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Vibratory behavior of two coupled oscillators is studied. The main system — Dahl type — is 
coupled to a very light system with a nonsmooth potential that can be endowed for passively 
controlling the main system. Invariant manifold of the system at the fast time scale is revealed 
and the system behavior at slow time scale around the infinity of the fast time scale is detected. 
This can give us the chance to forecast all possible attractors of the system during energy 
exchange between the two oscillators.
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1. Introduction

Cubic nonlinear innate of some light oscillators
namely, nonlinear energy sink devices (NES), has
been proved to be a good choice for passive
control and absorbing high amount of vibratory
energy of linear important systems [Vakakis, 2001;
Gendelman et al., 2001; Vakakis & Gendelman,
2001; Gendelman, 2004; Gendelman & Lamarque,
2005; Gendelman et al., 2006; Manevitch et al.,
2007a; Manevitch et al., 2007b; Manevitch et al.,
2007c; Vakakis et al., 2009a, 2009b; Starosvetsky &
Gendelman, 2009, 2010; Gendelman et al., 2011;
Viguié & Kerschen, 2010; Manevitch et al., 2011;
Pham et al., 2010, 2011a; Pham et al., 2011b; Pham
et al., 2012; Vaurigaud et al., 2011a; Vaurigaud
et al., 2011b, 2011c; Ture Savadkoohi et al., 2011a].
These systems are verified experimentally as well
[McFarland et al., 2005a; McFarland et al., 2005b;
Kerschen et al., 2007a; Kerschen et al., 2007b; Gour-
don et al., 2007a; Gourdon et al., 2007b; Lee et al.,
2007; Lee et al., 2008; Lee et al., 2010; Ture Savad-
koohi et al., 2012a].

There have been some attempts to consider
other kinds of NES devices or main systems dur-
ing recent years. Nucera et al. [2007] and Lee et al.

[2009] studied energy pumping in systems with
vibro-impact NES, while the energy pumping in a
2-dof system consisting of a linear dof and a nonlin-
ear energy sink with nonpolynomial and piecewise
potential was investigated by Gendelman [2008].
Schmidt and Lamarque [2010] studied the energy
transfer from initial single dof system including non-
smooth term of friction to a NES under free tran-
sient or periodic external solicitations. Lamarque
et al. [2011] analyzed the targeted energy trans-
fer phenomenon from a linear master dof system
to a Nonsmooth NES (NSNES) under different
forcing conditions. They did a detailed investiga-
tion on the strongly modulated response (SMR) of
the system and necessary conditions for its exis-
tence. Recently, Lamarque et al. [2012] analyzed
multiscales dynamics of a nonsmooth main system
and a NSNES. They revealed different invariants
of the system at different infinities of time layers
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with detecting stability zones of the system at each
time layer. They showed that the system may get
attracted to different fixed points at different scales
of time which should be considered very carefully in
the control process. Real behavior of some systems
not only depends on their current state but also on
their past states, which is called hysteresis behav-
ior. For instance, hysteresis response of some of the
structural elements (e.g. semi-rigid joints of a struc-
ture) during an earthquake or cyclic loadings [Ture
Savadkoohi et al., 2011b] and hysteresis behav-
ior of magnetorheological/ electrorheological fluid
dampers and shape-memory alloys [Awrejcewicz
et al., 2008]. So, for detecting or identifying the
real behavior of systems, an appropriate hystere-
sis model should be used. The so-called Bouc–Wen
class of hysteresis models in functional form was
originally proposed by Bouc [1967, 1971] and gen-
eralized by Wen [1976]. Meanwhile, Dahl [1968]
proposed a model which was an alternative to
the Coulomb model for dry friction [Ikhouane &
Rodellar, 2007]. Bouc–Wen class of hysteresis is
widely used [Song & Der Kiureghian, 2006] due
to their simplicity in analytical and computational
treatments, since only one auxiliary nonlinear
equation describes the hysteretic behavior, their
application in nonlinear random vibration and their
ability in describing various characteristics of hys-
teretic behavior such as degradation of stiffness
and strength, pinching effect, biaxial hysteresis and
asymmetry of the peak restoring force. However,
an important drawback of Bouc–Wen type hystere-
sis models is local violation of plasticity theory
where they may produce negative energy dissipa-
tion during unloading/reloading process without
load reversal [Casciati, 1987; Thyagarajan & Iwan,
1990]. Nevertheless, they facilitate deterministic
and stochastic dynamic analysis of real systems in
the field of mechanical and structural engineering
with reasonable and acceptable accuracy [Song &
Der Kiureghian, 2006].

In this paper, we try to understand multiscale
dynamics of two coupled nonsmooth oscillators,
where the main one is Bouc–Wen type in general
and Dahl type in particular and the other one is
a simple nonsmooth oscillator which is attached to
the main oscillator for the sake of control or energy
harvesting. The organization of the paper is as fol-
lows: Governing equations of the system and their
rescaled and averaged forms are developed in Sec. 2.
The behavior of the system at the fast time scale is

emphasized in Sec. 3 while its behavior at the slow
time scale in general and around its behavior at the
fast time scale in particular, with some information
on the stability analysis is studied in Sec. 4. Some
numerical examples are collected in detail in Sec. 5.
Finally, the paper is concluded in Sec. 6.

2. Governing Equations of the

System and Their Averaged

Forms

Let us consider a Bouc–Wen type main system
[Song & Der Kiureghian, 2006] with the mass M

under external forcing term f̃(t) = Γ sin(Ωt) that is
coupled to a NSNES with mass m, where 0 < ǫ =
m
M

≪ 1. The mathematical model of this system at
the time domain t can be summarized as follows:


























Mẍ1 + Cẋ1 + aK1x1 + (1 − a)K1x3

+ F̃ (x1 − x2) + λ̃(ẋ1 − ẋ2) = Γ sin(Ωt)

mẍ2 + λ̃(ẋ2 − ẋ1) + F̃ (x2 − x1) = 0

ẋ3 = Aẋ1 − β|ẋ1||x3|n−1x3 − γẋ1|x3|n

(1)

where x3(0) = 0 and A, β > 0, γ and n are dimen-
sionless quantities controlling the behavior of the
model. F̃ is the nonsmooth potential function of
the NSNES which is defined as follows:

F̃ (α) = −∂V (α)

∂α
= −F̃ (−α)

=















0 if − δ ≤ α ≤ δ

K2(α − δ) if α ≥ δ

K2(α + δ) if α ≤ −δ.

(2)

Let us shift the system to time scale T = t

√

ak1

M
=

tϑ. The system (1) reads (xj(t) �→ yj(T ), j = 1, 2
and x3(t) �→ z(T )):







































ÿ1 + ǫζẏ1 + y1 +
1 − a

a
z + ǫF̂ (y1 − y2)

+ ǫλ(ẏ1 − ẏ2) = ǫf0 sin(ωT )

ǫÿ2 + ǫF̂ (y2 − y1) + ǫλ(ẏ2 − ẏ1) = 0

ż = Aẏ1 − β|ẏ1||z|n−1z − γẏ1|z|n

(3)

where ǫζ = C√
aK1M

, ǫλ = λ̃√
aK1M

, 1
aK1

F̃ (α) =

ǫF̂ (α), k = 1
ǫ

K2

aK1
, ω = Ω

ϑ
and Γ

aK1
= ǫf0. The scaled
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Fig. 1. y1 versus η.

system potential of the NSNES reads as:

F̂ (α) =















0 if −δ ≤ α ≤ δ

k(α − δ) if α ≥ δ

k(α + δ) if α ≤ −δ.

(4)

The Dahl model [Ikhouane & Rodellar, 2007] of the
mentioned system which is the aim of this paper
can be obtained by setting n = 1 and γ = 0. Typ-
ical behaviors of these kinds of systems for some
given parameters are depicted in Figs. 1 and 2,
where

η = ǫζẏ1 + y1 +
1 − a

a
z + ǫF̂ (y1 − y2)

+ ǫλ(ẏ1 − ẏ2). (5)
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Fig. 2. z versus ż.

These results are obtained by direct integration
of Eq. (3) with the “ode45” function of Matlab. The
following initial conditions have been chosen for the
system:

{

y1(0) = 20, ẏ1(0) = 0

y2(0) = 0, ẏ2(0) = 0
(6)

It should be mentioned that if a = 1, then the effect
of Dahl model will disappear and the main system
will remain linear. We are interested to analyze sys-
tem (3) in the vicinity of 1:1 resonance. Let us trans-
fer it to the following coordinates:

{

v = y1 + ǫy2

w = y1 − y2

(7)

we have,















































v̈ +
ǫζ

1 + ǫ
(v̇ + ǫẇ) +

1

1 + ǫ
(v + ǫw) +

1 − a

a
z = ǫf0 sin(ωT )

ẅ +
ǫζ

1 + ǫ
(v̇ + ǫẇ) +

1

1 + ǫ
(v + ǫw) +

1 − a

a
z + (1 + ǫ)F̂ (w) + (1 + ǫ)λẇ = ǫf0 sin(ωT )

ż = A
v̇ + ǫẇ

1 + ǫ
− β

∣

∣

∣

∣

v̇ + ǫẇ

1 + ǫ

∣

∣

∣

∣

|z|n−1z − γ
v̇ + ǫẇ

1 + ǫ
|z|n.

(8)

Complex variables of Manevitch [2001] are applied to the system as follows:















(9)

ϕ1e
iωT = v̇ + iωv 

ϕ2e
iωT = ẇ + iωw 

ϕ3e
iωT = ż + iωz
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where i =
√
−1. The averaged form of the system (8) in the vicinity of 1:1 resonance i.e. ω = 1 + σǫ

reads:














































































ϕ̇1 +
i

2
(1 + σǫ)ϕ1 +

ǫζ

2(1 + ǫ)
(ϕ1 + ǫϕ2) −

i

2(1 + ǫ)(1 + σǫ)
(ϕ1 + ǫϕ2) −

1 − a

a

i

2(1 + σǫ)
ϕ3 =

ǫf0

2i

ϕ̇2 +
i

2
(1 + σǫ)ϕ2 +

ǫζ

2(1 + ǫ)
(ϕ1 + ǫϕ2) −

i

2(1 + ǫ)(1 + σǫ)
(ϕ1 + ǫϕ2) −

1 − a

a

i

2(1 + σǫ)
ϕ3

− i

2
(1 + ǫ)ϕ2G(|ϕ2|2) +

1 + ǫ

2
λϕ2 =

ǫf0

2i

ϕ3 =
A

1 + ǫ
(ϕ1 + ǫϕ2) +

iβe−iδ1(1+σǫ)

12π(1 + ǫ)(1 + σǫ)
(3(ϕ1 + ǫϕ2)ϕ3 + e4iδ1(1+σǫ)(ϕ∗

1 + ǫϕ∗
2)ϕ

∗
3

+ 3e2iδ1(1+σǫ)(ϕ∗
1ϕ3 + ǫϕ∗

2ϕ3 − ϕ1ϕ
∗
3 − ǫϕ2ϕ

∗
3)).

(10)

The .∗ represents the complex conjugate of a function and G(|ϕ2|2) reads as [Gendelman, 2008; Lamarque
et al., 2011; Lamarque et al., 2012]:

G(|ϕ2|2) =



















0 if |ϕ2| < δ

1

π

(

2k arccos

(

δ

|ϕ2|

)

− 2δk
√

|ϕ2|2 − δ2

|ϕ2|2

)

if |ϕ2| ≥ δ.
(11)

Let us note that for the general Bouc–Wen
model, we cannot obtain the general expression
of the relation corresponding to the third equa-
tion of (10) which is obtained for the Dahl model.
To deal with the introduced dynamical system,
the multiple scales asymptotic approach [Nayfeh &
Mook, 1979] by introducing slow times τ1, τ2, . . .

with the fast time τ0 will be implemented as
follows:

T = τ0, τ1 = ǫτ0, τ2 = ǫ2τ0, . . . (12)

so,

d

dT
=

∂

∂τ0
+ ǫ

∂

∂τ1
+ ǫ2 ∂

∂τ2
+· · · . (13)

In fact, instead of revealing the system behavior as a
function of t directly, we embed it in a larger class of
functions, determine a uniform expansion for each
function as a function of time scales τ0, τ1, τ2, . . . ,

and then connect each function to the main system
behavior at different transient and/or steady state
regimes that are attracted according to the influ-
ence of the time scale. In the following sections, we
will analyze the averaged system at different time
scales in general and particularly with special atten-
tion to the system behaviors at the infinity of each
time scale.

3. The Averaged System in ǫ0 Order

Let us assume that 1−a
a

= ǫa0 = o(ǫ). At the ǫ0

order, system (10) yields:



























































∂ϕ1

∂τ0
= 0 ⇒ ϕ1 = ϕ1(τ1, τ2, . . .)

∂ϕ2

∂τ0
+

i(1 − G(|ϕ2|2)) + λ

2
ϕ2 −

i

2
ϕ1 = 0

ϕ3 = Aϕ1 +
iβe−iδ1

12π
(3ϕ1ϕ3 + e4iδ1ϕ∗

1ϕ
∗
3

+ 3e2iδ1(ϕ∗
1ϕ3 − ϕ1ϕ

∗
3)).

(14)

Fixed points Φ(τ0) of system (14) (τ0 → ∞ and
∂ϕ2

∂τ0
→ 0) are evaluated as:

i(1 − G(|Φ|2)) + λ

2
Φ =

i

2
ϕ1. (15)

If we consider that ϕ1 = N1e
iδ1 and Φ = N2e

iδ2 ,
the following invariant manifold of the system and
relationship between its phases at τ0 time scale can
be obtained:

N1 = N2

√

λ2 + (1 − G(N2
2))

2 (16)

4



δ1 = δ2 − arctan

(

λ

1 − G(N 2
2)

)

. (17)

It has been proved that the stable zone of the
obtained invariant manifold of the system at τ0 time
scale, i.e. Eq. (16), is defined as [Lamarque et al.,
2011; Ture Savadkoohi et al., 2012b]:

λ2 + (1 − G(N 2
2))(1 − H(N2

2)N2 − G(N 2
2)) > 0

(18)

where

H(N2
2) =















0, N2 < δ

4δk

πN3
2

√

N2
2 − δ2, N2 ≥ δ.

(19)

The invariant manifold of a system with its sta-
ble borders are illustrated in Fig. 3. In fact, when
the system reaches its unstable borders, it will try
to jump to another stable border by a bifurca-
tion. Forthcoming numerical results will validate
this fact. Let us assume that ϕ3 = N3e

iδ3 . The third
equation of the system (14) can be defined as:

0 10 20 30 40 50
0

5

10

15

20

25

N
2

N
1

δ=10

k=2

λ=0.2

Unstable Zone

Fig. 3. Invariant manifold of a system at τ0 time scale with
unstable zone.

N3e
iδ3 = AN1e

iδ1

+
iβ

12π
N1N3(6e

iδ3 − 2e2iδ1e−iδ3). (20)

After some mathematical treatments on Eq. (20)
and the separation of the real and imaginary parts
of the system, it can be proved that:























cos(δ3) =
6AN 1π(6π cos(δ1) + N1β(−(3 + cos(2δ1)) sin(δ1) + cos(δ1) sin(2δ1)))

N3(36π2 + 8N2
1β

2)

sin(δ3) =
−6AN 1π(−6π sin(δ1) + N1β((−3 + cos(2δ1)) cos(δ1) + sin(δ1) sin(2δ1)))

N3(36π2 + 8N2
1β

2)
.

(21)

4. The Averaged System in ǫ1 Order

The first equation of system (10) at the ǫ1 order is
defined as:

∂ϕ1

∂τ1
= − i

2
f0 +

i

2
(−2σ − 1 + iζ)ϕ1

+
i

2
ϕ2 +

ia0

2
ϕ3. (22)

We are interested to study the behavior of the sys-
tem in τ1 time scale “around” the state when τ0 time
scale has already reached infinity. This means that
we always should take into account Eqs. (15)–(17)
and (21) in all the forthcoming system of equations
for detecting the system behavior at mentioned time
layers. Equation (22) reads:

∂

∂τ1
(Φ − G(|Φ|2)Φ − iλΦ)

= − i

2
f0 +

i

2
(−2σ − 1 + iζ)

× (Φ − G(|Φ|2)Φ − iλΦ)

+
i

2
Φ +

ia0

2
ϕ3.

(23)

After some mathematical manipulations on
Eq. (23), governing equations on the system at
τ1 time scale can be summarized as follows:























∂N2

∂τ1
=

(1 − G(N2
2))Ξ − λΣ

g1(N2)

∂δ2

∂τ1
=

1

N2

λΞ + (1 − G(N 2
2) − 2N2

2G
′(N2

2))Σ

g1(N2)

(24)
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with

Ξ = −1

2
f0 sin(δ2) −

1

2
N2λ(2σ + 1) − 1

2
N2ζ(1 − G(N 2

2)) −
1

2
N3a0 sin(δ3 − δ2) (25)

Σ = −1

2
f0 cos(δ2) −

1

2
N2(1 − G(N 2

2))(2σ + 1) +
1

2
N2ζλ +

1

2
N2 +

1

2
N3a0 cos(δ3 − δ2) (26)

g1(N2) = (−1 + G(N 2
2))

2 + λ2 + 2(−1 + G(N2
2))N

2
2G

′(N2
2). (27)

By considering Eq. (17) it can be proved that:






















N3 sin(δ3 − δ2) =
Υ3(N2)

g2(N2)

N3 cos(δ3 − δ2) =
Υ4(N2)

g2(N2)

(28)























Υ3(N2) = 3AN 2π(N2β(−1 + G(N 2
2))(λ

2 + (−1 + G(N 2
2))

2) + 3πλ
√

λ2 + (−1 + G(N 2
2))

2)

Υ4(N2) = −3AN 2π(N2βλ(λ2 + (−1 + G(N2
2))

2) − 3π(−1 + G(N2
2))

√

λ2 + (−1 + G(N2
2))

2)

g2(N2) = sign(−1 + G(N2
2))

√

λ2 + (−1 + G(N2
2))

2 × (9π2 + 2N2
2β

2(λ2 + (−1 + G(N2
2))

2)).

(29)

One can notice the influence of the Dahl model on
system (24) due to the presence of A, β [in defini-
tions of δ3 in Eq. (21)] and a0.

4.1. Analysis of the system

behavior at τ1 time scale

around invariants of τ0

time scale

The system should be analyzed for clarifying pos-
sibilities of bifurcation(s) of the whole structure

during energy exchange between two oscillators.
System (24) can be rewritten as:























∂N2

∂τ1
=

f1(N2, δ2)

g1(N2)g2(N2)

∂δ2

∂τ1
=

f2(N2, δ2)

g1(N2)g2(N2)

(30)

where f1(N2, δ2) and f2(N2, δ2) are numerators
and g(N2) = g1(N2)g2(N2) is denominator of the
governing equations of the system:

f1(N2, δ2)

=

(

g2(N2)

(

−1

2
f0 sin(δ2) −

1

2
N2λ(2σ + 1) − 1

2
N2ζ(1 − G(N 2

2))

)

− a0

2
Υ3(N2)

)

(1 − G(N2
2))

+

(

g2(N2)

(

−1

2
f0 cos(δ2) −

1

2
N2(1 − G(N 2

2))(2σ + 1) +
1

2
N2ζλ +

1

2
N2

)

+
a0

2
Υ4(N2)

)

(−λ)

(31)

N2f2(N2, δ2)

=

(

g2(N2)

(

−1

2
f0 sin(δ2) −

1

2
N2λ(2σ + 1) − 1

2
N2ζ(1 − G(N 2

2))

)

− a0

2
Υ3(N2)

)

(λ)

+

(

g2(N2)

(

−1

2
f0 cos(δ2) −

1

2
N2(1 − G(N 2

2))(2σ + 1) +
1

2
N2ζλ +

1

2
N2

)

+
a0

2
Υ4(N2)

)

× (1 − G(N 2
2) − 2N2

2G
′(N 2

2)) (32)
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Ordinary fixed points of the system are those who
satisfy:

g(N2, δ2) 	= 0,























∂N2

∂τ1
= 0 ⇒ f1(N2, δ2) = 0

∂δ2

∂τ1
= 0 ⇒ f2(N2, δ2) = 0

(33)

and fold singularities of the system are those who
give:

g(N2, δ2) = 0,























∂N2

∂τ1
= 0 ⇒ f1(N2, δ2) = 0

∂δ2

∂τ1
= 0 ⇒ f2(N2, δ2) = 0.

(34)

In the latter case, the singularity and fixed points
coincide. This case could lead us to very useful
information about analyzing the flow of the system
around its fold lines (i.e. g(N2, δ2) = 0) in order to
study SMR of the system [Starosvetsky & Gendel-
man, 2008; Lamarque et al., 2011].

4.2. Stability analysis

We perturb the system as follows:
{

N2 → N2 + △N2

δ2 → δ2 + △δ2

(35)

By linearizing the equation of system (30) one can
obtain the following equations:













∂N2

∂τ1

∂δ2

∂τ1













= Λ

[

△N2

△δ2

]

(36)

where

Λ =
1

g2













∂f1

∂N2
g − ∂g

∂N2
f1

∂f1

∂δ2
g − ∂g

∂δ2
f1

∂f2

∂N2
g − ∂g

∂N2
f2

∂f2

∂δ2
g − ∂g

∂δ2
f2













. (37)

Now, the linearized stability analysis can be carried
out by looking at eigenvalues of the Λ matrix. As it
was mentioned already at the exact position of fixed
points f1 = f2 = 0, so Λ matrix can be simplified.

5. Some Examples

Here, some results are presented for three different
external forcing terms.

5.1. f0 = 37

All possible areas of the system with the exter-
nal forcing term f0 = 37 for given intervals where
f1(N2, δ2) = 0 and f2(N2, δ2) = 0, are summarized
in Fig. 4. Fold lines of the system which correspond
to g1(N2) = 0 and g2(N2) = 0 (i.e. N21, N22 and
N23) are illustrated in the same figure. In detail, N21

and N22 correspond to the solution of g1(N2) = 0,
and are extremum points of the invariant manifold
in τ0 time scale [Lamarque et al., 2011]. N23 cor-
responds to the solution of g2(N2) = 0. The inter-
sections of f1(N2, δ2) = 0 and f2(N2, δ2) = 0 give
positions of fixed points of the system at τ1 time
scales. The global view of the phase portrait of the
system is depicted in Fig. 5. The behavior of the sys-
tem around one fold fixed singularity (no. 3) and
one normal fixed point (no. 5) in one period are
illustrated in Figs. 6 and 7, respectively. A stabil-
ity analysis can be carried out around these fixed
points by examining eigenvalues of the matrix Λ in
Eq. (37). It is seen from Fig. 6 that the fold singu-
lar point no. 3 is a saddle point which is unstable.
The fixed point no. 5 is stable (from eigenvalues of
Matrix Λ in Eq. (37) and Fig. 7).

The invariant manifold of a system with its
stable borders which are obtained by Eqs. (16)
and (18) are illustrated in Fig. 8. We also present
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Fig. 4. f0 = 37: g1(N2) = 0 (yellow), g2(N2) = 0
(magenta), f1(N2, δ2) = 0 (blue), f2(N2, δ2) = 0 (green).
1, 2, 3, 4: fold singularities, 5: stable fixed point.
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Fig. 5. General view of the phase portrait for the system
with f0 = 37.

results of direct integration of Eq. (3) by the
“ode45” function of Matlab. Numerically obtained
N1 and N2 which are mainly connected to the
amplitudes of the main system and the NES, respec-
tively (Nnum

1 and Nnum
2 ) can be defined in terms of

the original system of equations as follows:

Nnum
1 =

√

(y1 + ǫy2)2 + (ẏ1 + ǫẏ2)2 (38)

Nnum
2 =

√

(y1 − y2)2 + (ẏ1 − ẏ2)2. (39)

Moreover, we assume initial conditions which are
given in (6). Added numerical results to analytical
curve of Fig. 3 are depicted in Fig. 8. It can be
seen that the averaged behavior of the system lies
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Fig. 6. Phase portrait of the system with f0 = 37 around
fixed point no. 3.
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Fig. 7. Phase portrait of the system with f0 = 37 around
fixed point no. 5.

on the predicted averaged invariant manifold of the
system. When the system reaches the stability bor-
der, it jumps to other stable branches via bifurca-
tion. Looking at the variations of amplitudes of the
main system (N1) and the NES (N2) with respect
to time (see Fig. 9), the beating response or SMR of
the overall system is evident. In fact after transient
response of the system, variations of amplitudes
of both oscillators become bounded by hysteresis
bifurcations between stable branches of the over-
all system. Here, it can be seen that the bounded
response of the main system presents small ampli-
tude intervals for the main system and quite large
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Fig. 8. Invariant manifold of a system at τ0 time scale (red
line), stability borders (dashed lines) and numerical results
for f0 = 37 (blue line). Starting points for numerical simula-
tion are (N2, N1) = (20, 20).
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Fig. 9. Amplitude histories and beating responses of the
system with f0 = 37: (a) N2 and (b) N1.

ones for the NES. This response shows that the NES
is capable of controlling amplitudes of the main
oscillator even if the NES finally presents bounded
responses with quite large amplitudes. Explanations
of this behavior for linear systems with coupled
cubic/nonsmooth NES are given in [Starosvetsky &
Gendelman, 2008; Lamarque et al., 2011] where it
is related to the existence of folded singularities on
the fold line(s) of the system.

5.2. f0 = 50

Here we examine the behavior of the system under
a higher external forcing term. Zeros of the numer-
ators and denominators of system (30) are depicted
in Fig. 10 while its overall phase portrait is shown
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Fig. 10. f0 = 50: g1(N2) = 0 (yellow), g2(N2) = 0
(magenta), f1(N2, δ2) = 0 (blue), f2(N2, δ2) = 0 (green).
1, 2, 3, 4: fold singularities, 5: stable fixed point.

in Fig. 11. The behavior of the system around fold
singularity no. 4 (saddle and unstable) and nor-
mal fixed point no. 5 which is stable is depicted
in Figs. 12 and 13, respectively. Added numerical
results to the invariant manifold of the system and
variations of N1 and N2 are collected in Figs. 14
and 15. Figure 15(a) shows that the averaged ampli-
tudes of the NES after experiencing one SMR cor-
responds to the fixed point no. 5 in Fig. 10. In
this case, final amplitudes of the main system [see
Fig. 15(b)] may not be acceptable from the control
point of view. It is worthwhile to mention that these
interesting behaviors of the system and predictions
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Fig. 11. General view of the phase portrait for the system
with f0 = 50.
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Fig. 12. Phase portrait of the system with f0 = 50 around
fixed point no. 4.

cannot be understood by studying only classical
periodic steady-state solutions.

5.3. f0 = 100

Let us consider the behavior of the system under
f0 = 100. The behavior of the system at τ1 time
scale is illustrated in Figs. 16 and 17 where added
numerical results to the invariant manifold around
τ0 time scale are shown in Fig. 18, and the history
of the system amplitudes are depicted in Fig. 19.
Given results show that after one SMR, the sys-
tem at the given time span, finally oscillates around
fixed point no. 1 (see Fig. 20) that possesses very
high amplitudes for both oscillators. This response
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Fig. 13. Phase portrait of the system with f0 = 50 around
fixed point no. 5.
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Fig. 14. Invariant manifold of a system at τ0 time scale (red
line), stability borders (dashed lines) and numerical results
for f0 = 50 (blue line). Starting points for numerical simula-
tion are (N2, N1) = (20, 20).
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Fig. 15. Amplitude histories and beating responses of the
system with f0 = 50: (a) N2 and (b) N1.
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Fig. 16. f0 = 100: g1(N2) = 0 (yellow), g2(N2, δ2) = 0
(magenta), f1(N2, δ2) = 0 (blue), f2(N2, δ2) = 0 (green).
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Fig. 17. General view of the phase portrait for the system
with f0 = 100.
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Fig. 18. Invariant manifold of a system at τ0 time scale (red
line), stability borders (dashed lines) and numerical results
for f0 = 100 (blue line). Starting points for numerical simu-
lation are (N2, N1) = (20, 20).
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Fig. 19. Amplitude histories of the system with f0 = 100:
(a) N2 and (b) N1.
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cannot be admitted from passive control view point
and parameters of the NES should be changed.

6. Conclusions

The behavior of a system of two oscillators, a Dahl
type oscillator and a coupled nonsmooth one, at
two different time scales is studied. For practical
investigations in industry, using nonsmooth energy
sink is more realistic and more easy to be imple-
mented — for instance, passive control process of
systems in the presence of gravity where the sym-
metry can be destroyed due to the gravity [Ture
Savadkoohi et al., 2012b]. The multiscale developed
technique lets us explain detailed behavior of the
system while by classical methods it is impossi-
ble to do so. Detected dynamics of the system at
the slow time scale traces all possible positions of
pseudo-fixed points for understanding all possible
attractions of the system at the same time scale
around the invariant of the fast time scale. The sys-
tem faces bifurcation(s) when it reaches the unsta-
ble zones of its invariant manifold at fast time scale
and then depending on the existence of fold singu-
larities at slow time scale, it may present reverse and
hysteresis bifurcation(s). These developments are
some steps toward the design of the light nonsmooth
oscillator according to the focus of its usage. If the
general goal is controlling the main system, the
light nonsmooth oscillator should be tuned in such
a way that the main system presents permissible
(low) amplitude(s) interval(s) during the final peri-
odic regime and/or its strongly modulated response.
If the goal is harvesting the vibratory energy of the
main system, then periodic and/or strongly modu-
lated response with high energy levels and inter-
vals for the main system can be permitted. The
design process can be carried out by tuning param-
eters of coupled oscillator and analyzing system
zeros and fold lines with their positions in Eq. (30).
Future work will concern other Bouc–Wen models
with more complicated expressions and also try-
ing to analyze the effect of initial conditions of the
response of the overall system by detecting “basin of
attractions” of the system at different time scales.
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