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Abstract

Software intensively depends on external libraries whose relevance may change during its
life cycle. As a consequence, software developers must periodically reconsider the libraries
they depend on, and must think about library migration. To our knowledge, no existing
study has been done to understand library migration although it is known to be an expensive
maintenance task. Are library migrations frequent? For which software are they performed
and when? For which libraries? For what reasons? The purpose of this paper is to answer
these questions with the intent to help software developers that have to replace their libraries.
To that extent, we have performed a statistical analysis of a large set of open source software
to mine their library migration. To perform this analysis we have defined an approach that
identifies library migrations in a pseudo-automatic fashion by analyzing the source code of
the software. We have implemented this approach for the Java programming language and
applied it on Java Open Source Software stored in large hosting services. The main result of
our study is that library migration is not a frequent practice but depends a lot on the nature
of the software as well as the nature of the libraries.

1 Introduction

Almost all software applications depend on external libraries that provide useful technical facilities.
Examples of such libraries are junit for unit testing or log4j for logging. The relevance of a library
for a software project may change during its life cycle. As a consequence, software developers
must periodically reconsider the libraries they depend on, and must think about library migration
when the libraries they depend on are not updated, or when competing ones appear with more
features or better performance for instance.

To the best of our knowledge, no existing study has been done to understand library migration
although it is known to be a highly costly maintenance task. Are library migrations frequent? For
which kinds of software are they performed and when? For which libraries? For what reasons? etc.
The purpose of this paper is then to answer these questions with the intent to help any software
developer that will have to think about replacing the libraries she uses.

In particular, we propose to address the following research questions:

1. Which software projects perform library migrations and how much of them? Our objective
is to check if some kinds of software are prone to library migrations.

2. Which libraries are migrated and how many times? Our objective is to check if some libraries
are prone to be source or target of migrations.

3. When migrations are performed? Our objective is to check if there is any tendency regarding
migrations.

4. Why migrations are performed? Our objective is to identify the common causes of library
migrations.
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5. How migrations are performed? Our objective is to measure the mean time that is needed to
perform a migration with the intent to serve as an indication for assessing migration effort
costs.

Answering these research questions would help the software developers thinking about migrat-
ing their libraries. Currently, for such intent they can only use general purpose search engines, such
as Google, which give only partial and sometimes out-of-date answers. For example, if a developer
wants to migrate its commons-logging library, she will probably query Google with something
similar to: “logging library Java”. She will obtain a list of technical websites but no advice that
would help her find an adequate replacement library neither any pointer to existing software that
did already perform such a migration.

In this paper, we answer these research questions by analyzing a large corpus of Java software.
Our objective is to mine a large set of library migrations to statistically exhibit common practices.
For instance, we assume that if we observe that a large number of software project migrate from
log4j to slf4j, it is then relevant for every similar software project using log4j to consider slf4j as
a good candidate to migrate to.

Our contribution is twofold. First, we propose a mining approach to pseudo automatically
identify library migrations that occur in Java software. Second, we answer our research questions
with results from a study performed with our mining approach on three major hosting platforms
(GitHub, Google Code and Source Forge).

This paper extends our previous work [TFB12] which only targets software that use the build
automation tool Maven. The study we present in this paper takes into account any kind of Java
Open Source Software. The results we obtain here are therefore more general than the ones from
our previous paper.

The remainder of this paper is structured as follows. Section 2 first explains our approach
to identify library migrations and Section 3 presents the study we performed on projects stored
on three major hosting platforms. Section 4 then presents the answers to the research questions.
Section 5 discusses the limitations of our approach. Section 6 presents the related work, while
Section 7 uncovers the future work and concludes.

2 Identifying migrations

In this section, we first introduce the abstract model we define to represent software projects
and library migrations. Based on this model, we present the approach we use to identify library
migrations.

2.1 Dependency Model

We abstract the data needed to perform our analysis in a dependency model. This model is very
simple as it only contains the set of analyzed software projects, their list of versions and, for each
version the associated set of library dependencies.

Definition 1 (Software projects and Libraries) Let P be the set of software projects and L
be the set of libraries. For the sake of simplicity, we consider that each project p ∈ P has an
associated totally ordered set Vp ⊂ N of versions. Versions are sorted chronologically according to
their date. For a project p ∈ P at version i ∈ Vp, we define depp(i) : Vp → P(L) the set of its
library dependencies.

Let us illustrate our model with an example. We assume two projects (PA and PB) and four
libraries (junit, testng, log4j and slf4j ). Table 1 presents this dependency model with versions of
PA : (1, 2, 3) and of PB : (1, 2), associated with their corresponding dependencies. Note that version
1 of PA and version 1 of PB are different and occur at two different dates (as well as for the versions
2).
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Project Versions / Dependencies

PA 1 2 3
{JUnit} {JUnit,TestNG,Log4J} {TestNG,SLF4J}

PB 1 2
{TestNG} {JUnit}

Table 1: Example of projects with their versions and their dependencies

Definition 2 (Library migration) We state that a project p ∈ P migrates from a library s ∈ L
to another library t ∈ L if it depends on s at version i ∈ Vp (i.e. s ∈ depp(i)) and if this dependency
is replaced by t ∈ L in version j ∈ Vp with i < j (i.e. t ∈ depp(j)). A migration is therefore a
tuple (p, i, j, s, t) ∈ P ×N×N×L×L. Finally, given a set of projects P and a set of libraries L,
we note M all the migrations that occur for all projects in P .

Regarding our sample presented in Table 1, the following migrations have been performed in
projects PA and PB : (PA, 1, 3, junit, testng), (PA, 2, 3, log4j, slf4j) and (PB , 1, 2, testng, junit).

Definition 3 (Library migration rule) We also call a migration rule a couple (s, t) ∈ L2 such
that there exists at least one project p ∈ P that migrates from s to t during its life cycle. We note
R the set of all library migration rules.

Regarding our example R = {(junit, testng), (log4j, slf4j), (testng, junit)}.

2.2 Mining library migrations

To answer our research questions, we have to identify migrations M that occur in a set of projects
P for a set of libraries L. Such an identification obviously first requires to define P but also
L. While defining P is straightforward, defining L is not so obvious and mainly depends on the
programming language. Section 3 presents how we manage to identify P and L for Java Open
Source projects.

Once P and L have been defined, our approach has to describe how library dependencies
can be automatically computed (the depp(i) function has to be defined). To that extent, several
techniques, such as the ones that are based on tools that manage library dependencies like Maven
[TFB12], can be used. In this paper, we choose not to depend on a specific tool but rather to use
source code static analysis for automatically computing actual dependencies between a project
and a set of libraries. Section 3 presents such a simple static analysis for Java projects and Java
libraries.

Further, to compute M , we propose an algorithm that iterates on several versions of each
project to identify migrations that may have been performed. In detail, our algorithm looks at
couples of versions (i, j) in a project p and checks which library dependencies existed at version i
but were replaced at version j. Our algorithm returns a candidate migration for each element of
the Cartesian product between the dependencies that existed at i but were removed at j and the
ones that did not exist at i but were added at j.

With our example, considering the project PA and the couple of versions (1, 3), our algorithm
returns the candidates (PA, 1, 3, junit, testng) and (PA, 1, 3, junit, slf4j). Considering the same
project but the couple of versions (1, 2), our algorithm does not return any candidate. Finally,
with the same project but the couple of versions (2, 3), the candidates (PA, 2, 3, junit, testng),
(PA, 2, 3, junit, slf4j), (PA, 2, 3, log4j, testng) and (PA, 2, 3, log4j, slf4j) are returned.

The choice of couples (i, j) to observe has a major impact on the quantity of the candidate
migrations returned by our algorithm. Ideally all couples should be observed to get all possible
candidates but this takes too much time and is certainly not useful as many couples return the
same candidate migrations. Further, the choice of the distance between the two versions of the
couple (j − i) has also an impact on the returned candidates. The following two cases should be
considered:
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• Large distance couples ((j − i) approaches to ∞). If the distance between the couple is too
large, several migrations that occur between i and j will not be considered as candidates. The
Figure 1 presents four situations in which such a case occurs. In this figure, a horizontal axis
represents a dependency toward a certain kind of library for a given project p (for instance
a dependency toward a testing library). Each colored segment displays which library has
been used as a dependency (e.g. junit then testng) and thus also displays when migrations
occurred (m©). Each of the four cases represents distinct situations which are:

1. The introduction of junit was done after i, hence by observing the couple (i, j) our
algorithm does not know that junit was used before testng and therefore will not
return any candidate.

2. The project stopped to use testng before j, thus by observing the couple (i, j) our
algorithm does not know testng and therefore will not return any candidate.

3. Two migrations happened between i and j. junit was replaced by testng that was then
replaced by jetty−test. Here, by observing the couple (i, j) our algorithm will consider
only the candidate (p, i, j, junit, jetty−test) even though this migration never happened
directly. As a matter of fact, if the distance is too large our algorithm might return
migrations that are the result of combinations of several successive real migrations.

4. The project migrated from junit to testng between i and j, but then moved back to
junit before the version j. By observing the couple (i, j) our algorithm will not return
any candidate.

• Small distance couples ((j − i) approaches to 1). If the distance between the couple is too
small, migrations that are performed during several versions cannot be detected. Indeed,
we have no clue that a migration is always performed during only one version. The new
dependency might be added at version i but the old one might be kept at j before be-
ing removed at j + k. Our example highlights such a situation with the project SA. In
particular, if our algorithm observes the couple of versions (1, 2) and (2, 3), the candidate
(SA, 1, 3, junit, testng) will not be returned.

Versions
Vi Vj

m

m

mm

mm

Case 2

Case 1

Case 3

Case 4

JUnit TestNG

Jetty-test

JUnit

JUnit

JUnit

JUnitTestNG

TestNG

TestNG

Figure 1: Cases of migrations missed if the distance between the versions couple is too large

The choice of the couples to observe and their distance therefore requires to reach a trade-off
between the quantity of returned migrations and time efficiency. Section 3 presents a discussion
about this trade-off for Open Source Java projects.

Whatever the number of observed couples of versions and whatever their distance, once candi-
date migrations have been identified, they have to be validated either automatically or manually
before to be truly included in M , the set of migrations. Regarding our example and the couple
(1, 3), the candidate (PA, 1, 3, junit, slf4j) should be filtered out while (PA, 1, 3, junit, testng)
should be filtered in. Section 3 explains that, albeit an automatic validation provided good results
in our previous study, the recall suffered from the priority given to precision. We decide in this
study to focus on recall only and this is why we have realized a manual validation to discard the
irrelevant candidates.
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3 Experiments

Based on the approach described in the previous section we conducted a case study on Java Open
Source software. We have focused our study on the Java programming language for the sake of
simplicity but it can be easily extended to any other programming language.

This section presents how we operated to apply our approach for this study. First, we introduce
how we built P the corpus of software projects and L the set of libraries. Second, we describe
how for a given project version we are able to identify libraries it uses. Finally, we explain how
the migration rules are detected.

3.1 The set of projects P

A corpus of 14,028 software projects has been built by querying Github, GoogleCode and Source-
forge hosting platforms to get the Java projects they manage. The selection was then achieved in
a random manner. Among these projects we first removed 2,430 empty repositories that did not
contain Java source code or were merely not existing anymore. Then, we discarded 2,380 projects
that did not use any third-party library. We finally obtained a set P composed of 9,218 projects.

3.2 The set of libraries L

A set of Java libraries was reused from a prior study [TFB12]. In this previous experiment we
analyzed over 6,000 Java projects managed with Maven. A Maven command was used to obtain
libraries JAR files used by each project. Thanks to this process we gathered a base of 8,795
libraries in the form of JAR files. We then grouped these files according to the similarity of their
names. For instance, we consider that junit-4.8.1.jar and junit-4.8.2.jar are part of the same
group, that corresponds to the junit library. After this operation we obtained 3,326 libraries.

To detect library dependencies using source code static analysis, we consider that a library is
identifiable by the packages it defines. Thus, for each library we built a set of regular expressions
that matches its package names. The construction of these sets has been done by analyzing the
3326 JAR files with the bytecode engineering library Javassist [CN03]. We however faced many
issues while performing this operation. First, we observed that even if some JAR files have different
names and seems to belong to different libraries, they belong in reality to the same library. For
example, the library batik from Apache is composed of batik-svggen, batik-dom, batik-script and
other components. That is why in such case we decided to manually group them. Second, we
also observed that different libraries might define packages with similar names. For instance, the
package name ”com.google.common.io” is found in both guava and craftbukkit libraries. When
such case occurs, a manual intervention is required to state in which library the package has to
be assigned or if it has to be not included at all. To fix all these issues, one person spent about
14 hours to manually review the computed regular expressions. After this operation we obtained
a set L of 1189 libraries with a set of regular expressions for each one of them. The current index
of L is available on-line∗.

3.3 Detecting library dependencies

Thanks to the regular expressions built throughout the construction of the set L, the detection
of library dependencies for a given project version is straightforward. A static analysis attempts
to match the regular expressions of libraries with the import sections or the qualified names used
within the source code of the Java files. This analysis has the advantage to be very simple and
requires only a few seconds to compute the library dependencies of a project. The Eclipse JDT
parser is used to traverse the AST of Java source code files. All this process is implemented by
our tool, named ScanLib, which is available on-line†. This tool is written in Java and runs along
the database of libraries L described above.

∗http://www.labri.fr/perso/cteyton/ScanLib/scanlib.html
†https://code.google.com/p/scanlib-java/
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3.4 Detecting migrations

As we described it in the Section 2.2, our algorithm selects a set of couples of versions to identify
candidate migrations. In this study we decided to choose sequential versions as couples with
a fixed step as a distance between the versions. For example with a step of 10, the couples
are {(1, 11), (11, 21), (21, 31), ..., (n, n + 10)}. To determine such step, we selected randomly 150
projects from our original corpus and compared the candidates returned with different steps: 1, 5,
15, 30 and 60. For each step, we measured the time taken to produce the complete analysis, the
number of returned candidate migrations, and how many true and false positives were generated
among the candidates. The resulting data are exposed in Figure 2. On this sample of projects,
the best sensibility is obtained with a step of 5 versions. However, we decided not to choose this
step because first our experiment does not guarantee that this value is also the optimum for our
global corpus, and second by making a projection of the execution time we find that several weeks
of computation would be necessary. That is why we have considered that an interval of 30 versions
was a good trade-off between the number of migrations we would gather and an execution time
below one week.

1 5 15 30 60

Sampling interval size

M
ig

ra
tio

ns

0
10

20
30

40
50

60
70

True Migrations
Wrong Migrations

1 5 15 30 60

Sampling interval size

T
im

e 
(h

ou
rs

)

0
5

10
15

20
25

30

Figure 2: Results of the experiments for different sampling interval sizes

Once we selected 30 as our step, we looked at each project in the corpus P . For a given project
we first checked out its repository to its first version, and then synchronized the local repository
every 30 versions as long as a new step was reachable. In the opposite case, the last commit version
is considered. At each step, the list of qualified names is fetched using the static analysis tool
included in ScanLib. The output collection of names is stored, along a timestamp information
in order to date the events. To implement this process we developed a prototype based on the
Harmony framework ‡. Harmony is an infrastructure designed to ease the development of tools
for software evolution analysis. The execution of this process with the prototype required about
one full week to complete and produced 4,9 GB of data.

A post-processing operation executed ScanLib on the data to resolve whether the qualified
names extracted from the Java source code could match any library from L. This task took
about 8 minutes. At the end of this step we were able to compute the depp() function on any
analyzed version of any project. Then we applied the Cartesian product on the added and removed
dependencies of every couple of versions from projects in P . This operation produced in 20 seconds
a set M of 3,579 migrations that can be grouped according to 2,920 migrations rules (set R).

Obviously the set R contains a large quantity of false positive rules. As detailed earlier, the
data mining process proposed in [TFB12] to overcome false positives is not renewed here. In our
opinion, it is worthwhile to dedicate efforts to manually rate the migrations rules in order to keep

‡https://code.google.com/p/harmony/
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all the true migrations rules. One person spent 4 hours to manually check the candidate migration
rules and rated them either as correct or wrong. Naturally, when a migration rule from the set
R was marked as wrong, all the migrations following this rule were removed from the set M . At
the end of the validation process we obtained a set M of 342 migrations that can be grouped
according to 134 migrations rules (set R). The full list of migration rules is available online §.

4 Research Questions

This section answers the research questions presented in Section 1. For each question, we present
the methodology we used to answer the question and then we present the results obtained using
the data extracted in Section 3.

4.1 Which software projects perform library migrations and how much
of them?

Methodology. To identify the kinds of software that are prone to migration, we decided to
use metrics to statistically measure the size of projects and to compare it with the number of
performed migrations.

We arbitrary chose three metrics that are classically used to measure the size of a project:
KLOC, Commit and Duration. The KLOC metric computes the number of lines of Java code.
The Commit metric returns the number of commits that were performed during the life of the
project. The Duration metric measures the lifetime of the project in months.

Once we have measured these three metrics for all the projects, we decided to remove all
projects that have less than 100 KLOC, then the ones that have less than 10 commits and then
the ones that are younger than one month. Our intent was to remove all toy projects that were
not significant regarding library migrations.

Finally, we decided to compute deciles for each metric in order to define groups of projects
with similar size. Next we have measured the number of migrations for each group and we have
performed a Chi-squared test to check if the distribution of migrations is the same for all groups
for each metric.

If the distribution is not the same, we plot the distributions of the groups for each metric to
observe how the number of migrations varies depending on the metric.

Results. By removing toy projects, we finally obtained 8,600 projects from the 9,218 ones of
our experiment. As we observed 342 library migrations, this means that only 3, 9% of software
projects perform at least one migration during its life cycle. It therefore appears that library
migrations do occur but are very rare.

We then have computed the deciles for the three metrics and the number of migrations. Table 2,
Table 3 and Table 4 present the groups for each metric and present how many projects are contained
in each group and how many migrations have been performed.

Group 1 2 3 4 5 6 7 8 9 10

Java KLOC > 0.54 > 0.96 > 1.5 > 2.2 > 3.2 > 4.9 > 7.7 > 13.7 > 30.4
≤ 0.54 ≤ 0.96 ≤ 1.5 ≤ 2.2 ≤ 3.2 ≤ 4.9 ≤ 7.7 ≤ 13.7 ≤ 30.4 ≤ 3675

Projects 851 850 843 838 831 837 838 814 822 812

Migrations 6 13 17 22 29 22 23 46 38 47

Table 2: The groups for the KLOC metric

To evaluate if the number of migrations was independent of the group, we used statistical
Chi-squared test. The null hypothesis is that the proportion of migrations is the same whatever

§http://www.labri.fr/perso/cteyton/index.php?page_name=migrations_rules

7



Group 1 2 3 4 5 6 7 8 9 10

Commit > 25 > 31 > 38 > 49 > 65 > 87 > 127 > 207 > 430
≤ 25 ≤ 31 ≤ 38 ≤ 49 ≤ 65 ≤ 87 ≤ 127 ≤ 207 ≤ 430 ≤ 29656

Projects 840 869 791 857 900 829 833 825 815 777

Migrations 0 3 7 12 18 22 29 40 46 86

Table 3: The groups for the Commit metric

Group 1 2 3 4 5 6 7 8 9 10

Duration > 3 > 5 > 6 > 8 > 11 > 15 > 21 > 29 > 45
≤ 3 ≤ 5 ≤ 6 ≤ 8 ≤ 11 ≤ 15 ≤ 21 ≤ 29 ≤ 45 ≤ 512

Projects 704 749 769 918 872 892 949 839 838 806

Migrations 4 4 5 10 17 33 27 52 45 66

Table 4: The groups for the Duration metric

the group for each metric. This test was therefore computed for the three metrics. Chi-squared
test results in Table 5 suggest that our corpus is significant and that the null hypothesis is rejected
with a probability of 5%. This means that the proportion of migrations is not the same depending
of the group for each metric.

CLOC Commit Duration

X-square 66.1 235.0 158.9
degree of freedom 9 9 9
p-value 8.8 ∗ 10−11 2.2 ∗ 10−16 2.2 ∗ 10−16

Table 5: Results for the Chi-squared test

To visualize the differences in proportion of each group, we plot in Figure 3 the ratio for
each metric (number of migration per number of projects). This Figure clearly shows that the
proportion of migrations is more important in the biggest projects (in terms of KLOC, duration
and commit). However, the increase of the values is still slow. The highest ratio is featured by
the Commit metric. In that case, 11% of the projects that have more than 430 commits have
performed at least one migration.

These results give interesting information to answer our first research question. First of all, it
is clear that few projects perform library migrations. Second, mature projects (in terms of KLOC,
Commit and duration) have a higher probability to perform at least one migration. Finally, the
number of commit and the duration are much more relevant to measure the maturity of a project
than the KLOC for our concern. Furthermore, our results clearly show that almost 10% of the
projects that have a very long duration or a large number of commits perform migrations.

4.2 Which libraries are migrated and how many times?

Methodology. To verify the existence of libraries that are prone to migration, we chose to
group libraries that are connected by migration rules. To that extent we computed what we call
a migration graph. The nodes of this graph are libraries that have been either source or target
of at least one migration. A directed arc exists between two nodes if there is at least a migration
between the two nodes. To indicate the flow of migration between the different libraries, the arcs
are labeled by the number of migrations that have been observed for the source and target libraries
of the arcs. We then computed the connected components on the migration graph. Each connected
component is a category, whose libraries of the category are the union of libraries contained in the

8



●

●

●

●

●

●
●

●

●

●

2 4 6 8 10

0.
01

0.
02

0.
03

0.
04

0.
05

Ratio of Migrations for CLOC metric

Group Index

R
at

io
 V

al
ue

●
●

●

●

●

●

●

●

●

●

2 4 6 8 10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Ratio of Migrations for Commit metric

Group Index

R
at

io
 V

al
ue

● ●
●

●

●

●

●

●

●

●

2 4 6 8 10

0.
02

0.
04

0.
06

0.
08

Ratio of Migrations for Duration metric

Decile Index

R
at

io
 V

al
ue

Figure 3: Distribution of migrant projects per CLOC, Commit and Duration deciles

connected component.
A toy example of a category is shown in Figure 4. This category shows that junit and testng

are similar and that projects have performed migration in the both sides. Note that such migration
graph does not mention if the same project made the two migrations or if it is two distinct projects.

JUnit TestNG
1

1

Figure 4: A category formed in our example

A category exhibits a set of similar libraries but also the number of migrations that have been
performed among them.

We define for a library l ∈ L the introductions value as the number of times any project p ∈ P
started to use l. We judge this concept as the most representative view of the actual usage of
l through several years and it allows to measure more precisely the proportion of library usage
that led to a migration. Given a category, the introductions value corresponds to the sum of the
introductions of each of its libraries.

We can then compare the number of migrations of a category with the number of library
introductions of the category. Such a ratio indicates if the category is prone to migration.

As a complement, we introduce the popularity-evolution diagram. For a given category, it
displays the evolution of the number of client projects of each library in the category. This
number is computed every 2 weeks on a defined period from 2004 to 2013. An example of such
diagram is exposed in Figure 5. A migration is characterized in this context by a loss of client for
the source library and a client gain for the target library. Note that the number of introductions
in Figure 5 is 5 for junit and 3 for testng, and thus 8 for the category.

Results. By grouping the 134 migrations rules we identified in our experiment, we obtained 38
library categories. Figure 6 presents how migrations are distributed among these library categories.
For the sake of readability, we restrain this chart to the 20 categories that have at least 2 migrations.
We observe that the first 6 categories contain 74% of the migrations, and the first 8 and 16 cover
respectively 85% and 95% of the migrations. This result gives a first partial answer to our research
question since those categories contain libraries that are prone to migration.

The left part of Figure 7 shows the number of libraries contained within each category. This
Figure clearly shows that categories contain few libraries in average (mean = 4.55). This maybe
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Figure 5: An example of popularity-evolution diagram

Figure 6: Distribution of migrations among categories with more than 2 migrations

explains why few projects perform migrations as there are not so many target replacement libraries
to migrate to. Further, this Figure also demonstrates that the number of migrations per category
is not correlated with the number of libraries contained in the category.

The right part of this same Figure reveals how many library introductions are counted for each
category. Unsurprisingly, the two categories that contain the more migrations contain libraries
that are used by most of the projects. Inversely, many projects use a xml library but they do not
perform a lot of migrations. The reason is that because the xml category contains the native Java
XML Application Programming Interface, which is used by many projects.

These results give much information to answer our research question. There exists categories of
libraries that are prone to migration. We now examine deeper the categories to better understand
if there exists libraries that are prone to migration. We choose to present the logging category as
it contains most of the migration. We also choose to present the json category as it contains few
migrations but contains several libraries.

Figure 8 shows the migration graph that includes libraries of the logging domain. The no-
ticeable observation is the high number of migrations that go to the library slf4j (33+38=71).
Moreover, many migrations go from the library commons-logging (33+11=44) and from the li-
brary log4j (38+8+6=50). We also note that logback is sometimes used to replace log4j, but only
this library. Moreover, only 3 projects gave up slf4j in favor of log4j.

Figure 9 shows the number of projects of our corpus that use a logging library and the evolution
of library usage from 2009 to 2013. This Figure first displays that log4j, slf4j and commons-logging
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Figure 7: Sizes and library introductions for the categories with more than 2 migrations

3 

8 3
3
 

11 

6
 

38 

commons-logging

slf4j

log4j

logback

Figure 8: Migration graph of the logging category

are the most used logging libraries in Java software development (3,425 projects in our corpus use
one of these libraries). Secondly, the Figure exhibits the use increase of these three libraries,
particularly for slf4j. Looking at slf4j, it appears that 1,000 projects use it currently. Moreover, as
71 migrations go to it, this means that about 7% (71�1000) of the projects that use it were using
another logging library before. slf4j is therefore an interesting library to consider for migration.
Inversely, looking at log4j, even if it is currently the most popular library, there are 50 migrations
that depart from it, which premises that it should be replaced.

Figure 10 shows the migration graph of the JSON category. JSON is a standard for data inter-
change over Web applications that is commonly and widely used nowadays. The graph contains
9 libraries and shows 30 migrations. The migrations in this graph are rather balanced. We can
observe that jackson and gson are mainstream alternatives for library replacements. Moreover, it
should be noted that org.json is the source of 15 of migrations (50% of the migrations).

Figure 11 shows the number of projects from our corpus that use a JSON library and the
evolution of library use from 2009 to 2013. This Figure unveils that all libraries except org.json
are almost used by the same number of projects. org.json is the most used library and has a strong
increase since 2011. However, gson and jackson have also a strong increase since 2012. Knowing
that these two libraries are used as target to replace org.json, they can be considered as confident
candidate libraries to migrate to.

The deep analysis of a category gives much more information to answer our research question.
There clearly exists libraries that are prone to migration. This depends on the domain as well
as the number of existing libraries in the domain. The logging and the json domains are good
illustrations for that phenomena. Examining other domains highlights different libraries that are
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Figure 9: Popularity-evolution diagram of the logging category
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Figure 10: Migration graph of the json category

prone to migration even if few migrations are observed ¶.

4.3 When migrations are performed?

Methodology. To check whether the date has any influence on migrations, we compute what we
call a migration-time diagram. A migration-time diagram targets one given category of libraries
and presents the dates of all the migrations that happened in this category. The x-axis of the
diagram presents the chronological time. The y-axis is decomposed of migration rules in the
category. A point in a diagram represents a migration. This diagram allows to visualize and
detect if a migration is associated to a period, and the respective trends for the source and the
target as well.

Figure 12 presents a toy migration-time diagram for the category formed in our example in
Section 4.2. This diagram highlights the date when the two migrations have been performed.

Results. To check if there is any tendency regarding migrations we create a migration-time
diagram for each category. For the sake of clarity, we only present in this paper the migration-
time diagram of the logging category. The migration-time diagrams of the other categories are
available online ‖.

Figure 13 shows the migration-time diagram of the logging category. This category contains 6
rules that are presented on the y-axis. The diagram demonstrates that some rules are time framed
such as the (log4j → commons-logging) one. The other rules exist during all the periods shown
by the diagram.

¶http://www.labri.fr/perso/cteyton/index.php?page_name=migrations
‖http://www.labri.fr/perso/cteyton/index.php?page_name=migrations
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Figure 11: Popularity-evolution diagram of the json category
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Figure 12: An example of migration-time diagram for the junit → testng migration

This diagrams also reveals how many migrations are performed for each rule. For instance, the
migrations that target slf4j have been increasingly completed since 2010. It also shows that the
few migrations that target log4j happen from time to time since 2005.

Migration-time diagrams help to answer our research question as it clearly appears that some
migrations are performed during specific periods. However, these diagrams do not explain why
such tendencies are observed. A further analysis of the status of libraries that were migrated as
well as the status of projects that performed the migrations should be done to better understand
if the period has any influence on the observed migrations..

4.4 Why migrations are performed?

Methodology. To identify why developers perform migrations, we decided to manually review
commits logs recorded between each couple of project versions (i,j) that contain a migration
(p, i, j, s, t). If a justification is provided in the log, we picked it up and tried to label it with an
arbitrary category of motivation. The goal is to propose a taxonomy of the motivations found.

An example of commit log of interest found on the Web is ”port logging to Slf4J (Commons-
logging has classloader issues)”∗∗ and indicates that the library commons-logging was dropped
due to a running issue. This technique is however dependent on the quality of commit messages
written by developers.

∗∗http://code.google.com/p/dyuproject/source/detail?r=668
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Figure 13: Migration-time diagram of the logging category

Results. By manually reviewing the commit logs of projects that have migrated we have only
found 12 logs that contain an explicit motivation. These logs are exposed in Table 6 along a
motivation category. It turns out that the two most reported reasons here are Feature and Con-
figuration. While the first one concerns the functionalities proposed by a library, the second tag
gathers compatibility issues, conflicts due to dependencies tree and library accessibility.

The amount of data collected is not sufficient to propose a significant taxonomy for the moti-
vations. Even though the logs provide rich and interesting information, we cannot infer anything
based on so few data. Moreover, it is not clear why the logs do not explicitly precise the mo-
tivations of the migrations. Section 7 discusses perspectives to better deal with this research
question.

4.5 How migrations are performed?

Methodology. To measure efforts needed to complete a migration (p, i, j, s, t), we compute how
many commits were performed during the migration, how many days it took and how many
developers were involved. We then compute the distribution of the migrations for each of these
measures. The goal is to check whether migrations are performed within few commits, days and
with few developers or if they require much more effort.

Results. Table 7 presents the distribution of the migrations per values for these three char-
acteristics. It shows that 79.3% of the migrations are achieved within a unique commit. The
20.7 % remaining are distributed over various values, but it is still interesting to see that 6.6%
of the migrations have been completed through more than 10 commits. Further, the process of a
migration is performed during one day (88 %) or few more. Finally, a majority of the migrations
is performed by a unique developer (94.2 %).

As an answer to our research question, it appears that a library migration is generally completed
in one commit, in one day and thanks to one developer. In our opinion, our measures do not really
reflect the real effort spent to perform the migration. This analysis confirms the assumption made
in Section 2.2 about libraries cohabitation existence.

5 Limits

Library set Even though the list of libraries L used to perform this study has a reasonable
size, it only contains libraries that are managed by Maven. Moreover, this set does not take into
account the versions of the libraries. Our approach therefore does not consider migrations across
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Migration Message Reason

commons-logging → slf4j ”replacing commons-logging with slf4j to help with
osgi compliance per springsource recommendation.”

Configuration

junit → testng ”use testng instead of junit which is a lot more con-
figurable in test selection (and allows us to do a much
better job a leaving the tree green even while develop-
ing tests that are known to fail)”

Feature

junit → testng ”convert tests to testng because we have groups here” Feature

log4j → commons-logging ”switched from a log4j based logging api usage to
commons-logging in order to allow enhanced logging
techniques to be optional

Feature

log4j → logback ”simple migration to logback since log4j is old” Outdated

log4j → logback ”changed to logback to allow change of log levels” Feature

org.json → gson ”replaced json.org package with gson for license com-
patibility”

License

json-lib → jackson ”use jackson json library (reduce dependencies)” Configuration

json-lib → org.json ”demonstrate bug in json-lib” Bug

org.json → json-smart ”change org.json library (don’t be evil license) by json
smart (apache license 2.0)”

License

commons-collections → lambdaj ”replaced commons-collections with lambdaj since it
has a more modern search syntax”

Feature

gson → org.json ”attempting to get into maven central repo. requires
moving from gson which isn’t in central (except buggy
version)”

Configuration

Table 6: Results of the commit logs mining to identify developers motivations to migration

-
Values

1 2 3 4 5 6 7 8 9 >=10 Total

# Commits 79.3 % 3.2 % 3.4 % 0.6 % 1.7 % 1.7 % 1.4 % 0.9 % 1.1 % 6.6 % 100 %
# Days 88.0 % 3.7 % 4.3 % 0.6 % 0.9 % 1.1 % 0.3% 0.3 % 0.0% 0.9 % 100 %
# Authors 94.2 % 4.9 % 0.6 % 0.3 % 0 % 0 % 0 % 0 % 0 % 0 % 100 %

Table 7: Distribution of library migrations per number of commits, commit days and developers
(# : number of)

versions. Supporting such migrations would first require to identify all the versions of a library
and second would require to be able to detect which version of a library a project depends on.
These two issues are known to be still open [DGGH11].

Sampling methodology The corpus of projects selected for this case study has been built
exclusively by querying hosting platforms. Even though Section 3 presents the different charac-
teristics of the projects, we did not use any rigorous sampling approach to establish the corpus.
Thus, the results of our case study cannot be generalized to any existing Java software project.

Multiple Migrations The approach proposed in this paper only computes migration rules of
cardinality 1:1. We argue that augmented rules of cardinality n:m may exist. For instance, when
a new project takes over from a no longer maintained library and split the old one into two new
ones. This scenario happened in practice. Indeed, the outdated commons-httpclient has been
separated into two distinct but compatible elements, httpcore and httpclient. Our algorithm is in
theory extensible to handle such situations, however it brings an overhead in memory space and
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drastically increases the number of candidate migration rules generated.

Loopbacks and Bounces Our study does not natively consider loopbacks and bounces. A
loopback is a two-steps migration observed toward the life of a project. The project first switches
from a library source to a library target, and later in time moves back to source. A bounce is a
migration of type x to y, then y to z, with x, y, z belonging to a same category of libraries.

However, we performed a post analysis of our results to identify loopbacks and bounces. We
only found two loopbacks junit → testng → junit in two projects. In the first project, no infor-
mation was given in the commit logs that could help us to figure out why such situation occurred.
On the second project, we did find an entry in the bug tracker of the project that provides the
following explanation: ”Currently it is based on TestNG, however because of a number of limita-
tions this test framework is not likely to be used by any of Hadoop’s subproject. Thus, Avro will
have to be start using JUnit again.”††. The loopback is explicit but the log lacks content to point
out the actual limitations mentioned by the author. One other loopback testng → junit → testng
was observed, but once again we could not assess why the developers made these migrations.

In the database category, we found the following bounces : mysql-connector-java → h2 →
hsqldb,and mysql-connector-java → postgresql → sqlite-jdbc. Unfortunately, these projects do not
have enough material to investigate their motivations.

Therefore, loopbacks and bounces are very occasional events. In our opinion, it is not worth
to investigate further this aspect of library migrations due to its rare characteristic.

The presentation of both our approach and study is henceforth completed. Section 6 next
presents the related work before Section 7 concludes and opens the future perspectives.

6 Related work

Research has been done on software project categorization to allow searching for similar software.
This problem is usually resolved by computing similarity score based on specific attributes, such
as keyword identifiers as MudeBlue [KGMI06] does or API calls [MLvPG11]. Those techniques
require either the source code or the binaries versions of a set of libraries to compute similarity
scores among them. More recently, Wang et al. proposed an approach to assign tags to software
using mining of existing projects tags and descriptions [WYLW12]. These approaches can be used
in our context to create groups of equivalent libraries but without any guarantee on the fact that
a library of a group can be replaced by any other equivalent library of the group. We therefore
choose to use migration graph to create categories of similar libraries.

Mileva et al. have observed the evolution over 2 years of the dependencies of 250 Apache
projects managed with the build automation tool Maven [MDBZ09]. They analyzed the maven
configuration files of these projects to mine usage of API and their versions. The study shows the
usage trends of different versions of several libraries. This work points out interesting cases where
clients switched back to a previous version of a library they are using. We reused the idea of usage
trends in the Section 4.

Lämmel et al. propose a large-scale study on AST-based API-usage over a large set of open-
source projects [LPS11]. Their work provides an insight on how a specific API is globally used by
client projects. In particular, they categorize whether a client calls the API (library-like usage)
or extends it (framework-like usage). It may be interesting to integrate such information in our
library migration graph as some libraries may be more appropriate than others depending of client
usage requirements.

Robillard et al. investigate the obstacles met by developers when learning an API [RD11].
Their study points out the lack of insufficient documentation or learning resources, which in our
opinion can intervene in a migration context.

††https://issues.apache.org/jira/browse/AVRO-81?page=com.atlassian.jira.plugin.system.
issuetabpanels:all-tabpanel
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During a library migration, the API-level challenge is to transform the source code so that
it becomes compliant with the new library. This domain aims at answering the question ”How
to replace a library X with Y ?”. Bartolomei et al. have addressed this problem and studied
the design of API Wrappers, which are objects that adapt and delegate the previous source code
instructions towards the new API [TBCL10, TBCLS09]. The mappings are manually identified
and their concern is to design such wrapper in order to obtain a compliant version of the new
source code. Our approach is useful for such a problem as it identifies which libraries are source
and target of migrations. It can then be used as a source of validation for the wrapper.

The problem of updating a library has also been studied in the literature. A challenge with
regard to library usage is to provide relevant snippets of code source according to the programmer’s
context. We distinguish two main techniques to that extent. The first one mines code that already
performed an update. For instance, Schafer et al. [SJM08] examined code instantiations of two
versions of a framework. This code is included with the release as test or example code. Also,
SemDiff [DR09] is a client-server connected to a framework source code repository that mines the
changes and recommends modifications for a client migration. The second variety of approach
requires only internal code of two API versions and applies origin analysis techniques. Hence, a
graph-based representation of the code based on dependencies allows for element matching from
the two versions. Some promising results have been achieved in this area [WGAK10][NNW+10].
Whatever the technique, our approach can be used as a massive source of data to get real library
migrations and to get references of real projects that do have performed migrations. Such quantity
of data could be used to validate the proposed approaches. It should be noted that a recent study
from Cossette performs a retroactive study on several library changes performed manually [CW12].
They listed the different changes and adaptations they had to make. They argue that existing
automatic approach such as the ones exposed above are not enough satisfying, since the problem
of API evolution is too complex. In their opinion, this process requires at present more human
intervention.

Zhong et al. proposed a Mining API Mapping approach that detects relations from two versions
of an API written in different languages [ZTX+10]. The idea is to get client-code from the two
versions and to build a transformation graph that represents the API-usage migration from one
language to another. Zheng et al. propose a cross-library recommendation tool based on Web
queries [ZZL11]. The idea is to inquire Web search engines and to mine results proposed from
the query. One example of query could be ”HashMap C#” when looking for the equivalent for
standard Java HashMap for C#. The results are computed one by one and candidates are ranked
by relevance, mainly according to their frequency of appearance. For the moment this work
provides only preliminary results and queries proposed are of a coarse grain. Also, it strongly
lies on Web search engines such as Google, and requires manual query writing, which can highly
influence the results. Regarding our approach, this work can be used to merge equivalent libraries
and then to improve library migration graphs.

7 Conclusion

As software intensively depends on external libraries, software developers must think about mi-
grating libraries when they are not updated, or when competing ones appear with more features
or better performance for instance. In this paper we present a study that focuses on library mi-
gration with the intent to check if they are performed on specific types of software, or for specific
libraries, or during specific period, or for specific reasons, or requires specific efforts. By describing
how migrations are generally managed by software projects, the objective of this study is to help
software developers who are thinking about replacing the libraries of their own software.

To perform this analysis, we have defined an approach that aims at pseudo automatically
identifying library migrations performed by software projects. Our approach is based on a static
analysis of the source code and therefore does not depend on any tools, such as Maven, that
manage library dependencies. Our approach has been prototyped for Java and successfully used
on 8,600 open source software projects obtained from major hosting platforms such as GitHub,
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Google Code and Source Forge. Thanks to this approach, we have identified 324 library migrations,
meaning that nearly 4% of software projects performed at least one library migration.

We then have proposed and answered research questions to better understand library migration.
As a results, it clearly appears that young projects perform less migrations than older ones. Almost
10% of the old projects perform at least one migration whereas it is less than 1% for the young
ones. Our study also shows that very few software projects perform two or more migrations during
their life cycle. Further, our study shows that there are categories of libraries that are prone to
migration and that some libraries within these categories are either source or target to migrations.
A category gathers around 5 libraries that provide similar facilities. For instance, the logging
category gathers 4 libraries and exhibits that the slf4j library is currently the target of most of
the migrations.

Regarding the dates of the migrations, our study just shows that some of the migrations have
been performed during specific periods. However, there is no significant data that can explain this
phenomenon. Examining the reasons of the migrations, we have identified only 12 logs that give
concrete explanations. Once again, this is not significant to fully answer the research question.
Finally, our study shows that migrations are committed quickly (in 1 commit, one day and by one
developer). This however cannot be interpreted as a measure of the effort cost for performing a
migration.

The major limit of our approach is the fact that it does not support versions of library. As a
consequence, an update of a library is not considered to be a migration in this study. Supporting
versions is highly complex as software projects almost never define which versions of the libraries
they depend on. To obtain such an information an analysis of the runtime dependencies must be
done, which is still an open issue.

The results of our study should be exploitable for software developers who are looking for library
recommendation. As a future work we would be interested in performing a controlled experiment
with developers that want to perform a migration to check if their decision is influenced by the
results of our study. For instance, we would want to check that our library migration graph can
be used to identify libraries to migrate to.

We also plan to extend our approach to assist developers while they migrate their code to
become compliant with a new library. As our approach identifies software projects that already
performed migrations, we plan to analyze the source code of these projects before and after the
migration in order to detect migration patterns. Such patterns abstract refactoring actions that
must be performed to be compliant with the new library. The goal is then to automatically apply
them in software projects that want to perform the same migration.
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