M Lau

X Faure

F Zara

F Jaillet

J-M Moreau

Posters and Demos

Keywords: (according to ACM CCS): I, 3, 5 [Computer Graphics]: Computational Geometry, Object Modeling-Physically based modeling I, 6, 8 [Simulation And Modeling]: Types of Simulation-Parallel

Figure 1: (1) Rendered beam for Hooke's and Saint Venant-Kirchhoff's material, and initial state (from left to right) -(2-4) Deformation simulation of a rabbit (initial 3D mesh courtesy of L. Stanculescu).

Introduction

The Tensor-Mass (TM) approach is a good candidate to handle deformable objects within the context of physicallybased simulations in complex interactive scenes. The deformation forces are derived from the FEM mechanical formulation, but are next computed locally and iteratively for each discretized element. Besides, this allows to handle more directly and easily topological changes (cutting) and external interactions (collisions, tools), in the same way as Mass-Spring Systems.

Hence, several formulations have been proposed to account for various mechanical behaviors: the linear Hookean model [START_REF] Cotin | A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation[END_REF]; the non-linear geometrical model based on Saint Venant-Kirchhoff's elasticity model [PDA00], or anisotropic material [Pic03]; or an extension with pre-computation for non-linear visco-elastic deformations [SDR ⇤ 05].

But, as far as we know, the problem of the parallel implementation of the TM model has not yet been addressed. In this paper, a GPU implementation is presented, considering both linear and non-linear mechanical behaviors and using an implicit integration scheme to ensure the unconditional stability of our simulation.

Simulation of the deformation of an object

The TM approach is based on the domain's discretization into several elements, and the mechanical equations are next solved locally, involving the following main steps for each element:

• Discretization of the displacement U E with the definition of interpolation functions L according to the chosen type of elements (hexahedron, tetrahedron, etc.); • Computation of the strain-tensor according to the chosen elasticity model amongst the most employed in interactive simulations, namely a) Hooke's or b) Saint Venant-Kirchhoff's elasticity models -within the element, at X:

a) e l (X) = 1 2 (rU T (X) + rU(X)) b) e nl (X) = 1 2 (rU T (X) + rU(X) + rU T (X) rU(X))
• Computation of the deformation energy W E , according to the displacement of the element's node;

c The Eurographics Association 2012.

X. Faure & F. Zara & F. Jaillet & J-M. Moreau / Implicit Tensor-Mass solver on the GPU

• Computation of the elasticity force F E by the evaluation of the derivative of the deformation energy W E .

Force computation on the GPU

The parallel computation of the forces on the GPU is divided into 2 tasks, involving a set of kernels (Alg. 1):

1. First, we compute and store the forces applied on each node of a given element. This computation (kernel1) is made for each element of the domain. 2. Next, we sum these partial forces to obtain the total forces applied on each node, involved by the different elements of the domain. This computation (kernel2) is made for each node of the domain.

Algorithm 1 Force computation on the GPU 1: {N : number of elements; m : total number of nodes} 2: {n : number of nodes per element} 3: {Nn : max number of neighbor elements for a node} 4: // Task 1-Computation of partial forces 5: for e = 0 to N 1 do 6:

// Execution of N kernel1 7:

for v = 0 to n 1 do 4. Implicit integration method on the GPU Then, the dynamical equations are derived from Newton's laws to compute the object acceleration. An implicit integration scheme, requiring computation of the derivatives of forces, is then used to obtain deformation and displacement. The parallel algorithm for this is similar to Alg. 1with the only difference in the use of DForce() instead of Force(), which depends on the same parameters but also on the time step h and the current nodes velocity, to directly compute h 2 ∂F ∂U V (t) or h ∂F ∂U DV , and avoid the storage of the sparse Jacobian matrix ∂F ∂U . Next, the linear system is solved on the GPU with the Conjugate Gradient method, following [START_REF] Allard | Implicit FEM Solver on GPU for Interactive Deformation Simulation[END_REF].

Results and performances

We compare running times on the CPU and GPU, using Linux Ubuntu11.04. The CPU is an Intel R Xeon R 4 cores @3.07 GHz. The GPU is a GeForce GTX 560, 2047 MB, 56 cores @1.620 GHz. Fig. 2 presents the speedup (ratio between GPU and CPU execution time) obtained for triangles and tetrahedra for both the linear and non-linear TM model (Fig. 1). Moreover, similar results are presented for SOFA's FEM implementation, i.e. the corotational FEM model for tetrahedra [NP05], in its GPU version according to [START_REF] Allard | Implicit FEM Solver on GPU for Interactive Deformation Simulation[END_REF]. A speedup of 25.5 is reached for SOFA's FEM implementation and of 29.5 for our TM, for a beam composed of 307,200 elements.

Conclusion and perspectives

In this paper, we presented an original implementation of the TM model on the GPU that considerably speeds up the simulation times. Comparisons between running times on the CPU and the GPU suggest that the parallel implementation of the model becomes interesting for increasingly complex computations.

 [e][v]][index[e][v]]=Force(...); 9: end for 10: end for 11: // Task 2 -Sum of partial forces 12: for i = 0 to m do 13: // Execution of m kernel2 14: for j = 0 to Nn 1 do 15: TotalForce[i] += PartialForce[i][j]; 16: end for 17: end for Moreover, specific data structures are defined for a discretization of the domain into N elements involving m nodes: • index (of size N ⇥ n) stores the relationship between local and global indexation for each node of each element. • PartialForce (of size Nn ⇥ m ⇥ 3) enables the storage of 3D coordinates of partial forces for each node considering its global indexation. • TotalForce (of size m ⇥ 3) stores the sum of the partial forces for each node considering its global indexation. • ForceIndex (of size N ⇥ n) stores the index of data structure PartialForce.

Figure 2 :

 2 Figure 2: Performances of the TM parallelization.

c The Eurographics Association 2012.