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QUANTUM SUBGROUPS OF THE COMPACT QUANTUM GROUP SU -1 (3)

We study the (compact) quantum subgroups of the compact quantum group SU-1(3): we show that any non-classical such quantum subgroup is a twist of a compact subgroup of SU (3) or is isomorphic to a quantum subgroup of U-1(2).

introduction

Quantum groups, named after Drinfeld's seminal work [START_REF] Drinfeld | Quantum groups[END_REF], are natural Hopf algebraic generalizations of usual groups, arising in several branches of mathematics. As in classical group theory, the problem of their classification is a fundamental one.

An important aspect of the classification problem for quantum groups is the determination of the quantum subgroups of the known quantum groups. Let us recall some significant contributions to this topic.

(1) Podles [START_REF] Podles | Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups[END_REF] was the first to consider this problem, and he classified the compact quantum subgroups of Woronowicz' quantum group SU q (2), for q ∈ [-1, 1] \ {0}. For other approaches, see [START_REF] Bichon | Hopf algebra deformations of binary polyhedral groups[END_REF] (for the finite quantum subgroups when q = -1) or [START_REF] Franz | Idempotent states on compact quantum groups and their classification on Uq(2), SUq(2), and SOq(3)[END_REF] (when q = -1).

(2) The finite quantum subgroups of GL q (n) were classified by Müller [START_REF] Müller | Finite subgroups of the quantum general linear group[END_REF], for q an odd root of unity. From this work arose in particular an infinite family of pairwise non-isomorphic Hopf algebras of the same dimension: this was one of the series of counterexamples to Kaplansky's tenth conjecture. (3) The work of Müller was subsequently generalized by Andruskiewitsch and Garcia in [START_REF] Andruskiewitsch | Quantum subgroups of a simple quantum group at roots of one[END_REF], where they determined the quantum subgroups of G q , with G a connected, simply connected simple algebraic group and q a root of unity of odd order. (4) Another generalization of Muller's work was provided by Garcia [START_REF] Garcia | Quantum subgroups of GL α,β (n)[END_REF], who studied the two-parameter deformations GL α,β (n), and classified the quantum subgroups in the odd root of unity case. [START_REF] Bichon | Hopf-Galois systems[END_REF] The compact quantum subgroups of SO -1 (3) were determined by Banica and the first author in [START_REF] Banica | Quantum groups acting on 4 points[END_REF]: these are the compact quantum groups acting faithfully on the classical space consisting of 4 points. [START_REF] Bichon | Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups[END_REF] The compact quantum subgroups of O * n , the half-liberated orthogonal quantum groups from [START_REF] Banica | Liberation of orthogonal Lie groups[END_REF], were determined by Dubois-Violette and the first author in [START_REF] Bichon | Half-commutative orthogonal Hopf algebras[END_REF]. From these works emerged several new interesting classes of quantum groups, and several hints of what the classification of quantum groups should be. The approaches in (2), ( 3) and ( 4) deal with non-semisimple quantum groups and do not treat the case q = -1, while this is certainly the most interesting case if we have semisimple finite quantum groups in mind. The present paper is a contribution to the case q = -1: we determine the compact quantum subgroups of the compact quantum group SU -1 (3), as follows.

Theorem 1.1. Let G be a non-classical compact quantum subgroup of SU -1 [START_REF] Banica | Quantum groups acting on 4 points[END_REF]. Then one of the following statements holds.

(1) G is isomorphic to a K -1 , a twist at -1 of a compact subgroup K ⊂ SU (3) containing the subgroup of diagonal matrices having ±1 as entries.

(2) G is isomorphic to a quantum subgroup of U -1 [START_REF] Banica | Representations of compact quantum groups and subfactors[END_REF].
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The quantum subgroups of U -1 (2) can be determined by using similar techniques to those of Podles [START_REF] Podles | Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups[END_REF]. We shall not discuss this here. Note that it follows from Theorem 1.1 and its proof that if G is a non-classical compact quantum subgroup of SU -1 (3) acting irreducibly on C 3 , then G is isomorphic to a K -1 , a twist at -1 of a compact subgroup K ⊂ SU (3) containing the subgroup of diagonal matrices having ±1 as entries, and acting irreducibly on C 3 . Thus for any quantum subgroup of SU -1 (3) acting irreducibly on the fundamental representation, the tensor category of representations is symmetric (in Hopf algebra terms, the Hopf algebra R(G) is cotriangular). This seems to be an interesting phenomenon, that does not hold in general (e.g. for the quantum group U -1 (2)).

As in [START_REF] Banica | Quantum groups acting on 4 points[END_REF], the starting point is that SU -1 (3) is a twist at -1 of the classical group SU (3) (a 2-cocycle deformation). This furnishes a number of representation-theoretic tools, developed in Section 3, to study the C * -algebra C(SU -1 (3)) and its quotients, which are used in an essential way to prove Theorem 1.1. Note that the representation theory of twisted function algebras on finite groups is fully discussed in [START_REF] Etingof | The representation theory of cotriangular semisimple Hopf algebras[END_REF], with a precise description of the irreducible representations. However the fusion rules, which would lead to the full classification of the Hopf algebra quotients, are not discussed in [START_REF] Etingof | The representation theory of cotriangular semisimple Hopf algebras[END_REF], and we do not see any general method to compute them. What we get here in the case of SU -1 (3) are some partial fusion rules, for some special representations of C(SU -1 (3)), which however are sufficiently generic to get the necessary information to classify the quantum subgroups.

The paper is organized as follows. Section 2 consists of preliminaries. In Section 3 we recall the twisting (2-cocycle deformation) procedure for Hopf algebras and develop the aforementioned representation-theoretic tools for representations of twisted C * -algebras of functions. In Section 4 we briefly recall how the quantum group SU -1 (2m + 1) can be obtained by twisting, and Section 5 is devoted to the proof of Theorem 1.1.

We would like to thank S. Echterhoff for informative discussions.

Preliminaries

2.1. Compact quantum groups. We first recall some basic facts concerning compact quantum groups. The book [START_REF] Klimyk | Quantum groups and their representations[END_REF] is a convenient reference for the topic of compact quantum groups, and all the defintions we omit can be found there. All algebras in this paper will be unital, and ⊗ will denote the minimal tensor product of C * -algebras as well as the algebraic tensor product; this should cause no confusion. Definition 2.1. A Woronowicz algebra is a C * -algebra A endowed with a * -morphism ∆ : A → A ⊗ A satisfying the coassociativity condition and the cancellation law

∆(A)(A ⊗ 1) = A ⊗ A = ∆(A)(1 ⊗ A)
The morphism ∆ is called the comultiplication of A.

The category of Woronowicz algebras is defined in the obvious way (see [START_REF] Wang | Free products of compact quantum groups[END_REF] for details). A commutative Woronowicz algebra is necessarily isomorphic with C(G), the algebra of continuous functions on a compact group G, unique up to isomorphism, and the category of compact quantum groups is defined to be the category dual to the category of Woronowicz algebras. Hence to any Woronowicz algebra A corresponds a unique compact quantum group according to the heuristic formula A = C(G).

Woronowicz's original definition for matrix compact quantum groups [START_REF] Woronowicz | Compact matrix pseudogroups[END_REF] is still the most useful in concrete situations, and we have the following fundamental result [START_REF] Woronowicz | Compact quantum groups[END_REF].

Theorem 2.2. Let A be a C * -algebra endowed with a * -morphism ∆ : A → A ⊗ A. Then A is a Woronowicz algebra if and only if there exists a family of unitary matrices (u λ ) λ∈Λ ∈ M d λ (A) satisfying the following three conditions.

(1) The * -subalgebra A 0 generated by the entries u λ ij of the matrices (u λ ) λ∈Λ is dense in A.

(2) For λ ∈ Λ and i, j ∈ {1, . . . , d λ }, one has ∆(u λ ij ) = d λ k=1 u λ ik ⊗ u λ kj .

(3) For λ ∈ Λ, the transpose matrix (u λ ) t is invertible.

In fact the * -algebra A 0 in the theorem is canonically defined, and is what we call a compact Hopf algebra (a CQG algebra in [START_REF] Klimyk | Quantum groups and their representations[END_REF]): a Hopf * -algebra having all its finite-dimensional comodules equivalent to unitary ones, or equivalently a Hopf * -algebra having a positive and faithful Haar integral (see [START_REF] Klimyk | Quantum groups and their representations[END_REF] for details). The counit and antipode of A 0 , denoted respectively ε and S, are referred to as the counit and antipode of A. The Hopf algebra A 0 is called the algebra of representative functions on the compact quantum group G dual to A, with another heuristic formula A 0 = R(G).

Conversely, starting from a compact Hopf algebra, the universal C * -completion yields a Woronowicz algebra in the above sense: see the book [START_REF] Klimyk | Quantum groups and their representations[END_REF]. In fact, in general, there are possibly several different C * -norms on A 0 , in particular the reduced one (obtained from the GNS-construction associated to the Haar integral), but we will not be concerned with this problem, the compact quantum groups considered in this paper being co-amenable.

Of course, any group-theoretic statement about a compact quantum group G must be interpreted in terms of the Woronowicz algebra C(G) or of the Hopf * -algebra R(G). In particular, as usual, a (compact) quantum subgroup H ⊂ G corresponds to a surjective Woronowicz algebra morphism C(G) → C(H), or to a surjective Hopf * -algebra morphism R(G) → R(H).

2.2.

The quantum groups U -1 (n) and SU -1 (n). In this subsection we briefly recall the definition of the compact quantum groups U -1 (n) and SU -1 (n) [START_REF] Woronowicz | Tannaka-Krein duality for compact matrix pseudogroups[END_REF][START_REF] Koelink | On * -representations of the Hopf * -algebra associated with the quantum group Uq(n)[END_REF][START_REF] Rosso | Algèbres enveloppantes quantifiées, groupes quantiques compacts de matrices et calcul differentiel non-commutatif[END_REF].

Definition 2.3. The * -algebra R(U -1 (n)) is the universal * -algebra generated by variables (u ij ) 1≤i,j≤n with relations making the matrix u = (u ij ) unitary and

u ij u kl = (-1) δ ik +δ jl u kl u ij , ∀i, j, k, l The C * -algebra C(U -1 (n)) is the enveloping C * -algebra of R(U -1 (n)). The relations u * ij u kl = (-1) δ ik +δ jl u kl u * ij automatically hold in R(U -1 (n)) and C(U -1 (n)
), hence the matrix u t is also unitary. It follows that R(U -1 (n)) is a compact Hopf * -algebra, and hence that C(U -1 (n)) is a Woronowicz algebra, with comultiplication, counit and antipode defined by

∆(u ij ) = k u ik ⊗ u kj , ε(u ij ) = δ ij , S(u ij ) = u * ji
The quantum determinant

D = σ∈Sn u 1σ(1) • • • u nσ(n) = σ∈Sn u σ(1)1 • • • u σ(n)n is a unitary central group-like element of R(U -1 (n)). Definition 2.4. The * -algebra R(SU -1 (n)) is the quotient of R(U -1 (n)) by the * -ideal gener- ated by D -1, and the C * -algebra C(SU -1 (n)) is the enveloping C * -algebra of R(SU -1 (n)). It follows, since D is group-like, that R(SU -1 (n)
) is a compact Hopf * -algebra, and that C(SU -1 (n)) is a Woronowicz algebra, with comultiplication, counit and antipode defined by the same formulas as above.

The following Lemma will be used in Section 5.

Lemma 2.5. For any i ∈ {1, . . . , n + 1}, there exists a surjective Hopf * -algebra map π i : R(SU -1 (n + 1)) → R(U -1 (n)) whose kernel is the Hopf * -ideal generated by the elements u ki , u ik , k = i. In particular, if π : R(SU -1 (n + 1)) ։ A is a surjective Hopf * -algebra map such that for some fixed i we have π(u ki ) = 0 = π(u ik ) for k = i, then there exists a surjective Hopf * -algebra map R(U -1 (n)) ։ A.

Proof. It follows from the definitions that there exists a Hopf * -algebra map π i such that

π i (u ki ) = 0 = π i (u ik ) for k = i, π i (u ii ) = D -1 , π i (u jk ) = u jk for j, k < i, π i (u jk ) = u j,k-1 for j < i and k > i, π i (u jk ) = u j-1,k for j > i and k < i, π i (u jk ) = u j-1,k-1 for j, k > i.
By definition π i vanishes on I, the * -ideal generated by the elements in the statement of the lemma, so induces a surjective * -algebra map π i : R(SU -1 (n + 1))/I → R(U -1 (n)), and it is not difficult to construct an inverse isomorphism to π i , and hence I = Ker(π i ). The last assertion is an immediate consequence of the first one. The following classical result will be a key tool. See e.g. [START_REF] Dixmier | C * -algebras[END_REF] for a proof.

Theorem 2.6. Let A ⊂ B be an inclusion of C * -algebras, and let ρ be an irreducible representation of A. Then there exists an irreducible representation π of B such that ρ ≺ π |A .

Let A be a * -algebra. If ρ : A → B(H) is a finite-dimensional representation, then the character of ρ is the linear map χ = trρ, where tr is the usual trace. Two finite-dimensional representations of A are isomorphic if and only if they have the same character. Now assume that A is a Hopf * -algebra. The trivial representation is ε, the counit of A. Let ρ : A → B(H) be a finite-dimensional representation of A. Recall that the dual representation ρ ∨ : A → B(H) (where H is the conjugate Hilbert space of H) is defined by ρ ∨ (a)(x) = ρ(S(a * ))(x), for any a ∈ A and x ∈ H. We have ε ≺ ρ ⊗ ρ ∨ , and when ρ is irreducible, this property characterizes ρ ∨ up to isomorphism.

2-cocycle deformations

We now recall the usual twisting (2-cocycle deformation) construction for Hopf algebras, which is dual to the theory initiated by Drinfeld, and developed by Doi [START_REF] Doi | Braided bialgebras and quadratic algebras[END_REF]. We also develop the representation theoretic machinery needed to study the quotients of a twisting of a Hopf algebra of representative functions on a compact group.

Let Q be a Hopf * -algebra. We use Sweedler's notation ∆(x) = x 1 ⊗ x 2 . Recall (see e.g. [START_REF] Doi | Braided bialgebras and quadratic algebras[END_REF]) that a unitary 2-cocycle on Q is a convolution invertible linear map σ :

Q ⊗ Q -→ C satisfying σ(x 1 , y 1 )σ(x 2 y 2 , z) = σ(y 1 , z 1 )σ(x, y 2 z 2 ) σ -1 (x, y) = σ(S(x) * , S(y) * ) and σ(x, 1) = σ(1, x) = ε(x), for x, y, z ∈ Q.
Following [START_REF] Doi | Braided bialgebras and quadratic algebras[END_REF] and [START_REF] Schauenburg | Hopf bigalois extensions[END_REF], we associate various * -algebras to a unitary 2-cocycle.

• First consider the * -algebra σ Q. As a vector space we have σ Q = Q and the product and involution of σ Q are defined to be

{x}{y} = σ(x 1 , y 1 ){x 2 y 2 }, {x} * = σ -1 (x * 2 , S(x 1 ) * ){x * 3 }, x, y ∈ Q, where an element x ∈ Q is denoted {x}, when viewed as an element of σ Q.
• We also have the * -algebra Q σ -1 . As a vector space we have Q σ -1 = Q and the product and involution of Q σ -1 are defined to be

x y = σ -1 (x 2 , y 2 ) x 1 y 1 , x * = σ(S(x 3 ) * , x * 2 ) x * 1 , x, y ∈ Q.
where an element x ∈ Q is denoted x , when viewed as an element of Q σ -1 . The unitary cocycle condition ensures that σ Q and Q σ -1 are associative * -algebras with 1 as a unit. The algebras σ Q and Q σ -1 are in fact anti-isomorphic, see e.g. [START_REF] Bichon | Hopf-Galois systems[END_REF].

If Q is a compact Hopf algebra, then the Haar integral on Q, viewed as a linear map on σ Q and Q σ -1 , is still a faithful state (this can been seen by using the orthogonality relations [START_REF] Woronowicz | Compact matrix pseudogroups[END_REF][START_REF] Klimyk | Quantum groups and their representations[END_REF]). We denote by C * r ( σ Q) and C * r (Q σ -1 ) the respective C * -completions obtained from the GNS-constructions associated to the Haar integral.

• Finally we have the Hopf * -algebra

Q σ = σ Q σ -1 . As a coalgebra Q σ = Q. The product and involution of Q σ are defined to be [x][y] = σ(x 1 , y 1 )σ -1 (x 3 , y 3 )[x 2 y 2 ], [x] * = σ(S(x 5 ) * , x * 4 )σ -1 (x * 2 , S(x 1 ) * )[x * 3 ] x, y ∈ Q, where an element x ∈ Q is denoted [x]
, when viewed as an element of Q σ , and we have the following formula for the antipode of Q σ :

S σ ([x]) = σ(x 1 , S(x 2 ))σ -1 (S(x 4 ), x 5 )[S(x 3 )].
The Hopf algebras Q and Q σ have equivalent tensor categories of comodules [START_REF] Schauenburg | Hopf bigalois extensions[END_REF]. If Q is a compact Hopf algebra, then Q σ is also a compact Hopf algebra, the Haar integral on Q σ being the one of Q, and the C * -tensor categories of unitary comodules over Q and Q σ are equivalent [START_REF] Bichon | Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups[END_REF]. If Q = R(G), the algebra of representative functions on a compact group G, we denote by

C(G) σ the enveloping C * -algebra of R(G) σ .
Very often unitary 2-cocycles are induced by simpler quotient Hopf * -algebras (quantum subgroups). More precisely let π : Q → L be a Hopf * -algebra surjection and let σ :

L ⊗ L → C be a unitary 2-cocycle on L. Then σ π = σ • (π ⊗ π) : Q ⊗ Q → C is a unitary 2-cocycle.
In what follows the cocycle σ π will simply be denoted by σ, this should cause not cause any confusion.

We first record the following elementary result from [START_REF] Banica | Quantum groups acting on 4 points[END_REF].

Proposition 3.1. Let π : Q → L be a Hopf * -algebra surjection and let σ :

L ⊗ L → C be a unitary 2-cocycle. Denote by [π] : Q σ → L σ the map [x] → [π(x)].
Then there is a bijection between the following data.

(1) Surjective Hopf * -algebra maps f : Q → R such that there exists a Hopf * -algebra map

g : R → L satisfying g • f = π. (2) Surjective Hopf * -algebra maps f ′ : Q σ → R ′ such that there exists a Hopf * -algebra map g ′ : R ′ → L σ satisfying g ′ • f ′ = [π].
Similarly, the following result is essentially contained in [START_REF] Banica | Quantum groups acting on 4 points[END_REF].

Proposition 3.2. Let π : Q → L be a Hopf * -algebra surjection and let σ : L ⊗ L → C be a unitary 2-cocycle on L. We have an injective * -algebra map

θ : Q σ -→ Q ⊗ σ L ⊗ L σ -1 [x] -→ x 2 ⊗ {π(x 1 )} ⊗ π(x 3 )
that induces an isomorphism to the subalgebra of coinvariant elements

Q σ ≃ (Q ⊗ σ L ⊗ L σ -1 ) co(L cop ⊗L)
where the respective right coactions of L cop ⊗ L on Q and σ L ⊗ L σ -1 are defined by

Q → Q ⊗ L cop ⊗ L σ L ⊗ L σ -1 → σ L ⊗ L σ -1 ⊗ L cop ⊗ L x → x 2 ⊗ π(x 1 ) ⊗ π(x 3 ) {π(x)} ⊗ π(y) → {π(x 1 )} ⊗ π(y 2 ) ⊗ S -1 π(x 2 ) ⊗ Sπ(y 1 )
If moreover Q and L are cosemisimple and h Q and h L denote their respective Haar integrals, we have

(h Q ⊗ h L ⊗ h L )θ = h Q .
Proof. It follows from the definitions that θ is a * -algebra map and that (id ⊗L) , and that θ induces the announced isomorphism, with inverse (id Q ⊗ ε ⊗ ε). The last assertion is immediate.

Q ⊗ ε ⊗ ε)θ = id Q σ , hence θ is injective. It is a direct verification to check that θ(Q σ ) ⊂ (Q ⊗ σ L ⊗ L σ -1 ) co(L cop
We now specialize to the case Q = R(G), the algebra of representative on a classical compact group G. Proposition 3.3. Let G be a compact group, let Γ ⊂ G be a closed subgroup and let σ be a unitary 2-cocycle on R(Γ).

Put B = C * r ( σ R(Γ)) ⊗ C * r (R(Γ) σ -1 )
. Then there exists a C * -algebra embedding θ :

C(G) σ -→ C(G) ⊗ B inducing a C * -algebra isomorphism C(G) σ ≃ (C(G) ⊗ B) Γ op ×Γ
for some natural actions of Γ op × Γ on G and B.

Proof. The restriction map R(G) → R(Γ) enables us to use the previous proposition. The previous injective * -algebra map θ : R(G

) σ → R(G) ⊗ σ R(Γ) ⊗ R(Γ) σ -1 induces a * -algebra map C(G) σ -→ C(G) ⊗ B, still denoted θ (recall that C(G) σ is the enveloping C * -algebra of R(G) σ ). The co-amenability of R(G) σ [2]
and the last observation in the previous proposition show that θ is injective at the C * -algebra level. The coactions of the previous proposition induce actions of Γ op × Γ on R(G) and on σ R(Γ) ⊗ R(Γ) σ -1 , and hence on C(G) and on B. We have, by the previous proposition, an isomorphism R(G

) σ ≃ (R(G) ⊗ σ R(Γ) ⊗ R(Γ) σ -1 ) Γ op ×Γ , and hence, since (R(G) ⊗ σ R(Γ) ⊗ R(Γ) σ -1 ) Γ op ×Γ is dense in (C(G) ⊗ B) Γ op ×Γ , an isomorphism C(G) σ ≃ (C(G) ⊗ B) Γ op ×Γ
This gives the announced result.

Remark 3.4. The right action of Γ op × Γ on G in the previous result is given by

G × (Γ op × Γ) -→ G (g, (r, s)) -→ rgs The C * -algebra (C(G) ⊗ B) Γ op ×Γ is naturally identified with C(G × Γ op ×Γ B), the algebra of continuous functions f : G → B such that f (g.(r, s)) = (r, s) -1 .f (g), ∀g ∈ G, ∀(r, s) ∈ Γ op × Γ.
Thus it follows that C(G) σ is (the algebra of sections on) a continuous bundle of C * -algebras over the orbit space G/(Γ op × Γ) ≃ Γ \ G/Γ, with fiber at an orbit ΓgΓ the fixed point algebra B (Γ op ×Γ)g , where (Γ op × Γ) g = {(r, s) ∈ Γ × Γ, rgs = g}: see e.g. Lemma 2.2 in [START_REF] Echterhoff | Structure and K-theory of crossed products by proper actions[END_REF]. Hence the representation theory of C(G) σ is determined by the representation theory of the fibres B (Γ op ×Γ)g .

The following result will be our main tool to study the representations and quotients of a Woronowicz algebra of type C(G) σ . Proposition 3.5. Let G be a compact group, let Γ ⊂ G be a closed subgroup and let σ be a unitary 2-cocycle on R(Γ). Then for each g ∈ G we have a * -algebra map

θ g : C(G) σ -→ C * r ( σ R(Γ)) ⊗ C * r (R(Γ) σ -1 ) R(G) σ ∋ [f ] -→ f 2 (g){f 1|Γ } ⊗ f 3|Γ ∈ σ R(Γ) ⊗ R(Γ) σ -1 If Γ is finite, then dim(Im(θ g )) = |ΓgΓ|.
Assume moreover that σ R(Γ) and R(Γ) σ -1 are full matrix algebras, so that θ g defines a representation of dimension |Γ| of R(G) σ .

(1) Every irreducible representation of C(G) σ is isomorphic to a subrepresentation of θ g for some g ∈ G. In particular every irreducible representation of C(G) σ is finitedimensional and has dimension at most |Γ|. (3) For g, h ∈ G, we have θ g ≃ θ h ⇐⇒ ΓgΓ = ΓhΓ. (4) For g, h ∈ G, we have θ g ⊗ θ h ≃ ⊕ s∈Γ θ gsh .

(5) Assume furthermore that Γ is abelian. Then each s ∈ Γ defines a 1-dimensional representation ε s of C(G) σ , and for s ∈ Γ, we have θ s ≃ ⊕ t∈Γ ε t .

Proof. The representations θ g are defined using the previous embedding θ, by θ g = (ev g ⊗ id ⊗ id)θ, where ev g is the evaluation at g. We assume now that Γ is finite. As a linear space, we

view C * r ( σ R(Γ)) ⊗ C * r (R(Γ) σ -1 ) as C(Γ × Γ). Consider the continuous linear map θ ′ g : C(G) -→ C(Γ × Γ) f -→ ((s, t) → f (sgt)) For f ∈ R(G), we have θ ′ g (f ) = θ g ([f ]), hence θ ′ g (R(G)) = θ g (R(G) σ ) and θ ′ g (C(G)) = θ g (C(G) σ
) by the density of R(G) and the finite-dimensionality of the target space. We have Ker(θ

′ g ) = {f ∈ C(G) | f |ΓgΓ = 0} = I and since θ ′ g (C(G)) ≃ C(G)/I ≃ C(ΓgΓ), we have dim(θ ′ g (C(G)) = |ΓgΓ| = dim(θ g (C(G) σ ))
. Assume now that σ R(Γ) and R(Γ) σ -1 are full matrix algebras. By counting dimensions,

σ R(Γ) ⊗ R(Γ) σ -1 ∼ = M |Γ| (C). The irreducible representations of C(G) ⊗ σ R(Γ) ⊗ R(Γ) σ -1
all are of the form ev g ⊗ id ⊗ id, and since θ defines an embedding C(G) σ ֒→ C(G) ⊗ σ R(Γ) ⊗ R(Γ) σ -1 , it follows from Theorem 2.6 that any irreducible representation of C(G) σ is isomorphic to a subrepresentation of some θ g , and hence is finite-dimensional of dimension ≤ |Γ|. This proves [START_REF] Andruskiewitsch | Quantum subgroups of a simple quantum group at roots of one[END_REF]. The matrix representation θ g is irreducible if and only if θ g is surjective, if and only if |ΓgΓ| = dim(Im(θ g )) = |Γ| 2 , and this proves [START_REF] Banica | Representations of compact quantum groups and subfactors[END_REF].

Consider now the linear map

χ ′ g : C(G) -→ C (3.1) f → 1 |Γ| s,t∈Γ f (sgt) Let χ g be the character of θ g . Let us check that χ g ([f ]) = χ ′ g (f ) for any f ∈ R(G)
. By the density of R(G) and R(G) σ , this will show that for g, h ∈ G, we have

χ g = χ h ⇐⇒ χ ′ g = χ ′ h . Consider the normalized Haar integral h : C(Γ) → C, f → 1 |Γ| s∈Γ f (s).
Then h, viewed as a linear map on σ R(Γ), is still a trace since it is invariant under the natural ergodic action of the finite group Γ on the matrix algebra σ R(Γ), and hence we have h = 1 √ |Γ| tr, where tr is the usual trace. Thus we have, for f ∈ R(G),

χ g ([f ]) = (tr ⊗ tr)θ g ([f ]) = |Γ|(h ⊗ h)θ g ([f ]) = |Γ|(h ⊗ h)(f 2 (g){f 1 |Γ } ⊗ f 3 |Γ ) = 1 |Γ| s,t∈Γ f 1 (s)f 2 (g)f 3 (t) = 1 |Γ| s,t∈Γ f (sgt) = χ ′ g (f ) Let g, h ∈ G. If ΓgΓ = ΓhΓ, then χ ′ g = χ ′
h , and hence χ g = χ h , and it follows that θ g ≃ θ h . Conversely, assume that ΓgΓ = ΓhΓ, and let f ∈ C(G) be such that f |ΓgΓ = 0 and f |ΓhΓ = 1. We have χ ′ g (f ) = 0 and χ ′ h (f ) = 1: this shows that χ g = χ h and hence that θ g and θ h are not isomorphic. This proves (3).

For g, h ∈ G, let us show that (χ g ⊗ χ h )∆ = s∈Γ χ gsh . This will prove (4). For f in R(G), we have

(χ g ⊗ χ h )∆([f ]) = χ g ([f 1 ])χ h ([f 2 ]) = 1 |Γ| 2 r,s,t,u∈Γ f 1 (rgs)f 2 (tsu) = 1 |Γ| 2 r,s,t,u∈Γ f (rgsthu) = 1 |Γ| r,s,u∈Γ f (rgshu) = s∈Γ χ gsh ([f ])
and we have the result by density of R(G) σ in C(G) σ . Assume finally that Γ is abelian. Then R(Γ) is cocommutative and R(Γ) σ = R(Γ). For s ∈ Γ, the * -algebra map ε s : R(G) σ → C is obtained by composing the restriction R(G) σ → R(Γ) σ = R(Γ) with the evaluation at s. For s ∈ Γ and f in R(G), we have

χ s ([f ]) = 1 |Γ| r,t∈Γ f (rst) = 1 |Γ| r,t∈Γ ε rst ([f ]) = r∈Γ ε r ([f ])
and again we get the result by density of R(G) σ in C(G) σ .

We arrive at a useful criterion to show that a quotient of a twisted function algebra on compact group is still a twisted function algebra on a compact subgroup. Theorem 3.6. Let G be a compact group and let σ be a unitary 2-cocycle on R(G) induced by a finite abelian subgroup Γ ⊂ G such that σ R(Γ) is a full matrix algebra. Let A be a Woronowicz algebra quotient of C(G) σ . Then all the irreducible representations of the C * -algebra A have dimension ≤ |Γ|, and if A has an irreducible representation of dimension |Γ|, then there exists a compact subgroup

Γ ⊂ K ⊂ G such that A ≃ C(K) σ .
Proof. We are in the situation of Proposition 3.5, since the algebras σ R(Γ) and R(Γ) σ -1 are anti-isomorphic. Thus if ρ is an irreducible representation of A of dimension |Γ|, then ρπ is also an irreducible representation of C(G) σ (with π : C(G) σ → A being the given quotient map), and so there exists g ∈ G such that ρπ ≃ θ g . That is, θ g factors through a representation of A. The isomorphisms from 3.5

θ g ⊗ θ g -1 ≃ ⊕ s∈Γ θ gsg -1 ≃ θ 1 ⊕ (⊕ s∈Γ,s =1 θ gsh ) ≃ (⊕ s∈Γ ε s ) ⊕ (⊕ s∈Γ,s =1 θ gsh )
show that θ g -1 is the dual of the representation θ g of C(G) σ . Thus, θ g -1 factors through a representation of A, as do all the simple constituents of θ g ⊗ θ g -1 . In particular, each ε s , s ∈ Γ, defines a representation A, and we get a surjective * -algebra map A → R(Γ). We conclude by Proposition 3.1.

Application to SU

-1 (2m + 1) and U -1 (2m + 1)
From now on we assume that n = 2m + 1 is odd. We recall how the quantum groups SU -1 (2m + 1) and U -1 (2m + 1) can be obtained by 2-cocycle deformation, using a 2-cocycle induced from the group Z 2m 2 , and then use the results of the previous section to get information on their quantum subgroups.

We denote by Z 2 the cyclic group on two elements, and we use the identification

Z 2m 2 = t 1 , . . . , t 2m+1 | t i t j = t i t j , t 2 1 = • • • = t 2 2m+1 = 1 = t 1 • • • t 2m+1 Let σ : Z 2m 2 × Z 2m 2 → {±1} be the unique bicharacter such that σ(t i , t j ) = -1 = -σ(t j , t i ) for 1 ≤ i < j ≤ 2m σ(t i , t i ) = (-1) m for 1 ≤ i ≤ 2m + 1 σ(t i , t 2m+1 ) = (-1) m-i = -σ(t 2m+1 , t i ) for 1 ≤ i ≤ 2m
It is well-known that the twisted group algebra C σ Z 2m 2 is isomorphic to the matrix algebra M 2 m (C).

There exists a surjective Hopf * -algebra morphism π : R(SU

(2m + 1)) → CZ 2m 2 u ij -→ δ ij t i
induced by the restriction of functions to Γ, the subgroup of SU (2m + 1) formed by diagonal matrices having ±1 as entries, composed with the Fourier transform R(Γ) ≃ C Γ ≃ CZ 2m 2 . Thus we may form the twisted Hopf algebra R(SU (2m+1)) σ , and it is not difficult to check that there exists a surjective Hopf * -algebra map R(SU -1 (2m + 1)) → R(SU (2m + 1)) σ , u ij → [u ij ], which is known to be an isomorphism (there are several ways to show this, a simple one being to invoke the presentation Theorem 3.5 in [START_REF] Guillot | Twisting algebras using non-commutative torsors: explicit computations[END_REF]). Hence we have C(SU -1 (2m + 1)) ≃ C(SU (2m + 1)) σ , with σ induced from the subgroup Γ ≃ Z 2m 2 , and we are in the framework of Theorem 3.6. Similarly C(U -1 (2m + 1)) ≃ C(U (2m + 1)) σ .

If K is a compact subgroup of SU (2m + 1) with Γ ⊂ K, we denote by K -1 the compact quantum group corresponding to the Woronowicz algebra C(K) σ . With this language, the following result is an immediate consequence of Theorem 3.6. A similar statement holds as well with SU -1 (2m + 1) replaced by U -1 (2m + 1).

5. Quantum subgroups of SU -1 [START_REF] Banica | Quantum groups acting on 4 points[END_REF] This section is devoted to the proof of Theorem 1.1. We first need some preliminary results, and we begin by fixing some notation.

For a permutation ν ∈ S 3 , we put

SU (3) ν = {g = (g ij ) ∈ SU (3) | g ij = 0 if ν(j) = i}
and also SU (3) Σ = ∪ ν∈S 3 SU (3) ν . For g ∈ SU (3) Σ , we denote by ν g the unique element of S 3 such that g ∈ SU (3) νg .

The following result is easily verified (and has an obvious generalization for any n).

Lemma 5.1. Any element g = (g ij ) ∈ SU (3) Σ defines a * -algebra map ε g : C(SU -1 (3)) → C such that ε g (u ij ) = ǫ(ν g )g ij (where ǫ(ν g ) is the signature of ν g ). Conversely any 1-dimensional representation of C(SU -1 (3)) arises in this way.

As is the previous section, the subgroup of SU (3) formed by diagonal matrices having ±1 as entries is denoted Γ. In the case g ∈ Γ, then ε g is of course the representation of the same name from Proposition 3.5.

We denote by SU (3) reg the subset of matrices in SU (3) for which there exists a row or a column having no zero coefficient.

Recall from Section 4 and Proposition 3.5 that each g ∈ SU (3) defines a representation

θ g : C(SU -1 (3)) -→ C σ Γ ⊗ C σ Γ ≃ M 2 (C) ⊗ M 2 (C) ≃ M 4 (C)
The twisted group algebra C σ Γ is presented by generators T 1 , T 2 , T 3 and relations

T 2 1 = -1 = T 2 2 = T 2 3 , 1 = T 1 T 2 T 3 , T i T j = -T j T i if i = j (
where in the notation of the previous sections, T i = {t i } = t i ). With this notation, the representation θ g (g ∈ SU (3)) has the following form

θ g : C(SU -1 (3)) -→ C σ Γ ⊗ C σ Γ u ij -→ g ij T i ⊗ T j Lemma 5.2.
The representation θ g is irreducible if and only if g ∈ SU (3) reg . If g ∈ SU (3) Σ , then θ g is isomorphic to a direct sum of one-dimensional representations.

Proof. The first assertion follows directly from (2) in Proposition 3.5. The second assertion follows from the fact that if g ∈ SU (3) Σ , the algebra θ g (C(SU -1 (3)) is commutative (this is clear from the above description of θ g ).

Our next aim is to describe the tensor products ε g ⊗ θ h .

Lemma 5.3. Let g ∈ SU (3) Σ and let h ∈ SU (3). Then the representations ε g ⊗ θ h and θ gh are isomorphic.

Proof. Put g = (δ i,ν(j) a i ) with ν ∈ S 3 . We have, for any i, j,

(ε g ⊗ θ h )∆(u ij ) = k ε g (u ik )h kj T k ⊗ T j = ǫ(ν)a i h ν -1 (i)j T ν -1 (i) ⊗ T j
It is straightforward to check that there exists an automorphism α ν of C σ Γ such that α ν (T i ) = ε(ν)T ν(i) for any i. We have

α ν ⊗ id(ε g ⊗ θ h )∆(u ij ) = a i h ν -1 (i)j T i ⊗ T j = θ gh (u ij )
and hence, since α ν is (necessarily) an inner automorphism of the matrix algebra C σ Γ, we conclude that the representations ε g ⊗ θ h and θ gh are isomorphic.

Before going into the proof of Theorem 1.1, we need a final piece of notation. For 1 ≤ i, j ≤ 3, we put

SU (3) [i,j] = {g = (g ij ) ∈ SU (3) | g ik = 0 if k = j, g kj = 0 if i = k, g ∈ SU (3) Σ } Proof of Theorem 1.1. Let G ⊂ SU -1 ( 
3) be a non-classical compact quantum subgroup, with corresponding surjective Woronowicz algebra map π : C(SU -1 (3)) → C(G). Recall that we have to prove that one of the following assertion holds.

(1) There exists a compact subgroup Γ ⊂ K ⊂ SU (3) such that G is isomorphic to K -1 .

(2) G is isomorphic to a quantum subgroup of U -1 (2).

We already know from Theorem 4.1 that if C(G) has an irreducible representation of dimension 4, then (1) holds. So we assume that C(G) has all its irreducible representation of dimension < 4.

We denote by X the set of (isomorphism classes) of irreducible representations of C(G) having dimension d satisfying 1 < d < 4. We remark that X is non-empty since C(G) is non-commutative.

Let ρ ∈ X. Then ρ defines an irreducible representation ρπ of C(SU -1 (3)), and hence by Proposition 3.5 there exists g ∈ SU (3) such that ρπ ≺ θ g . If g ∈ SU (3) reg , then by Lemma 5.2 θ g is irreducible and ρπ ≃ θ g has dimension 4, which contradicts our assumptions. Hence g ∈ SU (3) reg . If g ∈ SU (3) Σ , then by Lemma 5.2 θ g is a direct sum of representations of dimension 1, hence ρ has dimension 1, which again contradicts our assumption, and hence g ∈ SU (3) Σ . Thus there exist i, j such that g ∈ SU (3) [i,j] . Suppose that i = j. Then ρπ ⊗ ρπ ≺ θ g ⊗ θ g ≃ ⊕ s∈Γ θ gsg (by Proposition 3.5). For any s ∈ Γ, sg ∈ SU (3) [i,j] and it is a direct computation to check that gsg ∈ SU (3) reg , so the constituents of this decomposition are irreducible representations. By a dimension argument there exists s ∈ Γ such that ρπ ⊗ ρπ ≃ θ gsg , and hence ρ ⊗ ρ is irreducible of dimension 4; this is a contradiction.

We have thus proved that for any ρ ∈ X, there exists i ∈ {1, 2, 3} and g ∈ SU (3) [i,i] such that ρπ ≺ θ g . Assume that there exist ρ, ρ ′ ∈ X with ρπ ≺ θ g , ρ ′ π ≺ θ g ′ for g ∈ SU (3) [i,i] , g ′ ∈ SU (3) [j,j] and i = j. Then ρπ ⊗ ρ ′ π ≺ θ g ⊗ θ g ′ ≃ ⊕ s∈Γ θ gsg ′ . Once again, for any s ∈ Γ, gsg ′ ∈ SU (3) reg , and we conclude as before that ρ ⊗ ρ ′ is an irreducible representation of dimension 4, a contradiction.

Thus we have proved that there exists i ∈ {1, 2, 3} such that for any ρ ∈ X, we have ρπ ≺ θ g for some g ∈ SU (3) [i,i] , and hence ρπ(u ik ) = 0 = ρπ(u ki ) for any k = i and ρ ∈ X.

Let φ be a 1-dimensional representation of C(G). By Lemma 5.1, there exists ν ∈ S 3 and g ∈ SU (3) ν such that φπ = ε g . Let ρ ∈ X with ρπ ≺ θ h for h ∈ SU (3) [i,i] . Then φπ ⊗ ρπ ≺ ε g ⊗ θ h ≃ θ gh by Lemma 5.3. It is straightforward to check that gh ∈ SU (3) [ν(i),i] . By a previous case we must have ν(i) = i. Hence φπ(u ik ) = 0 = φπ(u ki ) for any k = i.

Summarizing, we have shown that for any ρ ∈ C(G), we have ρπ(u ik ) = 0 = ρπ(u ki ) for any k = i. The irreducible representations of a C * -algebra separate its elements, so we conclude that π(u ik ) = 0 = π(u ki ) for any k = i, and by Lemma 2.5, we are in situation [START_REF] Banica | Representations of compact quantum groups and subfactors[END_REF]. This concludes the proof.

Corollary 5.4. Let G be a non-classical compact quantum subgroup of SU -1 (3) acting irreducibly on C 3 . Then G is isomorphic to a K -1 , a twist at -1 of a compact subgroup K ⊂ SU (3) containing the subgroup of diagonal matrices having ±1 as entries, and acting irreducibly on C 3 .

Proof. We have shown in the previous proof that if C(G) does not have an irreducible representation of dimension 4, then the fundamental 3-dimensional representation of G is not irreducible. Thus if G acts irreducibly on C 3 , there exist an irreducible representation of dimension 4 of C(G) and a compact subgroup Γ ⊂ K ⊂ SU (3) such that G is isomorphic to K -1 , and K acts irreducibly on C 3 since G does.

Remark 5.5. The proof of Theorem 1.1 works as well by replacing SU (3) by SO(3). In particular one recovers, under a less precise form, the results of [START_REF] Banica | Quantum groups acting on 4 points[END_REF]: if G ⊂ SO -1 (3) is a nonclassical compact quantum subgroup, then either there exists a compact subgroup Γ ⊂ K ⊂ SO(3) such that G is isomorphic to K -1 or G is isomorphic to a quantum subgroup of O -1 (2). Remark 5.6. Corollary 5.4 also holds with SU -1 (3) replaced by U -1 (3) (and SU (3) replaced by U (3)), with a similar proof.
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 3 Representations of C * -algebras. In this short subsection, we collect a few useful facts on representations of * -algebras and C * -algebras. If A is * -algebra, a representation of A always means a Hilbert space representation of A, i.e. a * -algebra map A → B(H) into the * -algebra of bounded operators on a Hilbert space H. As usual, the set of isomorphism classes of irreducible representations of A is denoted by A. If ρ, π are representations of A, we write ρ ≺ π if ρ is isomorphic to a sub-representation of π.
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 2 The representation θ g is irreducible if and only if |ΓgΓ| = |Γ| 2 , if and only if #{(s, t) ∈ Γ × Γ | sgt = g} = 1. Any irreducible representation of dimension |Γ| of C(G) σ is isomorphic to an irreducible representation θ g as above.
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 41 Let G be a compact quantum subgroup of SU -1 (2m+1). Then all the irreducible representations of the C * -algebra C(G) have dimension ≤ 4 m , and if C(G) has an irreducible dimension of dimension 4 m , then there exists a compact subgroup Γ ⊂ K ⊂ SU (2m + 1) such that G ≃ K -1 .