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ON THE EXIT TIME FROM A CONE FOR RANDOM WALKS

WITH DRIFT

RODOLPHE GARBIT AND KILIAN RASCHEL

Abstract. In this article we consider random walks in R
d such that the law of the

increments has all exponential moments. For a large class of cones, we compute the

exponential decay of the probability for such random walks to stay in the cone up to

time n, as n goes to infinity. We show that the latter equals the global minimum, on

the dual cone, of the Laplace transform of the random walk increments. Our results

find applications in the counting of walks in orthants, a classical domain in enumerative

combinatorics.

1. Introduction and main results

1.1. Context. For general random processes (including in particular Brownian motion
and random walks), it is at once important and natural to study the first exit times τK
from certain domains K. Precisely, for discrete-time random processes S = (Sn)n>0, τK
is defined by

(1) τK = inf{n > 1 : Sn /∈ K}.

Indeed, these random times carry many valuable informations on the process. As an
example, the fruitful theory of random walks fluctuations (see, e.g., Spitzer [18]) is based
on the analysis of the τK for compact domains K.

In a recent past (1990 to present), the case of cones K has arisen a great interest in
the mathematical community, due to interactions with many areas: First, certain random
walks in conical domains can be treated with representation theory [2, 3] (in that case, the

cones are Weyl chambers related to Lie algebras). Further, the exit times τK are crucial
to construct conditioned random walks in cones, which appear in the theory of quantum
random walks [2, 3], random matrices [11], non-colliding random walks [7, 12], etc. In

another direction, the probability

(2) P
x[τK > n]

admits a direct combinatorial interpretation in terms of the number of walks starting

from x and staying in the cone K up to time n. These counting numbers are particularly
important in enumerative combinatorics [5, 13, 16], and are the topic of many recent
studies. Our results in particular solve a conjecture on these numbers stated in [16].
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2 R. GARBIT AND K. RASCHEL

For processes with no drift, the exit times τK from cones are now well studied in the
literature. The case of Brownian motion was solved by DeBlassie [6] (see also Bañuelos

and Smits [1]): He showed that the probability (2) satisfies a certain partial differential
equation, and he solved it in terms of hypergeometric functions. Concerning discrete-time
random processes, in the one-dimensional case, the asymptotic behavior of the probability

(2) is well known, as well as that of

(3) P
x[Sn = y, τK > n]

(called a local limit theorem), thanks to the theory of fluctuations of random walks [18].
In higher dimension, some sporadic cases have first been analyzed: We may cite [9], for

which there exists a strong underlying algebraic structure (certain reflexion groups are
finite), or the case of Weyl chambers, which has been considered in [12, 7]. For more
general cones, but essentially for random walks with increments having a finite support,

Varopoulos [19] gave lower and upper bounds for the probability (2). The first author of
the present article showed in [14] that for general random walks, the probability (3) does
not decay exponentially fast. More recently, Denisov and Wachtel [8] provided the exact

asymptotics for both (2) and (3).
For processes with drift, much less is known. Concerning Brownian motion, one of

the first significant results is due to Biane, Bougerol and O’Connell [4], who derived the

asymptotics of the exit probability (2) in the case of Weyl chambers of type A, when the
drift is inside of the cone. Later on, by using different techniques, Pucha la and Rolski [17]
obtained the asymptotics of (2) without any hypothesis on the drift. As for random walks

(Sn)n>0 with increments having a law noted µ, the exponential decay of (3) is known: It
equals the global minimum of the Laplace transform of µ

(4) Lµ(x) = Eµ[e〈x,Sn+1−Sn〉] =

∫

Rd

e〈x,y〉µ(dy).

This was first proved by Iglehart [15] for one-dimensional random walks. For more general

walks, this was shown and used by many authors (see, e.g., [8, 14]). Very recently, in an
article written simultaneously and independently of ours, Duraj [10] obtained the exact
asymptotics of (2) and (3) for random walks in cones with exponential moments and

negative drift (in dimension d > 2, negative drift means that the drift belongs to −K, if
K is the cone).

It is the aim of this paper to give, for a broad class of random walks and cones, the

exponential decay of the exit probability (2). Our results are valid whatever the position
of the drift with respect to the cone is. We shall also relate the exponential decay to the
Laplace transform (4), by proving that it equals the minimum of the Laplace transform

on the dual cone; we give the exact statement (Theorem 1) in Subsection 1.3.

1.2. Cones and random walks considered. We will restrict ourselves to a certain class
of cones, namely those which are finite intersections of half-spaces. Hence, we will assume
that there exists a family of r ∈ J1, dK independent vectors F = {f1, . . . , fr} such that

denoting 〈·, ·〉 the canonical inner product,

K = {x ∈ R
d : 〈x, fi〉 > 0,∀i ∈ J1, rK}.
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Further, to each cone K we associate its dual cone1

K∗ = {x ∈ R
d : 〈x, y〉 > 0,∀y ∈ K},

which turns out to be particularly relevant to our problem. Let us also set Kδ = K + δv,
where δ > 0 and v is some fixed vector in Ko, the interior of K.

When r = d and F is the canonical basis {e1, . . . , ed} of Rd, the cone K is the positive
orthant. In this case, we shall use the letter Q (corresponding to the quarter-plane when
d = 2) instead. We notice that Q∗ = Q.

Let (Sn)n>0 = (S
(1)
n , . . . , S

(d)
n )n>0 be the canonical random walk on R

d. Given any
probability measure µ on R

d and x ∈ R
d, we note P

x
µ the probability measure under which

(Sn)n>0 is a random walk started at x whose independent increments (Sn+1−Sn)n>0 have
common distribution µ. Throughout this paper, we shall make the standard assumption
that µ is square integrable and not degenerated, that is:

(H1) The probability measure µ is square integrable and its variance-covariance matrix
is non-degenerate (i.e., its eigenvalues are strictly positive).

Note that (H1) is equivalent to the assumption that the support of µ is not included in

a hyperplane. Therefore, the random walk is “truly” d-dimensional. We will also assume
the following hypothesis:

(H2) The probability measure µ has all exponential moments, and its support is not
included in any half-space u− = {x ∈ R

d : 〈u, x〉 6 0} with u ∈ K∗ \ {0}.

The reason of assuming (H2) is the following: To compute the exponential decay of the
exit probability (2), our strategy is to perform a Cramér transformation (i.e., a change of
measure) with the help of the Laplace transform. Indeed, this will enable us to compare

the exit probability (2) under µ to (quite) the same probability under another probability
measure µ0 which is (nearly) centered; see Section 2 for details.

Under (H2), the Laplace transform (4) of µ is defined and finite for all x ∈ R
d. As it will

be seen in Section 2, the geometric condition about the support of µ in (H2) is equivalent
to the fact that Lµ reaches a global minimum in K∗.

1.3. Main results. We are now in position to state our main result:

Theorem 1. Suppose µ satisfies (H1) and (H2). Then its Laplace transform (4) reaches

a global minimum on K∗ at a unique point x0, and

lim
n→∞

P
x
µ[τK > n]1/n = Lµ(x0),

for all x ∈ Kδ, for some constant δ > 0.

For a large class of random walks and cones, Theorem 1 gives the universal recipe to
compute the exponential decay of the exit probability. Notice that the latter is independent
of the starting point x. The theorem in itself does not provide any explicit value for δ,

but such a value can be found a posteriori thanks to the following:

1This is a local convention; with the usual terminology, K∗ would be the opposite of the polar cone.
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Figure 1. Random walks considered in Section 4 (p+2q = 1), for different

starting points x

Proposition 2. The statement in Theorem 1 holds for any δ > 0 for which there exists

n0 > 1 such that

P
0
µ[τK−δ

> n0, Sn0
∈ Ko] > 0.

If (H2) is not satisfied, then the exponential rate might depend on the starting point
x. We shall illustrate this phenomenon in Section 4, with the walks in the quarter-plane

having transition probabilities as in Figure 1.

1.4. Plan of the paper. The rest of our article has a simple organization: In Section 2
we prove Theorem 1. In Section 3 we present an important consequence of Theorem 1
in the counting of walks in orthants (a topical domain in enumerative combinatorics), see

Corollaries 9 and 10. Finally, in Section 4 we consider the walks of Figure 1, for which
we prove that contrary to the walks satisfying to hypothesis (H2), the exponential decay
depends on the starting point x.

2. Laplace transform, Cramér Transform and proof of the main results

In this section we prove Theorem 1 and Proposition 2, as follows: In Subsections 2.1
and 2.2, we review some elementary properties of the Laplace and Cramér transforms,
which will be needed for proving our main results. In Subsection 2.3 we sketch the proof

Theorem 1 in a simple case, in order to give some intuition. Finally, in Subsection 2.4 we
provide the full details of the general proof.

2.1. Basic properties of the Laplace transform. The Laplace transform of a proba-
bility distribution µ is the function Lµ defined for x ∈ R

d by

Lµ(x) =

∫

Rd

e〈x,y〉µ(dy).

The probability measure µ is said to have all exponential moments if Lµ(x) is finite for all
x, or equivalently if ∫

Rd

et|y|µ(dy)

is finite for all real t (above and throughout, | · | stands for the norm associated with the

inner product 〈·, ·〉). From now on, we assume that this condition is satisfied.
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A direct application of Leibniz’s rule for differentiation under the integral sign shows
that Lµ is then (infinitely) differentiable, and that its partial derivatives are given by

∂Lµ(x)

∂xi
=

∫

Rd

yie
〈x,y〉µ(dy).

Therefore, the expectation of µ is equal to the gradient of Lµ at the origin

E[µ] = ∇Lµ(0),

and µ is centered if and only if 0 is a critical point of Lµ. The strict convexity of the
exponential function ensures that

(5) Lµ(ax1 + bx2) 6 aLµ(x1) + bLµ(x2),

for all x1 6= x2 and a, b > 0 with a + b = 1, and that equality occurs in (5) if and only if
µ((x1 −x2)⊥) = 1, where (x1 − x2)

⊥ denotes the hyperplane orthogonal to x1 −x2. Thus,
if (H1) is satisfied, the equality in (5) never occurs and Lµ is strictly convex.

Let C be a closed cone and S
d−1 denote the unit sphere of R

d. Standard arguments

involving the convexity of Lµ and the compactness of C ∩ S
d−1 show that Lµ(x) goes to

infinity uniformly on C as |x| → ∞ if and only if

(6) lim
t→∞

Lµ(tu) = ∞, ∀u ∈ C ∩ S
d−1.

Hence, the condition (6) is sufficient for the existence of a global minimum on C. Indeed,
if it is satisfied, then there exists R > 0 such that Lµ(x) > 1 for all x ∈ C with |x| > R.

By continuity, Lµ reaches a minimum on B(0, R) ∩ C which is less or equal to 1 (since

Lµ(0) = 1), thus it is a global minimum on C.
The next lemma gives some interesting informations on the behavior at infinity of Lµ.

Recall that u− denotes the half-space {y ∈ R
d : 〈u, y〉 6 0}.

Lemma 3. Suppose that µ has all exponential moments. The following dichotomy holds:

(1) If µ(u−) < 1, then

lim
t→∞

Lµ(x + tu) = ∞, ∀x ∈ R
d.

(2) If µ(u−) = 1, then

lim
t→∞

Lµ(x + tu) =

∫

u⊥

e〈x,y〉µ(dy), ∀x ∈ R
d.

Proof. If µ(u−) < 1, then we can find ǫ > 0 such that the set {y ∈ R
d : 〈u, y〉 > ǫ} has

positive measure, and the inequality

Lµ(x + tu) >

∫

{y∈Rd:〈u,y〉>ǫ}
e〈x+tu,y〉µ(dy) > etǫ

∫

{y∈Rd:〈u,y〉>ǫ}
e〈x,y〉µ(dy) > Cetǫ,

proves the first assertion of Lemma 3.
Suppose now on the contrary that µ(u−) = 1. We then may write

Lµ(x + tu) =

∫

u⊥

e〈x,y〉µ(dy) +

∫

{y∈Rd:〈u,y〉<0}
e〈x+tu,y〉µ(dy).
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The second integral on the right-hand side of the above equation goes to zero as t goes
to infinity by the dominated convergence theorem, thus proving the second assertion of

Lemma 3. �

Lemma 4. Suppose that µ has all exponential moments and is non-degenerated. Then

the Laplace transform Lµ has a global minimum on the closed convex cone C if and only

if there does not exist any u 6= 0 in C such that µ(u−) = 1.

Proof. If µ(u−) < 1 for all u 6= 0 in C, then limt→∞ Lµ(tu) = ∞ by Lemma 3, and

the function Lµ has a global minimum on C as explained earlier. Now, suppose on the
contrary that µ(u−) = 1 for some u 6= 0 in C. Then, by Lemma 3 again, the limit

h(x) := lim
t→∞

Lµ(x + tu)

exists and is finite for all x. Since any convex cone is a semi-group, x + tu ∈ C for all
x ∈ C and t > 0, and consequently

h(x) > inf
C

Lµ, ∀x ∈ C.

But our assumption that µ is non-degenerated implies that Lµ is strictly convex, so that
Lµ(x) > h(x) for all x ∈ C (for else the strictly convex function t 7→ Lµ(x + tu) on [0,∞[

would not have a finite limit). We thus reach the conclusion that Lµ(x) > infC Lµ for all
x ∈ C, thereby proving that Lµ has no global minimum on C. �

Remark 5. In view of Lemma 4, assuming (H1), we can now restate (H2) in terms of the
Laplace transform of µ: The probability measure µ satisfies (H2) if and only if Lµ is finite

everywhere and has a global minimum on the dual cone K∗.

2.2. Cramér transformation. Given x0 ∈ R
d, let µ0 denote the probability measure

defined by

(7) µ0(dy) =
e〈x0,y〉

Lµ(x0)
µ(dy).

Note that µ and µ0 are absolutely continuous relatively to each other, hence they have
the same support, and µ0 is still non-degenerated.

The Laplace transform of µ0 is related to that of µ by the formula

Lµ0
(x) =

Lµ(x0 + x)

Lµ(x0)
, ∀x ∈ R

d.

Therefore, the expectation of µ0 is given by

E[µ0] = ∇Lµ0
(0) =

∇Lµ(x0)

Lµ(x0)
.

Hence, if Lµ has a global minimum at x0, then ∇Lµ(x0) = 0 and µ0 is centered.
The link between probabilities involving random walks with increments distributions µ

and µ0 is given by the following:

Lemma 6 (Cramér’s formula). For any measurable and positive function F : Rn → R,

we have

E
x
µ[F (S1, . . . , Sn)] = Lµ(x0)

ne〈x0,x〉Ex
µ0

[e−〈x0,Sn〉F (S1, . . . , Sn)].
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Proof. It follows directly from the definition (7) of µ0 that

µ⊗n(dy1, . . . ,dyn) = Lµ(x0)ne−〈x0,
∑n

i=1 yi〉µ⊗n
0 (dy1, . . . ,dyn).

The conclusion is then straightforward. �

Applied to the function F (s1, . . . , sn) = Πn
i=11K(si), Cramér’s formula reads

(8) P
x
µ[τK > n] = Lµ(x0)ne〈x0,x〉Ex

µ0
[e−〈x0,Sn〉, τK > n],

and it is immediate that

P
x
µ[τK > n] 6 Lµ(x0)ne〈x0,x〉,

for all x0 ∈ K∗, since 〈x0, Sn〉 > 0 for such x0 and Sn ∈ K. Hence, the infimum of the
Laplace transform on K∗ is always an upper bound of the exponential rate, i.e.,

(9) lim sup
n→∞

P
x
µ[τK > n]1/n 6 inf

y∈K∗
Lµ(y),

for all x ∈ R
d.

Remark 7. If the drift of the random walk belongs to the cone K, the minimum of the

Laplace transform is at the origin of the cone:

lim
n→∞

P
x
µ[τK > n]1/n = 1 = Lµ(0) = min

Q
Lµ.

On the other hand, when the drift is not inside the cone K, there is no direct link between
the location of the minimum x0 and the location of the drift.

2.3. Main idea of the proof. In order to give the basic idea of the proof of Theorem 1,
we shall now prove it in the simple case where Lµ reaches a global minimum on K∗ at
some interior point x0 ∈ (K∗)o. In that case, x0 is a local minimum point, therefore µ0 is

centered, and it follows from [14, Theorem] that

lim
n→∞

P
x
µ[|Sn| 6

√
n, τK > n]1/n = 1

for all x ∈ Kδ , for some δ > 0. Now, using (8), we get the lower bound

P
x
µ[τK > n] > Lµ(x0)

ne〈x0,x〉e−|x0|
√
n
P
x
µ0

[|Sn| 6
√
n, τK > n],

and the conclusion follows from these two last equations.
To handle the case where Lµ reaches a global minimum on K∗ at some boundary point

x0, we will use a combination of Cramér’s transformation at x0 and the usual centering
procedure.

2.4. Proofs of Theorem 1 and Proposition 2. We will first prove the theorem in the

case K = Q, and then derive the general result via an appropriate linear transformation.
Let us begin with the following result, which gives the position of the drift of the Cramér
transform performed at the minimum on Q of the Laplace transform.

Lemma 8. Suppose µ satisfies (H1) and (H2) with K = Q. Then its Laplace transform

reaches a global minimum in Q at a unique point x0. In addition, the gradient ∇Lµ(x0)

belongs to Q and
∂Lµ

∂xi
(x0) = 0
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for all i such that 〈x0, ei〉 > 0.

Proof. As seen in Lemma 4, it follows from (H2) that Lµ has a global minimum on Q. The
uniqueness of the global minimum point x0 is an easy consequence of the strict convexity

of Lµ which is due to (H1).
Let i ∈ J1, dK and set xi = 〈x0, ei〉. Since x0 ∈ Q, the whole half-line {x0 + tei : t > −xi}

is included in Q, and therefore the function

t ∈ [−xi,∞) 7→ fi(t) = Lµ(x0 + tei)

reaches its minimum at t = 0. If xi > 0, this implies that f ′
i(0) = 0. If xi = 0, the point

t = 0 may not be critical for fi but at least it must satisfy f ′
i(0) > 0. The conclusion

follows since f ′
i(0) =

∂Lµ(x0)
∂xi

. �

Proof of Theorem 1. Let x0 be the global minimum point of Lµ in Q as given in Lemma 8.

As already observed, Lµ(x0) is an upper bound for lim supn P
x
µ[τQ > n]1/n, and it remains

to prove that it is also the right lower bound. By performing the Cramér transformation
at x0, we get

(10) P
x
µ[τQ > n] = Lµ(x0)ne〈x0,x〉Ex

µ0
[e−〈x0,Sn〉, τQ > n],

where µ0(dy) = Lµ(x0)
−1e〈x0,y〉µ(dy) is non-degenerated with mean

m0 =
∇Lµ(x0)

Lµ(x0)
∈ Q.

Define I = {i ∈ J1, dK : xi = 〈x0, ei〉 > 0}. Since

|〈x0, Sn〉| =

∣∣∣∣∣
∑

i∈I
xiS

(i)
n

∣∣∣∣∣ 6 C
√
n,

where C =
∑

i∈I xi, as soon as |S(i)
n | 6 √

n for all i ∈ I, we obtain the lower bound

E
x
µ0

[e−〈x0,Sn〉, τQ > n] > e−C
√
n
P
x
µ0

[|S(i)
n | 6

√
n,∀i ∈ I, τQ > n].

We shall now perform a last centering step in the most usual way: Consider the random

walk (S̃n)n>0 which is defined by

S̃n = Sn − nm0, ∀n > 0,

and observe that

• Under µ0, the random walk (S̃n)n>0 is centered and non-degenerated;

• Since m0 belongs to Q, Sn = S̃n + nm0 belongs to Q as soon as S̃n does;

• Since mi = 〈m0, ei〉 = 0 for all i ∈ I, S̃
(i)
n = S

(i)
n for all i ∈ I.

From the two last points we infer that

P
x
µ0

[|S(i)
n | 6

√
n,∀i ∈ I, τQ > n] > P

x
µ0

[|S̃(i)
n | 6

√
n,∀i ∈ I, τQ(S̃) > n]

> P
x
µ0

[|S̃n| 6
√
n, τQ(S̃) > n].
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Now it follows from [14, Theorem] that for any e ∈ Qo there exists a constant δ > 0 such
that

lim
n→∞

P
x
µ0

[|S̃n| 6
√
n, τQ(S̃) > n]1/n = 1,

for all x ∈ Qδ(e) = Q + δe. Hence, going backward to (10), we reach the conclusion that

lim inf
n

P
x
µ[τQ > n]1/n > Lµ(x0),

for all x ∈ Qδ(e), and the theorem is proved for K = Q.
We now turn to the general case where K = {x ∈ R

d : 〈x, fi〉 > 0,∀i ∈ J1, rK} for

some familly F = {f1, . . . , fr} of r ∈ J1, dK independent vectors. To this familly, we add
vectors fr+1, . . . , fd so that {f1, . . . , fd} forms a basis of R

d; we denote by N the linear
transformation that maps ei to fi for all i ∈ J1, dK and by M = N⊤ its transpose.

Some basic linear algebra computations show that

(11) MK = Qr × R
d−r,

where Qr denotes the positive orthant of Rr. Therefore,

P
x
µ[τK > n] = P

Mx
µ [MSk ∈ MK,∀k ∈ J1, nK] = P

Mx
µ [S̃k ∈ Qr,∀k ∈ J1, nK],

where S̃k = Πr(MSk) and Πr is the projection onto R
r defined by Πr(x1, . . . , xd) =

(x1, . . . , xr). Since the process (S̃n)n>0 is an r-dimensional random walk whose increments
have common distribution

ν(dy) = µ(ΠrM ∈ dy),

we may finally write

(12) P
x
µ[τK > n] = P

y
ν [τQr > n],

where y = ΠrMx. We shall now apply the result obtained in the first part of the proof

to our r-dimensional random walk. It is clear that ν is non-degenerated and has all
exponential moments. Noting that (MK)∗ = (M⊤)−1K∗ and (Qr×R

d−r)∗ = Qr×{0}d−r,
we obtain from (11) that

(13) K∗ = M⊤(Qr × {0}d−r).

In addition, we observe that for any w ∈ Qr×{0}d−r and v = Πr(w), we have the equality
(ΠrM)−1(v−) = (M⊤w)−. Thus, if there were some v ∈ Qr such that ν(v−) = 1, we

would also have 1 = µ((ΠrM)−1(v−)) = µ((M⊤w)−) = µ(u−) for u = M⊤w ∈ K∗, and
this would contradict (H2). Therefore, the probability measure ν also satisfies (H2) (with
respect to the cone Qr) and we conclude that for any e ∈ (Qr)o there exists δ > 0 such

that

(14) lim
n→∞

P
y
ν [τQr > n]1/n = min

Qr
Lν ,

for all y ∈ Qr
δ(e). Another simple computation shows that

Lν(Πr(x)) = Lµ(M⊤x),

for all x ∈ Qr × {0}d−r , and hence the equality

(15) min
Qr

Lν = min
K∗

Lµ
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follows from (13). The combination of Equations (12), (14) and (15) implies

lim
n→∞

P
x
µ[τK > n]1/n = min

K∗
Lµ,

for all x such that y = ΠrMx ∈ Qr
δ(e); but thanks to (11), for any fixed v ∈ Ko,

e = ΠrMv belongs to (Qr)o and the condition ΠrMx ∈ Qr
δ(e) is equivalent to x ∈ K + δv.

This completes the proof of Theorem 1. �

To conclude this section, let us explain how to find a δ > 0 for which the statement of

Theorem 1 holds.

Proof of Proposition 2. Recall that v ∈ Ko is fixed. We assume that there exist δ > 0 and
k > 1 such that

P
0
µ[τK−δ

> k, Sk ∈ Ko] > 0.

Therefore, we can find ǫ > 0 such that

P
0
µ[τK−δ

> k, Sk ∈ Kǫ] = γ > 0,

and since K is a convex cone, it satisfies the relation K + K ⊂ K, thus

P
x
µ[τK > k, Sk − x ∈ Kǫ] > γ,

for all x ∈ Kδ (by inclusion of events). From this, we shall deduce by induction that

(16) pℓ := P
x
µ[τK > ℓk, Sℓk − x ∈ Kℓǫ] > γℓ,

for all ℓ > 1 and x ∈ Kδ. Indeed, by the Markov property of the random walk,

pℓ+1 > E
x
µ[τK > ℓk, Sℓk − x ∈ Klǫ;P

Sℓk
µ [τK > k, Sk − x ∈ K(ℓ+1)ǫ]]

> pℓ · inf
y
P
y
µ[τK > k, Sk − x ∈ K(ℓ+1)ǫ],

where the infimum is taken over all y ∈ K such that y−x ∈ Kℓǫ. Noting that y−x ∈ Kℓǫ

and Sk − y ∈ Kǫ imply Sk − x ∈ K(ℓ+1)ǫ, we obtain

pℓ+1 > pℓ · inf
y
P
y
µ[τK > k, Sk − y ∈ Kǫ].

But x ∈ Kδ and y − x ∈ Kℓǫ ⊂ K imply y ∈ Kδ. Hence pℓ+1 > pℓγ and (16) is proved.
Now Theorem 1 asserts the existence of some δ0 > 0 such that

lim
n→∞

P
y
µ[τK > n]1/n = Lµ(x0),

for all y ∈ Kδ0 , and we want to prove that the result also holds for x ∈ Kδ. To do this,
we shall simply use (16) in order to push the walk from Kδ to Kδ0 . More precisely, choose
ℓ > 1 such that δ + ℓǫ > δ0. Then for all x ∈ Kδ the inclusion x + Kℓǫ ⊂ Kδ0 holds, and

thanks to (16)

P
x
µ[τK > m,Sm ∈ Kδ0 ] > γℓ,

for m = kℓ. By the Markov property, for all n > m, we have

P
x
µ[τK > n] > E

x
µ[τK > m,Sm ∈ Kδ0 ;PSm

µ [τK > n−m]]

> γℓ · inf
y∈Kδ0

P
y
µ[τK > n−m]

> γℓ · Pδ0v
µ [τK > n−m],
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where the last inequality follows by inclusion of events. This implies immediately

lim inf
n→∞

P
x
µ[τK > n]1/n > Lµ(x0).

But since

lim sup
n→∞

P
x
µ[τK > n]1/n 6 Lµ(x0)

holds for all x (see (9)), Proposition 2 is proved. �

3. Application to lattice path enumeration

In this section we present an application of our main result (Theorem 1) in enumerative
combinatorics: Given a finite set S of allowed steps, a now classical problem is to study
S-walks in the orthant Q, that is walks confined to Q, starting at a fixed point x (often

the origin) and using steps in S only. Denote by fS(x, y;n) the number of such walks that
end at y and use exactly n steps. Many properties of the counting numbers fS(x, y;n)
have been recently analyzed (the seminal work in this area is [5]). First, exact properties

of them were derived, via the study of their generating function (exact expression and
algebraic nature). Such properties are now well established for the case of small steps
walks in the quarter-plane, meaning that the step set S is included in {0,±1}2. More

qualitative properties of the fS(x, y;n) were also investigated, as the asymptotic behavior,
as n → ∞, of the number of excursions fS(x, y;n) for fixed y, or that of the total number
of walks,

(17) fS(x;n) =
∑

y∈Q
fS(x, y;n).

Concerning the excursions, several small steps cases have been treated by Bousquet-Mélou

and Mishna [5] and by Fayolle and Raschel [13]. Later on, Denisov and Wachtel [8]
obtained the very precise asymptotics of the excursions, for a quite large class of step sets
and cones. As for the total number of walks (17), only very particular cases are solved, see

again [5, 13]. In a most recent work [16], Johnson, Mishna and Yeats obtained an upper
bound for the exponential growth constant, namely,

lim sup
n→∞

fS(x;n)1/n,

and proved by comparison with results of [13] that these bounds are tight for all small
steps models in the quarter-plane. In the present article, we solve this problem in any
dimension for any model such that

(H1’) The step set S is not included in a hyperplane;
(H2’) The step set S is not included in a half-space u−, with u ∈ Q \ {0}.

In the sequel we shall say that a step set S is proper if it satisfies to (H1’) and (H2’).
Note in particular that the well-known 79 models of walks in the quarter-plane studied in

[5, 13] (including the so-called 5 singular walks) satisfy both hypotheses above.

Corollary 9. Let S be any proper step set. The Laplace transform of S,

LS(x) =
∑

s∈S
e〈x,s〉,
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reaches a global minimum in Q at a unique point x0, and there exists δ > 0 such that for

any starting point x ∈ Qδ,

lim
n→∞

fS(x;n)1/n = LS(x0).

Suppose that in addition:

(H3’) The step set allows a path staying in Q from the origin to some point in the interior

of Q.

Then it follows from Proposition 2 that the result in Corollary 9 holds with δ = 0, i.e., it
is valid for all x ∈ Q. Note that this assumption is not restrictive from a combinatorial

point of view, since if (H3’) is not satisfied, the counting problem is obvious.

Proof of Corollary 9. Consider a random walk (Sn)n>0 starting from x such that µ is the

uniform law on S. Let then τQ denote the first exit time from Q. The enumeration
problem is related to probabilities in a simple way:

(18) P
x
µ[τQ > n] =

fS(x;n)

|S|n .

Further, it is immediate from our definition that LS(x) = |S|LµS(x). Corollary 9 then
follows from Theorem 1 and from the fact that Q∗ = Q. �

As a consequence, we obtain the following result, which is conjectured in [16]:

Corollary 10. Let S ⊂ Z
d be a proper step set (hypotheses (H1’) and (H2’)), which besides

satisfies (H3’), and let KS be the growth constant for the enumerative sequence counting

the number of S-walks restricted to the first orthant. Let P be the set of hyperplanes

through the origin in R
d which do not meet the interior of the first orthant. Given p ∈ P,

let KS(p) be the growth constant of the walks on S which are restricted to the side of p
which includes the first orthant. Then KS = minp∈P KS(p).

Proof. Let us first notice that P can be described as the set of hyperplanes u⊥ such that
u ∈ Q ∩ S

d−1, and that the side of p = u⊥ which includes the first orthant is then the
half-space u+ = {x ∈ R

d : 〈x, u〉 > 0}. By Theorem 1, the exponential rate for the random

walk associated to the step set S and confined to u+ is the minimum of LS/|S| on the dual
cone (u+)∗ = {tu : t > 0}. Therefore, the growth constant KS(p) equals mint>0 LS(tu),
and the equality

min
x∈Q

LS(x) = min
u∈Q∩Sd−1

min
t>0

LS(tu)

immediately translates into

KS = min
p∈P

KS(p).

The proof of Corollary 10 is completed. �

Note the Corollary 10 admits a direct probabilistic analogue: In words, the exponential
decay of the exit probability from the orthant is equal to the minimum of the exponential

decay from the half-spaces containing the orthant.
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Figure 2. Random walks considered in the proof of Proposition 11 on the

lines {(i, j) ∈ Q : i + j = 2N} for N > 0

4. Half-space walks

In this section we illustrate the following phenomenon: If the support of the random

walk is included in a certain half-space (contradicting (H2)), such a universal result as
Theorem 1 does not hold; in particular, the exponential decay may depend on the starting
point.

Let (Sn)n>0 be the random walk on Q starting at x and with transition probabilities to

(1,−1), (−1, 1) and (−1,−1), with respective probabilities q, q and p, where p+2q = 1, see
Figures 1 and 2. Let τQ be the exit time (1) of this random walk from the quarter-plane
Q. Finally, define for fixed N the segment D2N = {(i, j) ∈ Q : i + j = 2N}.

Proposition 11. For any N > 1 and any x ∈ D2N , we have

(19) lim
n→∞

P
x[τQ > n]1/n = 2q cos

(
π

2N + 2

)
.

We shall need the following result on the simple symmetric random walk on Z (we refer

to [18, page 243] for a proof):

Lemma 12 ([18]). For the simple symmetric random walk (S̃n)n>0 on Z (with jumps to

the left and to the right with equal probabilities 1/2), we have, for any x ∈ J0, 2NK,

lim
n→∞

P
x[S̃1, . . . , S̃n ∈ J0, 2NK]1/n = cos

(
π

2N + 2

)
.

Proof of Proposition 11. We shall prove Proposition 11 by induction over N > 1. For

N = 1, we have three choices for x (see Figure 1). We write the proof when x = (1, 1),
since the arguments for other values of x are quite similar. For this choice of x, the origin
(0, 0) can be reached only at odd times n, and in that event, the random walk gets out of

Q at time n + 1. From this simple remark we deduce that (below, we note (Xk)k>1 the
increments of the random walk (Sn)n>0 started at x)

P
x[τQ > 2n] = P

x[τQ > 2n,Xk 6= (−1,−1),∀k ∈ J1, nK]

= P
x[τQ > 2n|Xk 6= (−1,−1),∀k ∈ J1, nK](2q)n.
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Further, the random walk conditioned on never making the jump (−1,−1) is a simple
symmetric random walk on the segment D2. Therefore,

P
x[τQ > 2n] = P

1[S̃1, . . . , S̃n ∈ J0, 2K](2q)2n.

Using Lemma 12, we conclude that for x = (1, 1),

lim
n→∞

P
x[τQ > 2n]1/(2n) = 2q cos

(π
4

)
.

The fact that P
x[τ > 2n] is decreasing in n implies that the above equation holds with

2n + 1 instead of 2n. This achieves the proof of Proposition 11 for N = 1.

Let us now assume that Equation (19) holds for a fixed value of N > 1. For x ∈ D2N+2,
introduce

H = inf{n > 0 : Sn ∈ D2N}
the hitting time of the set D2N , see Figure 2. We can write

(20) P
x[τQ > n] = P

x[τQ > n,H > n] +

n∑

k=1

P
x[τQ > n,H = k].

The first term in the right-hand side of (20) can be written as

P
x[τQ > n,H > n] = P

x[τQ > n|H > n](2q)n,

where (for the same reasons as for the case N = 1)

lim
n→∞

P
x[τQ > n|H > n]1/n = cos

(
π

2N + 4

)
.

As for the second term in the right-hand side of (20),

P
x[τQ > n,H = k] = E

x[τQ > k,K = k,PSk [τQ > n− k]]

6 CP
x[τQ > k,H = k]Px0 [τQ > n− k]

6 CP
x[τQ > k − 1,H > k − 1]Px0 [τQ > n− k]

= Cakbn−k

The first equality above comes from the strong Markov property. The first inequality

follows from the fact that for any fixed x0 ∈ D2N , there exists a constant C > 0 such that,
for any n > 0 and any y, Py[τQ > n] 6 CP

x0[τQ > n]. The second inequality is obvious,
and the last line has to be read as a definition.

Using, on the one hand, the same reasoning as for the case N = 1, and on the other
hand, the induction hypothesis, we obtain

lim
n→∞

a1/nn = 2q cos

(
π

2N + 4

)
> 2q cos

(
π

2N + 2

)
= lim

n→∞
b1/nn .

Standard properties of the Cauchy product then yield that

lim sup
n→∞

(
n∑

k=1

akbn−k

)1/n

6 2q cos

(
π

2N + 4

)
.
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To summarize, with the help of (20) we have written P
x[τQ > n] = An + Bn, where

lim
n→∞

A1/n
n = 2q cos

(
π

2N + 4

)
, lim sup

n→∞
B1/n

n 6 2q cos

(
π

2N + 4

)

The formula (19) therefore holds for N + 1, and Proposition 11 is proved. �
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