relax. The signal

over noise ratio can then be very low and all studies show that

it is impossible to completely filter high amplitude artifacts

without removing EEG signal [2].

This paper presents a global method enabling to filter a large

amount of artifacts while preserving the major part of EEG

activity and particularly pathological activity. This method is

an improvement of AFOP method (Adaptive Filtering by Op-

timal Projection) that the authors have published in [1], which

improves its stability. The AFOP method filters ocular and

muscular artifacts but is not well designed to filter electrode

artifacts. This article integer a way to filter heart beat artifacts

described in sec. II, using the idea of Y. Wang [3].

The medical context is described in the first part, in order

to understand what has to be filtered or not. Then, a brief

overview of spatial filtering is introduced by presenting back-

ground on ICA and the principle of AFOP and its improvement

is presented on a third part. Finally a comparison between

manual ICA and this method is made to prove that this method

can improve filtering in several cases.

II. MEDICAL CONTEXT

The authors have been working on a long duration exam-

ination recording with a 19 electrodes 10/20 system. Two

electrodes are added on each wrist to measure Electrocardio-

graphic activity. This examination lasts from 3 to 6 hours.

During this time, the patient is exposed to flashing lights

at various frequencies and also carries out hyperventilation,

which consists in breathing quickly and deeply. Sometimes

the patient is also asked to sleep and may enter in the firsts

sleeping phases. These tests can reveal pathological trouble or

cause epilepsy seizures.

During the standard examination, some elements must be

kept due to the fact that they correspond to cerebral activity.

It can be noticed especially:

• Paroxysms (epilepsy indicators). They are graphical el-

ements that can be seen under various forms. The most

common one is called spike wave. The paroxysms be-

longs to a very large frequency band (1 − 30 Hz).

• Reactivity to eye closure. This is characterized by an

alpha rhythm apparition (8 − 13 Hz) mainly located in

the occipital region.

• Slow waves (< 4 Hz). These waves can be seen as

pathological for the adult. However, this activity is normal

for people under 25 years old during hyperpnoea.

The main purpose of the filtering process is to keep these

signals as well as possible and to erase the ones with artifactual

origins. The artifact types can be broken down as follows:

• Ocular artifacts. Two kinds of ocular artifacts can be

observed: eye blinks and eye movements. Eye blinks are

represented by a low frequency signal (< 4 Hz) with high

amplitude. It is a symmetrical activity mainly located on

the front electrodes (FP1, FP2) with a low propagation.

Eye movements are also represented by a low frequency

signal (< 4 Hz) but have a higher propagation, especially



on the temporal electrode. It is caused by the fact that

eyes represent dipoles and their movements lead to an

alteration of the electrical field. It is characterized by a

dissymmetry between the two hemispheres.

• Muscle artifacts. Muscular activity creates high fre-

quency signals (> 13 Hz). There are a lot of muscles all

over the head, but the muscles in the forehead and jaw

are strongly marked. Jaw muscles are powerful and can

produce an important signal on temporal area. Forehead

muscles are less powerful but are closer to electrode and

produce a signal on frontal area.

• Mechanical and electrode movements. It may be caused

by moving the wire or by a bad connection between the

electrode and the skin. In this case the signal is located

on an only electrode. Mechanical artifact may also occur

when the patient contracts his muscle. A movement of the

facial skin or of head part can then be generated, which

will result to an artifact signal on several electrodes. And

finally, mechanical artifacts can be caused by heart beats

if an electrode is located on a vein. This will create

an activity synchronized with the heart but have a more

sinusoidal shape. Mechanical and electrode artifacts are

mainly low frequency signals (< 4 Hz) due to the fact that

they directly correspond to the mechanical movement.

III. STATE OF ART

For an awake adult, the main part of measured signal is on

the frequency band α (8 - 13 Hz) and the artifacts are either on

higher frequencies (> 13 Hz) for muscle artifacts, or on lower

frequencies (< 8 Hz) for ocular and mechanical artifacts.

However, some EEG signals (particularly pathological element

like slow waves and spikes) can occur on the artifactual

frequency bands and make a frequency filtering impossible.

This is why a lot of work is realized on spatial filters which

use information of signal repartition on various channels. Most

of the methods use Independent Component Analysis (ICA)

to realize this filter [4].

A. Spatial filter by ICA

ICA supposes that the various signal channels are a linear

mixing of sources [5]:

V = MS (1)

V is the signal matrix where lines represent channels

and columns time samples and S is the signal matrix of

sources. The matrix M(m, n) is called mixing matrix. If

number of sources (n) is inferior or equal to number of

channels (m), M will be invertible. The pseudo-inverse matrix

W = (MT M)−1MT is called separating matrix.

ICA aims to estimate this separating matrix W so that

sources (S = WV) would be independent. There exists

many methods of ICA and each of them uses a different

measure of independence called contrast function [5]. For

example, T. Jung et al. uses Infomax method which maximizes

neguentropy of sources [4]. Once sources are defined, they

are identified as artifactual or not and the artifactual ones are

canceled: S′ = DS, where D is a diagonal matrix with 0 on

artifacted components and 1 on the others. The signals are

then reconstructed by inverse transformation.

V′ = MDS (2)
V′ represents filtered signals. A filtering matrix is built using:

F = MDW (3)
So, a special filter consists in building a filtering matrix

which is a projection matrix (ie. FF = F). The signal can

then be directly filter by applying this matrix:

V′ = FV (4)
Projection matrices have interesting properties: they are

diagonalizable and the eigenvalues are all 1 or 0. They can

then be defined by two eigenspaces E1 and E2 of respective

dimension n1 and n2 (n1 +n2 = n). The subspace, E1 corre-

sponding to cerebral sources is defined by ∀x ∈ E1, Fx = x

and the subspace E2, corresponding to artifactual sources is

defined by ∀x ∈ E2, Fx = 0.

It is important to notice that the n1 first line vectors of W

matrix (eq. 3) represents a base of the subspace E1 and the

n1 first column vectors of M are a base of the orthogonal

subspace of E2. In the same way, the n2 last line vectors of

W matrix represents a base of the subspace E2 and the n2 last

column vectors of M are a base of the orthogonal subspace

of E1. The mixing of artifactual sources is then equivalent to

the separation of cerebral sources and reciprocally.

B. ICA automation

One of the major problems of ICA is the necessity to

manually identify each component as artifactual or not. Many

papers are concentrated on this subject but most of them are

concentrated only on ocular artifacts. There is only the method

of P. Le Van et al. [2] that treats all types of artifacts. It consists

in extracting some features of each source, characterizing

location, frequencies, amplitude or other properties. Then a

Bayesian classifier is used to decide from these features if a

source is artifactual or cerebral.

IV. AFOP METHOD

The method proposed in this article is not based on ICA

but on Common Spatial Pattern (CSP) theory. It consists in

constructing a filtering matrix using a training step to learn

distribution of artifactual activity. On this purpose, two EEG

periods are compared. The first one contains resting EEG

and the second one contains EEG contaminated with artifacts.

The artifactual sources are then defined by the sources with

the most important variance increase between rest instant and

artifact instant. On the other way, the EEG sources are the

sources with approximate constant variance.

A. Protocol

This method has to learn the most common artifacts and

requires a protocol realized on each beginning of the recording.

During two minutes, the patients have to carry out four artifact

types several times. This period is then compared to a rest

period (without artifacts) for the learning step. The four artifact

types are: eye blinks, eye movements, jaw clenching and

forehead movements.



B. Standard AFOP

The AFOP method [1] is decomposed in two steps. The

first one consists in determining a subspace E1 by learning the

separation of cerebral sources with Common Spatial Pattern

(CSP) method. The second step consists in determining the E2

subspace with a least squared method on a sliding window.

This E2 subspace corresponds to the best distribution of the

cerebral sources defined by E1.

For the first step, the CSP method enables to find sources

whom variance increases the less between two learning periods

corresponding to matrix V1 and V2. The two covariance

matrices are then calculated by C1 = V1VT

1
and C2 = V2VT

2
.

The subspace E1 correspond to sources increasing the less

and it is defined by the eigenvectors ([w1, w2, w3, . . .] = WT )

corresponding to the smallest eigenvalues of:

C−1

1
C2 (5)

The eigenvalues correspond to the variance ratios between

two periods. It is possible to select only eigenvectors whom

eigenvalues are inferior to a threshold (empirically fixed to

2.5) in order to determine automatically the dimensions n1

and n2 of each subspaces.

Once the subspace E1 defined, the orthogonal subspace of

E2 is determined by finding the best distribution of cerebral

sources by a least squared method on the period to filter. A

sliding window of 20 seconds (of signal matrix Vt) is used to

cover the entire recordings. The best distribution is given by:

M = CtW
T (WCtW

T )−1 (6)

Where Ct = VtV
T

t
is the covariance matrix. It can be

noticed that if the period Vt correspond to one of the period

V1 or V2, the subspace E2 is given by the n2 last eigenvectors

of eq. 5.

For the artifact filtering application, ones can suppose that

both cerebral and artifactual sources are static due to the

fact that the brain and the muscles are always on the same

place. However, it is possible that some sources would not be

activated during the resting period of the learning step. For

example the sources of paroxysms may not appear on this

period. By the way, there is only the artifactual distribution

space that will be considered as constant. The sec. III-A shows

that considering artifact distribution as constant is equivalent

to consider cerebral separation as constant.

C. Heart beat artifacts

The AFOP method does not learn artifacts which are

constant during the entire recording. This is the case of heart

beat artifacts due to the fact that they are as important during

the rest period as during artifact period. It is then possible

to use the method of J. Wang [3] by determining times of

each heart beat by using Electrocardiogram (ECG). The mean

of signals taken one second after each beat is computed in

order to minimize the amplitude of sources which are not

synchronized with ECG. A CSP is then carried out between

the entire period to filter and the mean signals. Sources with a

variance ratio closed to 1 are artifactual sources and are added

to artifact repartition subspace (orthogonal of E1).

Fig. 1. Illustration of stability improvement

D. Stabilized AFOP

In the case where the artifact distribution is slightly different

to the one of the learning period, some instability may occur.

This can be explained by the fact that a small artifact appears

on cerebral sources and the AFOP method tries to rebuild

the original signal by incorrectly amplifying those sources.

The fig. 1.b illustrates the result of instability problem. A

meaningless signal appears on channel FP1 and FP2 because

the method tries to rebuild the artifact.

This instability can be translated by a small angle between

the two subspaces E1 and E2. It is in general due to the

fact that the cerebral sources are neglecting compared to

the artifactual ones. There are then a lot of liberty degrees

to rebuild the artifacts. These liberty degrees can then be

deleted by doing a Principal Component Analysis (PCA)

on the current period. Then, a reduced space based on the

first components of PCA (those of bigger eigenvalues) is

considered and the subspace E1 is projected on this base. The

normal process is then carried out on this reduced space.

The number of components to keep with the PCA decreases

from n until the angle between the two subspaces would be

superior to a threshold (fixed empirically to 7◦) or until too

much signal would be deleted with the PCA. The fig. 1.c

illustrates the result of this method.

E. Band frequency decomposition

The described method enables to spatially characterize the

artifacts. However, artifacts can be defined as well by their

frequencies. This is the reason why each of these steps can be

carried out on frequency band decomposition. The signals in

each frequency band are treated independently and when all

frequency bands are spacially filtered, the final EEG signal will

be their sum. The selected frequency bands are the followings:

1) The band (1-8 Hz) corresponding to neurologic band

∆ (1-4 Hz) and θ (4-8 Hz). These signals are on low

quantity on normal EEG but their presences often reveal

abnormalities. All the eye and electrode artifacts are

contained on this band.

2) The band (8-13 Hz) corresponding to neurologic band α.

Most of ”Normal” EEG signal is in this band, generally

poor in artifacts.

3) The band β (> 13 Hz). There are very few EEG

β signals that can be measured at the brain surface.

This band contains mainly muscular artifacts but during

paroxysms the spikes are on this band. Taking account



(a) Artifacted original signal

(b) Filtered signal with ICA

(c) Filtered signal with stabilized AFOP with frequency band decomposition

Fig. 2. Examples of filtering results with ICA and stabilized AFOP

of its width, a more precise segmentation is carried out

for the followed frequency bands (13-20 Hz), (20-30 Hz)

and (> 30) Hz).

For the band (1-8 Hz), only ocular artifacts and heart beats

artifacts are considered so the matrix V2 is composed only of

ocular artifacts. On the other bands, only muscular artifacts

are considered and the stabilization is less important than in

low frequency.

V. RESULTS

Six recordings of epileptic adult patients have been treated

with this method and examined by an expert. Two of these

recordings contain spike wave paroxysms, and three contain

slow waves activities. The fig. 2(c) illustrates some examples

of result that can be obtained with Stabilized AFOP and the

fig. 2(b) shows results that can be obtained by manual ICA.

The ICA filtering has been made on 20 second pages EEG

with JADE algorithm. The automatic method using ICA gives

worst result than manual ICA since these methods can only

add classification error of components.

This figure shows that both methods filter most of artifacts

and remove only a small quantity of EEG signals. It can

be noticed that muscular artifacts are often less filtered with

ICA method and they are about equivalent concerning ocular

artifacts. This can be explained by the fact that the frequency

band decomposition treats each frequency independently. In

general case, ICA trends to badly filter short duration artifacts

because there is not enough time to learn them. By the

other way, AFOP cannot filter electrode artifacts because the

spatial distribution is always different. These examples show

that both AFOP and manual ICA reduce the amplitude of

pathological elements of about 25%. Given that the AFOP

method continually applies the filter, this reducing is present

even if there is no artifact contrary to ICA but the results

of AFOP are a little better if there is a mixing of EEG and

artifacts because ICA may not manage to correctly separate the

sources. On all realized tests, the α rhythm is never reduced

whereas ICA can reduce it in presence of many artifacts. The

last part of this figure shows that AFOP method perfectly filter

heart beat artifacts whereas it is not always the case with ICA.

This method has been programmed in Matlab using

EEGLab toolbox [6]. The computation of AFOP is instan-

taneous and there is only the filtering step for the frequency

band decomposition that takes about 10 minutes on a Pentium

4 3GHz, for a 3 hours recording.

VI. CONCLUSION

The AFOP method filters automatically a large variety of

artifacts. However, some instability can occur when artifacts

are too important compared to the EEG signal or when the

training is not precise enough. This paper has presented a

method increasing this stability. Using the frequency band

decomposition, the results are often better than those realizable

with ICA. There is only mechanical movement artifacts that

this method is badly defined to filter due to the fact these

artifacts are not static. The study on long duration recording

shows that it is possible to filter a large amount of artifacts

while keeping most of the EEG signal.
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