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Modelling the onset of shear boundary layers in fibrous

composite reinforcements by second gradient theory

Manuel Ferretti, Angela Madeo*, Francesco dell’Isola and Philippe Boisse

Abstract. It has been known since the pioneering works by Piola, Cosserat, Mindlin, Toupin, Erin-
gen, Green, Rivlin and Germain that many micro-structural effects in mechanical systems can
be still modeled by means of continuum theories. When needed, the displacement field must be
complemented by additional kinematical descriptors, called sometimes microstructural fields. In
this paper, a technologically important class of fibrous composite reinforcements is considered and
their mechanical behavior is described at finite strains by means of a second gradient, hyperelastic,
orthotropic continuum theory which is obtained as the limit case of a micromorphic theory. Fol-
lowing Mindlin and Eringen, we consider a micromorphic continuum theory based on an enriched
kinematics constituted by the displacement field u and a second order tensor field ψ describing
microscopic deformations. The governing equations in weak form are used to perform numerical
simulations in which a bias extension test is reproduced. We show that second gradient energy
terms allow for an effective prediction of the onset of internal shear boundary layers which are
transition zones between two different shear deformation modes. The existence of these boundary
layers cannot be described by a simple first gradient model and its features are related to second
gradient material coefficients. The obtained numerical results, together with the available experi-
mental evidences, allow us to estimate the order of magnitude of the introduced second gradient
coefficients by inverse approach. This justifies the need of a novel measurement campaign aimed
to estimate the value of the introduced second gradient parameters for a wide class of fibrous
materials.

1. Introduction

In the engineering effort of designing new materials, a constant demand is directed towards the search
for better performances and new functionalities. A class of materials which is gaining more and more
attention is that of so-called complex materials, e.g. materials exhibiting different mechanical responses
at different scales due to different scales of heterogeneity. Indeed, the overall mechanical behavior of
such materials is macroscopically influenced by the underlying microstructure especially in presence
of particular loading and/or boundary conditions. Therefore, understanding the mechanics of meso-
and micro-structured materials is becoming a major issue in engineering.

Such materials may exhibit superior mechanical properties with respect to more commonly used
engineering materials, also providing some advantages as easy formability processes. We focus in this
paper on a class of engineering materials which are known as woven fibrous composite reinforcements.
These materials are constituted by woven tows which are themselves made up of thousand of fibers.
Different weaving schemes can be used giving rise to different types of composite reinforcements (see
Fig.1), but in each of considered case one can assume that sharp changes in mechanical properties
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Figure 1. Schemes of weaving for fibrous composite reinforcements.

may occur inside the unit cell. Indeed, for the considered materials, the tensile stiffness of tows can
be considered to be of many order of magnitudes higher than the shear stiffness related to angle
variations between yarns. The hierarchical heterogeneity of composite reinforcements is illustrated in
Fig. 2, in which three different scales can be recognized: the macroscopic scale (left), the mesoscopic
scale (center) and the microscopic scale (right).

All materials are actually heterogeneous if one considers sufficiently small scales, but the woven
composites reinforcements show their heterogeneity at scales which are significant from an engineering
point of view. It is also clear that woven materials also macroscopically show strong anisotropy, since
their mechanical response significantly varies if the load is applied in the direction of the fibers or
in some other direction. As it will be better pointed out in the following, the introduced continuum
model for composite reinforcements belongs to the class of initially orthotropic continua, i.e. continua
which have two privileged directions in their undeformed configuration.

The fibrous composite preforms can be shaped and their final shape is maintained by injection
and curing of a thermoset resin or by the use of a thermoplastic polymer. The final composite material
commonly used in aerospace engineering is hence constituted by the fibrous composite reinforcement
and the organic matrix. We are interested in this paper only in describing the mechanical behavior of
the fibrous composite reinforcements since this knowledge is fundamental for the process of formability
of the final composite. Following [13, 14] we find convenient to model the quoted fibrous reinforcements
as continuous media. This hypothesis can be considered to be realistic if no relative displacement
between superimposed fibers occurs. In other words, we are assuming that two superimposed fibers
can rotate around their contact point, while no slipping takes place. This hypothesis is generally
verified during experimental analyses, even at finite strains. In fact, when straight lines are drawn on
the textile reinforcement, these lines become curved after forming but they remain continuous (see e.g.
[10]). As it will be better pointed out in the remainder of this paper, the anisotropy of the considered
reinforcements will be taken into account by introducing suitable hyperelastic, orthotropic constitutive
laws which are able to characterize the behavior of considered materials also at large strains.

Nevertheless, a first gradient continuum orthotropic model is not able to take into account
all the possible effects that the microstructure of considered materials have on their macroscopic
deformation. More precisely, some particular loading conditions, associated to particular types of
boundary conditions may cause some microstructure-related deformation modes which are not fully
taken into account in first gradient continuum theories. This is the case, for example, when observing
some regions inside the materials in which high gradients of deformation occur, concentrated in those
relatively narrow regions which we will call boundary layers.

Actually, the onset of shear boundary layers can be observed in some experimental tests which are
used to characterize the mechanical properties of fibrous composite reinforcements. Indeed, internal
boundary layers do arise in the so-called bias extension test, the phenomenology of which we duly
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Figure 2. The different scales of textile composite reinforcements.

describe in section 4. One way to deal with the description of such boundary layers, while remaining
in the framework of a macroscopic theory, is to consider so-called “generalized continuum theories”.
Such generalized theories allow for the introduction of a class of internal actions which is wider than
the one which is accounted for by classical first gradient Cauchy continuum theory. These more general
contact actions excite additional deformation modes which can be seen to be directly related with the
properties of the microstructure of considered materials.

Indeed, it has been known since the pioneering works by Piola [67], Cosserat [15], Midlin [57],
Toupin [86], Eringen [29], Green and Rivlin [37] and Germain [35, 36] that many microstructure-
related effects in mechanical systems can be still modeled by means of continuum theories. It is known
since then that, when needed, the placement function must be complemented by additional kinemat-
ical descriptors, called sometimes micro-structural fields. More recently, these generalized continuum
theories have been widely developed to describe the mechanical behavior of many complex systems,
such as e.g. porous media [53, 80, 78, 22], capillary fluids [12, 16, 17, 20, 18], exotic media obtained
by homogenization of heterogeneous media [3, 81, 66]. Interesting applications on wave propagation
in such generalized media has also gained attention in the recent years for the possible application of
this kind of materials to passive control of vibrations and stealth technology (see e.g. [24, 54, 68, 76]).

In this paper, the class of fibrous composite preforms described before is considered and their
macroscopic mechanical behavior (i.e. at a scale relatively larger than the yarn) is described by means
of a second gradient, hyperelastic continuum theory. The quoted hyperelastic, second gradient theory
is obtained as the limit case of a micromorphic theory, following what done in [7, 57] for the linear-
elastic case. The governing equations in weak form are used as a basis for the formulation of suitable
numerical codes, which allow to perform simulations reproducing the so-called bias extension test.
We show that second gradient energy terms allow for an effective prediction of the onset of internal
shear boundary layers which can be defined as those transition zones between two different regions
exhibiting different shear deformation modes. The existence and thickness of these boundary layers
cannot be described by a first gradient model and its overall features are related to the particular
second gradient model introduced in this paper. The obtained numerical results seem to be in a
good agreement with the already available experimental evidence and fully justify the need of a novel
measurement campaign.

2. Micromorphic media and second gradient continua

We describe the deformation of the considered continuum by introducing a Lagrangian configuration
BL ⊂ R

3 and a suitably regular kinematical field χ(X, t) which associates to any material point
X ∈ BL its current position x at time t. The image of the function χ gives, at any instant t the
current shape of the body BE(t): this time-varying domain is usually referred to as the Eulerian
configuration of the medium and, indeed, it represents the system during its deformation. Since we
will use it in the following, we also introduce the displacement field u(X, t) := χ(X, t) − X, the
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tensor F := ∇χ and the Right Cauchy-Green deformation tensor1 C := F
T · F. The kinematics

of the continuum is then enriched by adding a second order tensor field ψ(X, t) which accounts for
deformations associated to the microstructure of the continuum. Indeed, as it was explained e. g.
by Mindlin [57] and Cosserat [15], the addition of supplementary kinematical fields can be of help
to describe the deformation of the microstructure of the considered material independently of its
average continuum deformation. If, on the one hand, Cosserat’s models are able to complement the
classical continuum deformations with extra rotations of considered microstructure, on the other hand,
micromorphic models of the type considered in this paper also allow to consider micro-stretches and
micro-shear deformations. In particular, the introduced micromorphic tensor ψ(X, t) allows to account
for all these microscopic deformation in a very general fashion. If some constraints are introduced on
the tensor ψ, the micromorphic model can then be particularized so as to obtain Cosserat or second
gradient models as limit cases. In what follows, the current state of the considered medium is, in
general, identified by 12 independent kinematical fields: 3 components of the displacement field and
9 components of the micro-deformation field. Such a theory of a continuum with microstructure has
been derived in [57] for the linear-elastic case and re-proposed e.g. in [30, 31, 32, 33] for the case of
non-linear elasticity. For the sake of clearness, using similar notations to [57] and [7], we introduce
the following kinematical quantities which are all functions of the basic kinematical fields introduced
before

εij = (Cij − δij) /2, the macro-strain,

γij = εij − ψij , the relative(micro/macro) deformation, (1)

κijk = ψij,k, the gradient of micro-deformation,

where clearly Cij and ψij represent the components of the second order tensorsC and ψ respectively. If
one, for example, imposes the relative deformation to be zero (i.e. ψij → εij), then κijk → εij,k and one
recovers the standard second gradient theory presented in [35, 36]. As it will be more clearly explained
in the following, the external actions which can be introduced in the framework of a micromorphic
continuum theory are more easily understandable than those intervening in second gradient theories
since they have a more direct physical meaning. Since second gradient theory can be readily obtained
as limit case of the micromorphic theory, one can then derive the second gradient contact actions in
terms of the micromorphic ones following the procedure used in [7]. We present in the following the
weak formulation of a constrained micromorphic theory which will actually give rise to a particular
second gradient theory. This constrained micromorphic theory is the one which we directly implement
in the numerical simulations presented in this paper.

2.1. Equations in weak form for a constrained micromorphic continuum

We assume that we can write the power of internal actions as the first variation of a suitable action
functional A as follows

P int = δA = δ

ˆ

BL

[

W (εij , γij , κijk) +

n
∑

α=1

λα fα(εij , γij , κijk)

]

dX, (2)

where W and f are real scalar-valued functions of the introduced deformation measures and, in par-
ticular, W (εij , γij , κijk) is the bulk micromorphic strain energy density, λα are Lagrange multipliers
and fα are particular constraints the particular form of which will be better specified later on. As
it will be better explained in the sequel, this expression of the power of internal forces is the one
which is necessary to describe a micromorphic continuum which is subjected to the n constraints
fα(εij , γij , κijk) = 0.

1Here in the sequel a central dot indicates simple contraction between tensors of order greater than zero. For example
if A and B are second order tensors of components Aij and Bjh respectively, then (A ·B)ih := AijBjh, where Einstein

notation of sum over repeated indeces is used.
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Considering that the independent kinematical fields appearing in (2) are indeed εij , ψij and κijk,
it can be recovered that the power of internal actions can be rewritten by computing the first variation
of the action functional as

P int = δA =

ˆ

BL

(

∂W

∂εij
+

n
∑

α=1

λα
∂fα
∂εij

)

δεij +

(

∂W

∂ψij

+

n
∑

α=1

λα
∂fα
∂ψij

)

δψij

(3)

+

(

∂W

∂κijk
+

n
∑

α=1

λα
∂fα
∂κijk

)

δκijk +

n
∑

α=1

fαδλα,

where from now on we drop the symbol dX inside the integral sign and we adopt the Einstein notation
of sum over repeated indices if no confusion can arise.

As for the expression of the power of external forces, we assume that they take the following
general form (see also [57, 7])

Pext =

ˆ

BL

bexti δui +

ˆ

BL

Φext
ij δψij +

ˆ

∂BL

texti δui +

ˆ

∂BL

T ext
ij δψij (4)

where bexti are volume forces, Φij are so called double forces per unit volume, texti are forces per
unit area and T ext

ij are double forces per unit area. The physical meaning of aforementioned external

actions is immediate: bexti and texti work on the displacement of the centroid of each Representative
Elementary Volume, while Φext

ij and T ext
ij work on micro-deformations inside the considered REV. If

one forces ψij → εij , i.e. imposes the constraint ψij − εij = 0, then a more complicated form of the
contact actions than those appearing in (4) can be derived by integration by parts. In this way, it is
possible to recover the standard form for external actions of second gradient materials which work
on displacement and on the normal derivatives of displacement (see e.g. [35, 51, 79, 52, 19, 21, 25]).
Considering the surface power densities texti δui and T

ext
ij δψij appearing in expression (4) for the power

of external actions, one can imagine to act on the boundary of considered body both by assigning the
forces and/or double forces (natural boundary conditions) or by assigning the displacements and/or
micro-deformation (kinematical boundary conditions).

The mechanical governing equations in weak form can be directly expressed by imposing the
validity of the principle of virtual powers

P int = Pext, (5)

where P int and Pext are respectively given in Eq. (3) and (4). We explicitly remark that, given
the considered expression of the principle of virtual powers, we are assuming that the considered
phenomena are sufficiently slow to neglect inertia. We do not explicitly write here the corresponding
strong form of balance equations since we will directly implement a particularization of the weak form
(5) in the finite element code used to perform numerical simulations.

3. Hyperelastic orthotropic model with micromorphic correction

In this section we specify the constitutive equations for the strain energy density W (εij , γij , κijk)
which we use to model the mechanical behavior of some fibrous composite reinforcements in the finite
strain regime. We will equivalently use the deformation measure C = 2ε + I instead of ε to specify
the form for the energy, i.e. W (εij , γij , κijk) = W̃ (Cij , γij , κijk). In particular, we will assume that

W̃ (Cij , γij , κijk) =WI(Cij) +WII(κijk). (6)

In this formula WI is the first gradient strain energy and WII is the energy associated to the macro-
inhomogeneity of micro-deformation. We do not explicitly consider a coupling energy depending on γij ,
but some coupling effects will be accounted for by introducing particular constraints fα(εij , γij , κijk) =
0 in the power of internal actions by using Lagrange multipliers, as specified in Eq.(2).
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3.1. Representation theorem for hyperelastic orthotropic materials

Various hyperelastic constitutive equations for an isotropic strain energy density W iso(C) have been
proposed in the literature which are suitable to describe the mechanical behavior of isotropic materials
even at finite strains (see e.g. [61, 84]). Generalized constitutive laws are also available for linear elastic
isotropic second gradient media (see [23]). These constitutive equations for isotropic materials are
classically derived starting from a well-known representation theorem for the strain energy potential
which states that only three independent scalar invariants of the Cauchy-Green tensor C are sufficient
to correctly represent the functional dependence ofW iso onC. In other words, for an isotropic material,
it is sufficient to consider that W iso(C) =W (i1, i2, i3), where i1, i2, i3 are the three scalar invariants
of C classically defined as

i1 = tr(C), i2 = tr
(

det(C) C−T
)

, i3 = det(C).

These three invariants respectively describe local deformations associated to changes of length, changes
of area and changes of volume: superposition of these three deformation modes are sufficient to repro-
duce the global deformation of an isotropic medium. Constitutive equations for transversely isotropic
materials are also well assessed in the literature (see e.g. [44, 8, 9, 62, 13, 45]) and their derivation
relies on the classical representation theorem according to which five independent invariants of the
tensor C are needed to characterize the behavior of such materials: W tran(C) =W (i1, i2, i3, i4, i5). If
one denotes by m1 the unitary vector along the preferred direction inside the transversely isotropic
material in its reference (Lagrangian) configuration, then the two additional invariants appearing in
the representation of W tran are defined as

i4 = m1 ·C ·m1, i5 = m1 ·C2 ·m1.

These two invariants respectively describe local stretch in the direction of the preferential direction
m1 and changes of angles mixed to changes of length.

As far as orthotropic materials are considered, clear and exploitable constitutive hyperelastic
equations are harder to be found in the literature. Plenty of authors try to generalize the representa-
tion theorems valid for isotropic and transversely isotropic media, but often there is apparently not
agreement between the different versions proposed for such a theorem. The more diffused version of the
representation theorem for the strain energy potential for orthotropic media states that seven invari-
ants can be used to write the functional dependence of the strain energy density (see e.g. [43, 82, 62]).
More precisely, denoting by m1 and m2 two orthogonal unitary vectors along the preferred directions
in the considered orthotropic material, the functional dependence of the orthotropic energy on C can
be expressed in the form W orth = W (i1, i2, i3, i4, i5, i6, i7), where the additional two invariants are
defined as

i6 = m2 ·C ·m2, i7 = m2 ·C2 ·m2,

Nevertheless, it can be proved that, indeed, only six independent scalar invariants are sufficient to
completely describe the behavior of an orthotropic material (see the elegant proof given in [69]), so
that, even if it is effectively possible to write the strain energy as function of seven scalar invariants,
it must be kept in mind that not all of them are truly independent functions of C. In particular,
following [69], one can think to introduce the following set of six invariants to represent the functional
dependence of W on C:

iO := {i1, i4, i6, i8, i9, i10} ,
where all the invariants not previously defined are given by

i8 = m1 ·C ·m2, i9 = m1 ·C ·m3, i10 = m2 ·C ·m3,

where m3 := m1 ∧m2. All the invariants belonging to the set iO correspond to simple deformation
modes. In particular, in addition to the invariants already discussed before, one can remark that i6
represents stretching in the direction m2, while i8, i9 and i10 represent changes of angles between the
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directions (m1,m2), (m1,m3) and (m2,m3) respectively. It can be shown (see [69]) that all previously
introduced invariants can be written as functions of the six invariants in iO as

i2 = i4i6 + (i4 + i6) (i1 − (i4 + i6))− i28 − i29 − i210,

i3 =
(

i4i6 − i28
)

(i1 − (i4 + i6)) + 2 i8i9i10 − i6i
2
9 − i4i

2
10,

i5 = i24 + i28 + i29, i7 = i26 + i28 + i210.

The fact of correctly identifying the maximum number of scalar invariants which are all independent
functions of C is of fundamental importance when one wants to write the constitutive hyperelastic laws
starting from the considered strain energy potential. Indeed, a hyperelastic energy is, by construction,
differentiable with respect to the strain tensor C and, considered that all the invariants in iO are
independent functions of C, one can obtain the second Piola-Kirchhoff stress tensor for orthotropic
materials as

S :=
∂W orth

∂ε
= 2

∂W orth

∂C
= 2

∑

k∈iO

∂W orth

∂ik

∂ik
∂C

, (7)

W orth(C) :=W (i1, i4, i6, i8, i9, i10) (8)

In [69] it is also explicitly proved that a strain energy W̄ (i1, i2, i3, i4, i5, i6, i7) which is function of
the seven classical invariants can also be obtained starting from the strain energy W orth defined
in (8). If we consider the functional dependence of W orth on the six invariants in iO given in (8)
we must take into account the results found in [69] where it is proven that W (i1, i4, i6, i8, i9, i10) =
W̄ (i1, i4, i6, |i8| , |i9| , |i10| , sgn(i8i9i10)). Using this expression for the energy and replacing it in (7),
then it is possible to prove that the constitutive law for the second Piola Kirchhoff stress tensor is
given by

S = 2
∂W̄

∂i1
I+ 2

∂W̄

∂i4
m1 ⊗m1 + 2

∂W̄

∂i6
m2 ⊗m2 + sgn(i8)

∂W̄

∂|i8|
(m1 ⊗m2 +m2 ⊗m1)

(9)

+sgn(i9)
∂W̄

∂|i9|
(m1 ⊗m3 +m3 ⊗m1) + sgn(i10)

∂W̄

∂|i10|
(m2 ⊗m3 +m3 ⊗m2).

This orthotropic constitutive law can be used to model the macroscopic behavior at finite strains of
3D interlocks of fibrous composite reinforcements. Fully reliable models which are able to describe
the mechanical behavior of 3D composite preforms are not completely developed up to now both
for the interlock reinforcements (see e.g. [14]) and for the complete composite (reinforcements plus
organic matrix) (see e.g. [26]). For this reason, the mechanical characterization of such materials is
nowadays a major scientific and technological issue. The mechanical behavior of composite preforms
with rigid organic matrix (see e.g. [26, 65, 55, 56]) is quite different from the behavior of the sole fibrous
reinforcements (see e.g. [14]). In [14] a hyperelastic approach is presented which allows to capture the
main features of 3D interlocks at finite strain. On the other hand, in [14] it is also underlined that
Cauchy continuum theory may not be sufficient to model a class of complex contact interactions which
are related to local stiffness of the yarns and which macroscopically affect the overall deformation
of interlocks. Such microstructure-related contact interactions may be taken into account by using
generalized continuum theories, such as higher order or micromorphic theories. In this paper we will
limit ourselves to the application of a hyperelastic, orthotropic, second gradient model to the case
of thin fibrous composite reinforcements at finite strains, for which the third direction can easily be
thought to have negligible effect on the overall behavior of the material.

3.2. Phenomenological choice of the potential W I for thin sheets of fibrous composite reinforcements

Explicit expressions for the strain energy potential W orth as function of the invariants iO which are
suitable to describe the real behavior of orthotropic elastic materials are difficult to be found in
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the literature. Certain constitutive models are for instance presented in [44], where some polyconvex
energies for orthotropic materials are proposed to describe the deformation of rubbers in uniaxial
tests. Explicit anisotropic hyperelastic potentials for soft biological tissues are also proposed in [42]
and reconsidered in [77, 6] in which their polyconvex approximations are derived. Other examples of
polyconvex energies for anisotropic solids are given in [85].

Polyconvex energies are energies automatically satisfying the Legendre-Hadamard (L-H) ellip-
ticity condition which, in turns, guarantees material stability of considered potentials. Reliable con-
stitutive models for the description of the real behavior of fibrous composite reinforcements at finite
strains are even more difficult to be found in the literature and can be for instance recovered in [2, 13].
In the present paper, we will introduce a first gradient anisotropic hyperelastic potential of the type
proposed in [13, 14] to model the overall behavior of considered fibrous materials and we will add a
second gradient term to account for the onset of some boundary layers which are observed experi-
mentally but which cannot be described by means of a first gradient theory. We do not attempt in
this paper to test L-H ellipticity of the chosen first gradient potential WI(Cij), our major concern
being that one of recovering the experimental deformed shape of some particular fibrous composite
preforms. We are nevertheless aware that the used first gradient potential might not be L-H elliptic
on some precise directions along which one could hence obtain material instability. We postpone these
investigations to subsequent works in which we will also put in evidence how the addition of some
second gradient terms in the energy potential can indeed guarantee mathematical existence of the
solution.

To the sake of consistency, we recall here some steps which have been followed to derive the
constitutive hyperelastic expression for the potential WI (C) proposed in [13, 14]. We recall that the
two privileged directions in the reference (or Lagrangian) configuration are identified by means of two
vectorsm1 and m2 which are assumed to be orthogonal and to have unitary length. For the considered
fibrous composite reinforcements the two privileged directions clearly coincide with the fiber directions
m1 and m2 (called warp and weft) in the undeformed configuration. For the case studied in this paper,
we focus on the modeling of specimens of fibrous composite reinforcements which are very thin in the
direction m3 = m1 ∧m2 and we will treat the case of thick composite reinforcements in subsequent
works. The fact of considering very thin sheets of fibrous composite preforms allows us to assume
that the strain energy potential is constant with respect to the invariants i9 and i10, so that the
calculation to get the stress tensor S starting from (7) results to be simplified since the last two
terms are automatically vanishing. We hence propose the following additive decomposition which
separately accounts for the potential associated to isotropic deformation, to elongation of fibers in the
two privileged directions (warp and weft) and to the variation of the shear angle among two fibers
respectively

WI (C) =WNH(C) +W 1
elong (C) +W 2

elong (C) +Wshear (C) . (10)

The isotropic energy potential WNH can be assumed to take the classical Neo-Hooke form

WNH(i1, i4, i6, i8, i9, i10) = µ [(i1 − 3)− ln (i3(i1, i4, i6, i8, i9, i10))] ,

where the explicit expression of i3 as function of the other invariants is given in the previous subsection.
We remark that, in the case studied in the following, the isotropic deformations can be considered to
be very small compared to the anisotropic ones, so that the stiffness coefficient µ will be considered
to be very small with respect to the anisotropic material constants. As for the anisotropic energies
appearing in (10), we now specify their explicit dependence on the invariants i4, i6 and i8 following
what done in [14]. To do so, we first introduce the three scalar functions

I1elong(i4) = ln
(√
i4
)

, I2elong(i6) = ln
(√
i6
)

, Ishear(i4, i6, i8) =
i8√
i4i6

,

which clearly represent elongation measures in the two principal directions of fibers and variation of the
angle between fibers. It can be checked that the function Ishear is indeed related to the angle variation
φ from the reference angle between the fibers by the formula Ishear = sin(φ) (see e.g.[13, 14]). We
then recall the explicit form of the three introduced potentials which has been shown to be suitable



Second gradient modelling of composite reinforcements 9

for describing physically reasonable material behavior for thin fibrous composite reinforcements (see
[13, 14]):

W 1
elong (i1) =











1
2K

0
elong

(

I1elong

)2

if I1elong ≤ I0elong

1
2K

1
elong

(

I1elong − I0elong

)2

+ 1
2K

0
elongI

1
elongI

0
elong if I1elong > I0elong,

W 2
elong (i2) =











1
2K

0
elong

(

I2elong

)2

if I2elong ≤ I0elong

1
2K

1
elong

(

I2elong − I0elong

)2

+ 1
2K

0
elongI

2
elongI

0
elong if I2elong > I0elong,

(11)

Wshear (i4, i6, |i8|) =
{

K12
shear (|Ishear|)

2
if |Ishear| ≤ I0shear

K21
shear (1− |Ishear|)−p

+W 0
shear if |Ishear| > I0shear.

In the three proposed potentials one can notice the existence of threshold values of the three introduced
scalar functions, namely I0elong for I1elong and I2elong and I0shear for Ishear . The threshold value for the

elongation strain measures I0elong is due to the fact that, for small stretch of the fibers, the weft
and warp yarns are undulated due to weaving. When the fibers are completely stretched, they start
showing their complete tension stiffness which can indeed reach extremely high values if one considers
e.g. carbon fibers. Also for the shear deformation measure a threshold value is identified (related to
lateral contact between the yarns due to shearing) which discriminates between two different behaviors.

As already explained in detail, the first gradient energy given by Eqs. (10), (11) has been in-
troduced on a phenomenological basis. The strong non-linearities and some loss of regularity of such
energy make the well-posedness of elastic problems related to it difficult to prove. Actually, (see [60])
some new mathematical results seem to be needed in order to regularize the considered form of the
energy potential. In the literature, these regularization has been proposed by the use of judicious
numerical techniques: in [38, 39] the functional space where looking for solutions is constrained by
suitably choosing the mesh for employed finite elements. This is done in [38, 39] in conformity with
the indications given by the models developed e.g. in [82]. Another possible method for regularizing
hill-posed problems, as the one which seems to be confronted here, is to introduce an ad hoc regu-
larizing parameters involving higher order derivatives or fictitious additional kinematical parameters.
However, until a physical interpretation for such parameters is not reached, one cannot consider that
the ill-posedness is removed: indeed, as it is obvious, there is not a unique limit of the solution when
these parameters vanish. An elegant example of successful regularization, obtained by introducing
in the mathematical modeling some physically relevant corrections, is given e.g. in [46] where some
important dissipation phenomena in strain softening are accounted for by means of suitably chosen
regularizing parameters. It has to be remarked that the first remedy proposed by [38, 39] determines
the correct limit to be obtained when regularizing parameters vanish. In the subsequent subsection
we propose a first attempt to find a regularized energy which is based on the physical concept of
longer range mechanical interactions among non-adjacent unit cells of considered fibrous composite
reinforcements. A validation of the regularized model proposed in the present paper is obtained by
comparing the numerical results presented here with those obtained in [38, 39].

Mathematically speaking, micromorphic models produce boundary problems for partial differen-
tial equations which are “singular perturbations” of the boundary problems obtained in the framework
of first gradient models. Therefore, the type of PDEs may change when micromorphic constitutive
parameters tend to zero and, as a consequence, it could be lost the possibility of describing the onset
of boundary layers. Also relevant are the phenomena of loss of stability, buckling and post-buckling
phenomena which may occur in considered structures: while refraining here to attempt to model e.g.
the wrinkling occurring in bias test for very high imposed displacements, we want to mention that,
by using methods similar to those presented in [48, 49, 50], also this modeling challenge may be
confronted.
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3.3. Some physical considerations leading to regularized micromorphic strain energy potentials

In woven reinforcements for composite materials, when the external loads are applied only at the
terminal extremities of the yarns, a unit cell is deformed because of its interaction with the closest
ones. The basic assumption about these interactions which leads to first gradient homogenized continua
is that they are negligible when the two considered cells are not the closest adjacent ones. However,
simple mechanical considerations can be heuristically developed: i) for low loads, friction among yarns
introduces perfect constraints at the contact points between them and, in a first approximation2, these
constraints are internal pivots which do not interrupt continuity of single yarns, ii) the actions which
are deforming one unit cell are transmitted to closer cells via these internal pivots. Therefore, jumps
in elongation and in shear deformation are not allowed as it can be seen from microscopic balance
considerations. More detailed models considering friction between yarns can be obtained by following
e.g. the methods used in [58]

We postpone to further investigations the quantitative analysis needed to identify the macroscopic
constitutive parameters which we are going to introduce in terms of the microscopic properties of yarns.
Suitable multi-scale methods as the one introduced in [59] may be generalized to be applied to the
present case. Moreover, the description of the considered system at the microscopic scale may take
advantage of some of the results proposed in [5, 41, 83, 70, 71, 72, 73, 74]. Indeed, we content ourselves
here with the introduction of three phenomenological parameters controlling the thickness of the shear
and elongation boundary layers and the value of the introduced deformation gradients.

The micromorphic hyperelastic model which we propose in this paper is based on a phenomeno-
logical approach: the addition of the micromorphic terms in the strain energy density as specified in
Eq. (6) allows us to describe the existence of some regions inside the material in which high gradients
of deformation occur (see also [1, 87] for the use of gradient theories to model strain localization). The
onset of such boundary layers is completely accounted for by the proposed generalized hyperelastic
model and will be illustrated by numerical simulations which will be subsequently compared with
experimental results.

At this point, we can finally introduce the constitutive form of the micromorphic strain energy
densities which will be used to describe the onset of some boundary layers which are actually ob-
served in experimental tests on the described thin specimens of fibrous composite reinforcements. In
particular, we assume that the micromorphic term appearing in Eq.(6) takes the particular form

WII(κ) =
1

2
α1

(

m1
i κijkm

2
j

) (

m1
p κpqkm

2
q

)

+

(12)

+
1

2
α2

(

m1
i κijkm

1
j

) (

m1
p κpqkm

1
q

)

+
1

2
α3

(

m2
i κijkm

2
j

) (

m2
p κpqkm

2
q

)

where we denoted by m1
i and m2

j the components of the vectors m1 and m2 respectively. We can then

rewrite the action functional defined in (2) as

A =

ˆ

BL

(

WI(ε) +WII(κ) +

3
∑

α=1

λα fα(γ)

)

,

where we set n = 3 for the number of introduced constraints which we now suppose to depend only
on the relative deformation γ. With the considered expressions of the strain energy densities WI (ε)
and WII(κ) and with the considered constraints, one can recover the particularization of the power

2When yarns experience a relative displacement of the contact points the macroscopic modeling may become very
difficult to be obtained from microscopic considerations: an eventual attempt should be based on the methods used in
[74, 75].
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of internal forces given in (3) which reads

P int = δA =

ˆ

BL

((

∂WI

∂εij
+

3
∑

α=1

λα
∂fα
∂γhk

∂γhk
∂εij

)

δεij

)

+

ˆ

BL

(

3
∑

α=1

λα
∂fα
∂γhk

∂γhk
∂ψij

δψij +
∂WII

∂κijk
δκijk +

3
∑

α=1

fαδλα.

)

We now choose the following particular form for the constraints fα(γ)

f1(γ) = m1 ·
(

γ +
I

2

)

·m2, f2(γ) = m1 ·
(

γ +
I

2

)

·m1, f3(γ) = m2 ·
(

γ +
I

2

)

·m2.

In other words, recalling the definition of γ given in (1), we are imposing that particular projections of
the micro-deformation tensor ψ on directionsm1 andm2 actually tend to angle variations between the
directions m1 and m2 and to macroscopic stretches in these two privileged directions. Other possible
types of constraints could be included in the proposed micromorphic model which, for example, impose
inextensibility of yarns so giving rise to so-called micropolar continua (see e.g. [29, 64, 28, 4, 27]). This
is not the case here, since we suppose that the yarns are very stiff in elongation, but still deformable.
More particularly and as it will be better seen in the following, f1 imposes constraints on the variation
of shear angle, while f2 and f3 impose constraints on the elongations in the two preferred directions
m1 and m2. Recalling definition (1) for γ, and that the vectors m1 and m2 are constant vectors, it
is possible to verify that the power of internal forces can be finally written as

P int =

ˆ

BL

(

∂WI

∂εij
+ λ1m

1
i m

2
j + λ2m

1
i m

1
j + λ3m

2
i m

2
j

)

δεij

−
ˆ

BL

(

λ1m
1
i m

2
j + λ2m

1
i m

1
j + λ3m

2
i m

2
j

)

δψij (13)

+

ˆ

BL

(

∂WII

∂κijk
δκijk +

3
∑

α=1

fαδλα

)

.

It can be checked that, imposing the principle of virtual powers P int = Pext, where P int and Pext are
respectively given by equations (13) and (4), and considering arbitrary variations δλi one explicitly
gets the constraints

f1(γ) = 0, f2(γ) = 0, f3(γ) = 0.

We explicitly remark that, recalling definitions (1), the constraints fα = 0 actually relates the micro-
deformation to the macroscopic deformation as follows

f1(γ) = m1 ·
(

γ +
I

2

)

·m2 =
1

2
m1 · (C− 2ψ) ·m2 =

1

2

(

i8 − ψ1
)

= 0,

f2(γ) = m1 ·
(

γ +
I

2

)

·m1 =
1

2
m1 · (C− 2ψ) ·m1 =

1

2

(

i4 − ψ2
)

= 0, (14)

f3(γ) =
1

2
m2 ·

(

γ +
I

2

)

·m2 =
1

2
m2 · (C− 2ψ) ·m2 =

1

2

(

i6 − ψ3
)

= 0

where we set ψ1 := 2m1 · ψ ·m2, ψ
2 := 2m1 · ψ · m1, ψ

3 := 2m2 · ψ · m2. If we now consider the
constitutive expression for WII given in Eq. (12), recalling that m1 and m2 are constant vectors and
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that κijk = ψij,k, equation (13) reduces to

P int =

ˆ

BL

(

∂WI

∂εij
+ λ1m

1
i m

2
j + λ2m

1
i m

1
j + λ3m

2
i m

2
j

)

δεij

−
ˆ

BL

(

λ1m
1
i m

2
j + λ2m

1
i m

1
j + λ3m

2
i m

2
j

)

δψij

+

ˆ

BL

(α1

2
m1

i m
2
jψ

1
,k +

α2

2
m1

i m
1
jψ

2
,k +

α3

2
m2

i m
2
jψ

3
,k

)

δψij,k ,

together with the constraints ψ1 = i8, ψ
2 = i4, ψ

3 = i6. Recalling that m1 and m2 are constant
vectors, we can write

m1
i m

2
j δψij = δ(m1

i m
2
j ψij) =

1

2
δψ1,

m1
i m

2
j δψij,k = δ

(

m1
i m

2
j ψij,k

)

= δ
(

m1
i m

2
j ψij

)

,k
=

1

2
δ(ψ1

,k),

and analogously

m1
i m

1
j δψij =

1

2
δψ2, m2

i m
2
j δψij =

1

2
δψ3

m1
i m

1
j δψij,k =

1

2
δ(ψ2

,k), m2
i m

2
j δψij,k =

1

2
δ(ψ3

,k)

so that the power of internal forces, written in terms of the strain tensor C, finally simplifies into

P int =

ˆ

BL

(

∂WI

∂Cij

+ λ̃1m
1
i m

2
j + λ̃2m

1
i m

1
j + λ̃3m

2
i m

2
j

)

δCij

(15)

−
ˆ

BL

3
∑

i=1

λ̃i δψ
i +

ˆ

BL

3
∑

i=1

α̃i ψ
i
,k δ(ψ

i
,k),

where we set λ̃i := λ/2 and α̃i := α/4. As for the power of external forces given in Eq. (4), we neglect

body actions setting bexti = 0 and Φext
ij = 0, and we also set T ext

ij = 2β̃ext
1 m1

i m
2
j + 2β̃ext

2 m1
i m

1
j +

2β̃ext
3 m2

i m
2
j , so that the principle of virtual powers P int = Pext finally implies

ˆ

BL

(

∂WI

∂Cij

+ λ̃1m
1
i m

2
j + λ̃2m

1
i m

1
j + λ̃3m

2
i m

2
j

)

δCij ,

(16)

−
ˆ

BL

3
∑

i=1

λ̃iδψ
i +

ˆ

BL

3
∑

i=1

α̃i ψ
i
,k δ(ψ

i
,k) =

ˆ

∂BL

texti δui +

ˆ

∂BL

3
∑

i=1

β̃ext
i δψi,

together with the constraints ψ1 = i8, ψ
2 = i4 and ψ3 = i6. We remark that the considered expression

for the external double forces, actually allows to consider external actions which expend power on shear
angle variations and on fiber elongation. In this way, one has the possibility to act on the boundary of
considered material assigning force or displacement, shear double force or shear angle variation and
also elongation double force or fiber elongation.

We finally want to explicitly remark that Eq. (16) actually represents a very particular case of
second gradient theory. In fact, using the constraints ψ1 = i8, ψ

2 = i4 and ψ3 = i6 one gets
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δψ1 = δi8 = m1
i m

2
j δCij , δψ2 = δi4 = m1

i m
1
j δCij , δψ3 = δi6 = m2

i m
2
j δCij ,

δ(ψ1
,k) = δ(i8),k = m1

i m
2
j δCij,k, δ(ψ

2
,k) = δ(i4),k = m1

i m
1
j δCij,k, δ(ψ

3
,k) = δ(i6),k = m2

i m
2
j δCij,k

so that Eq. (16) is also equivalent to
ˆ

BL

[

∂WI

∂Cij

δCij +
(

α̃1

(

m1
pm

2
q Cpq,k

)

m1
i m

2
j + α̃2

(

m1
pm

1
q Cpq,k

)

m1
i m

1
j + α̃3

(

m2
pm

2
q Cpq,k

)

m2
i m

2
j

)

δCij,k

]

=

ˆ

∂BL

texti δui +

ˆ

∂BL

(

β̃ext
1 m1

i m
2
j + β̃ext

2 m1
i m

1
j + β̃ext

3 m2
i m

2
j

)

δCij (17)

We have hence explicitly recovered a special second gradient theory starting from the proposed con-
strained micromorphic model. Nevertheless, in our numerical simulations, instead of using the second
gradient weak form (17), we use the constrained micromorphic one (16). The advantage of using the
micromorphic approach instead of directly using a second gradient theory is that the boundary condi-
tions which can be imposed are, in the present case, more easily understandable from a physical point
of view. In particular, we remark that, for example, under the constraints ψ1 = i8, the fact of imposing
ψ1 = 0 on the boundary means that we are imposing zero variation of the angle between the fibers.
Analogously, under the constraints ψ2 = i4 and ψ3 = i6, imposing ψ2 = 1 and ψ3 = 1 is equivalent
to prevent elongation in the preferred directions m1 and m2. We therefore end up with a model in
which it is possible to impose, at the boundary of considered system, both the displacement field and
the deformation fields measuring variation of the angle between fibers and elongations along the two
preferred directions. The generalized theory proposed in this paper becomes essential for describing
deformation patterns in which high gradients of deformation occur in relatively narrow regions of the
material. This is the case for the deformation patterns which will be described in the next section.

4. Phenomenology of the bias extension test

The bias extension test is a mechanical test which is very well known in the field of composite materials
manufacturing (see e.g. [11, 40, 63]). It is widely used to characterize the mechanical behavior of woven-
fabric fibrous composite preforms undergoing large shear deformations. Such fibrous materials have
attracted significant attention from both industry and academia, due to their high specific strength
and stiffness as well as their excellent formability characteristics. These materials are widely being
used in the aerospace industry since they provide a suitable compromise between high mechanical
performances, light weight and easy shaping. The bias extension test is performed on rectangular
samples of woven composite reinforcements, with the height (in the loading direction) relatively greater
(at least twice) than the width, and the yarns initially oriented at ± 45-degrees with respect to the
loading direction. The specimen is clamped at two ends, one of which is maintained fixed and the
second one is displaced of a given amount. The relative displacement of the two ends of the specimen
provokes angle variations between the warp and weft: the creation of three different regions A, B
and C, in which the shear angle between fibers remains almost constant after deformation, can be
detected (see Fig. 3). In particular, the fibers in regions C remain undeformed, i.e. the angle between
fibers remains at 45° also after deformation. On the other hand, the angle between fibers becomes
much smaller than 45° in regions A and B, but it keeps almost constant in each of them. The main
characteristics of the bias extension test are summarized in Fig. 3 in which both the undeformed and
deformed shapes of the considered specimen are depicted. The specimen is clamped at its two ends
using specific tools which impose the following boundary conditions:

• vanishing displacement at the bottom of the specimen,
• assigned displacement at the top of the specimen
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Figure 3. Simplified description of the deformation pattern in the bias extension test.

Figure 4. Boundary layers between two regions at constant shear (left) and curva-
ture of the free boundary (right).

• fixed angle between the fibers (45°) at both the top and the bottom of the specimen.
• vanishing elongation of the fibers at both the top and the bottom of the specimen.

It is clear that the third type of boundary condition which imposes that the angle between fibers cannot
vary during deformation of the specimen is a boundary condition which, at the level of a macro model,
imposes deformation and not displacement. The same is for the fourth type of boundary conditions
blocking elongation of fibers. Boundary conditions of this type cannot be accounted for in a first
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gradient theory, while they can be naturally included in a second gradient one, as duly explained in
the previous section.

Moreover, the deformation scheme described in Fig. 3 does not take into account some specificity
of the deformations which are actually observed during a bias extension test. In particular, the following
two experimental evidences are not included in the scheme presented in the quoted figure:

• the presence of transition layers between two adjacent zones with constant shear deformation
• the more or less pronounced curvature of the free boundaries of the specimen.

Indeed, both these evidences can be observed in almost any bias extension test on woven composite
preforms, as it is shown in Fig. 4.

Figure 5. Contour of shear angle in a bias-extension test obtained from the optical
measurement software Icasoft (INSA-Lyon).

A set of bias tests run on specimens under identical circumstances have produced some suggestive
results which were gathered in a picture of [11] which we reproduce here in Fig. 5. In this figure the
contour of the shear angle variation between yarns is depicted as the result of some optical measure-
ments conducted at INSA-Lyon. Unfortunately, the yarns constituting the considered reinforcements
have a very high extensional rigidity and, as a consequence, the tickness of the corresponding elonga-
tion boundary layers is relatively smaller. Hence, in order to obtain similar results for the elongation
boundary layers, suitably targeted measurement campaigns should be conceived.

The principle of virtual powers for constrained micromorphic media formulated in Eq. (16) allows
for the description of the onset of thin boundary layers in which high gradients of shear deformation
occur and which allow for a gradual transition from one value of the shear angle to the other one.
The onset of these boundary layers cannot be accounted for by a first gradient theory, while it can be
described by adding a dependence of the energy density on gradients of the shear deformation. Cur-
vature effects will be also pointed out in the results obtained in the performed numerical simulations
and which will be shown in the next section.

5. Numerical simulations

We now propose to apply the introduced second gradient model to perform numerical simulations of
the bias extension test which take into account the onset of shear boundary layers. We consider a
rectangular specimen of 100 mm of width of and 300 mm of height in the undeformed configuration.
The fibers are at ±45° with respect to the direction of the height of the specimen in the undeformed
configuration. To perform the numerical simulations we choose a fixed orthonormal basis such that,
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Table 1. Constitutive first gradient coefficients used in the numerical simulations.

K0
elong K1

elong I0
elong K12

shear K21
shear p W 0

shear I0
shear

[MPa] [MPa] [−] [MPa] [MPa] [MPa] [−]

37.85 816.33 1.45×10−2 0.07575 1.69×10−4 3.69 -1.69×10−4 4.20×10−3

the components of the two structural vectors introduced before are m1 =
(√

2/2,
√
2/2, 0

)T
and

m2 =
(√

2/2,−
√
2/2, 0

)T
and we impose at the top of the specimen a vertical displacement d = 55mm.

Clearly, also the deformation tensor C and all its introduced invariants can be accordingly written
in the chosen basis. We summarize in Tab. 1 the values of the first gradient constitutive parameters
appearing in the orthotropic hyperelastic potential (11) which are used to perform the numerical
simulations presented in this section. These values have been proposed in [14] as the result of specific
measurement campaigns.

5.1. First gradient limit solution

As discussed in detail by [38, 39], first gradient energies, in which the physical phenomena governing
the onset of boundary layers are neglected, actually produce mesh-dependent numerical simulations.
To remedy to this circumstance, [82] suggested some techniques whose numerical counterpart has been
developed in [38, 39] for considered case: following the ideas there exposed we could get numerical
simulations in which boundary layers reduce to lines and deformation measures are subjected to
jumps. We show the result of one of these numerical simulations in Fig. 6. This picture represents the

Figure 6. Shear angle variation φ for an imposed displacement d = 55mm obtained
with the first gradient theory. The lateral bar indicates the values of φ in degrees.

shear deformation field which is the correct limit to which regularized models must converge when
higher gradient parameters tend to zero. In particular, figure 6 shows the shear angle variation φ
which is obtained as solution of the first gradient equilibrium problem resulting from (16) by setting

α̃1 = α̃2 = α̃3 = 0 and β̃ext
1 = β̃ext

2 = β̃ext
3 = 0. The boundary conditions which have been used to

solve the first gradient equilibrium problem are

• Vanishing displacement on the left surface: δui = 0, i = {1, 2},
• Assigned displacement on the right surface: δu1 = 55mm, δu2 = 0,
• Unloaded lateral (top and bottom) surfaces (i.e. texti = 0, i = {1, 2}).
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As it can be seen, the three zones A, B and C defined in Fig. 3 can be identified in the solution
shown in Fig. 6: the red zones (corresponding to zones C) are such that no angle variation occurs
with respect to the reference configuration (φ = 0). On the other hand, the green and the blue zones
respectively correspond to regions B and A and are such that two different constant angle variations
(φB ≈ φA/2 6= 0) with respect to the reference configuration occur. The first gradient solution is such
that a sharp interface between each pair of the three shear regions can be observed.

5.2. Second gradient solution and the onset of boundary layers

For what concerns the solution which we have obtained by means of the introduced second gradient
model, we start by heuristically choose the values of the second gradient parameters by using an
inverse method based on physical observations. However, further investigations are needed to establish
a theoretical relationship between the microscopic structure of considered reinforcements and the
macroscopic parameters here introduced: it is indeed well known (see e.g. [12, 16, 17, 34]) that the
second gradient parameters are intrinsically related to a characteristic length Lc which is, in turn,
associated to the micro-structural properties of considered materials. It is also known that many
identification methods have been introduced to relate the macroscopic second gradient parameter to
the microscopic properties of the considered medium. Some of these methods are presented in [3, 81].
Calling Lc the measured thickness of the shear boundary layer highlighted in Fig. 4, we tune the value
of the second gradient parameters α̃i, i = {1, 2, 3} in our numerical simulations until we obtain a
boundary layer having the same thickness Lc. In particular, for a characteristic length Lc ≈ 2 cm,
we obtain, by inverse approach, the following values of the shear and elongation second gradient
parameters respectively

α̃1 = 3× 10−5MPa m2, α̃2 = α̃3 = 9× 10−3 MPa m2.

The second gradient solution for the shear angle variation φ, obtained for the aforementioned
values of the second gradient parameters, is shown in Fig. 7. For obtaining this solution, Eq. (16) was
solved with the following additional boundary conditions

• Zero angle variation at the clamped ends of the specimen: ψ1 = i8 = 0,
• Zero elongation of the fibers at the clamped ends of the specimen: ψ2 = i4 = 1, ψ3 = i6 = 1.
• Boundaries on the lateral (top and bottom) surfaces free from micromorphic loads: β̃ext

i = 0, i =
{1, 2}.

Figure 7. Shear angle variation φ for an imposed displacement d = 55mm obtained
with the proposed second gradient theory. The lateral bar indicates the values of φ
in degrees
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It can be noticed that in the second gradient solution shown in Fig. 7 the transition zones between
different shear regions are regularized and shear boundary layers can be clearly observed, as well as
a curvature of the free boundaries on the two free sides. It can be immediately remarked how the
solution shown in Fig. 7 is, at least qualitatively, very close to the experimental picture shown in
Fig.5.

We show in Fig. 8 the first and second gradient solutions for the shear angle variation along the
sections I and II. It can be clearly seen that, along section I, the first gradient solution (dashed line)

s1

s2

I

II

s1

φ

I

Lc

s2

φ

II

Figure 8. Definition of the sections I and II (top) and shear angle variation φ for
the two sections I and II both for first gradient (dashed line) and second gradient
(continuous line).

produces a sharp variation of the shear angle across the two regions C and B. On the other hand, the
second gradient solution (continuous line) clearly regularizes the transition between the zone at zero
variation of the shear angle and the adjacent zone. The same arrives in section II, which spans on the
whole specimen, in which the transition zones are clearly regularized by the second gradient solution.

In Fig. (9) we show the effect of the variation of the shear second gradient parameter α̃1 on
the solution for the shear angle variation φ along the sections I and II respectively. It can be seen
that the effect of increasing the shear second gradient parameter actually lower the value of the shear
angle variation so producing more regular transitions from the two regions at different constant shear.
This clearly results in an increasing of the characteristic size of the shear boundary layer. It can be
also noticed that the value of φ increases with α̃1 in the center of the specimen. We can conclude
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Figure 9. Parametric study on the shear second gradient parameter
α̃1 ∈ [7× 10−6, 6× 10−5] MPam2, taking fixed α̃2 = α̃3 = 9× 10−3 MPam2.

that the choice of the shear second gradient parameter α̃1 is directly related to the fact of fixing
the thickness of the shear boundary layer. This parameter can be hence easily tuned on the basis of
experimental evidences. In the presented numerical simulations, we tuned the shear second gradient
parameter α̃1 in order to have a boundary layer of thickness Lc ≈ 2 cm, so obtaining the quoted value
α̃1 = 3× 10−5MPam2.

s1
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α2

s2

φ

II

α2

Figure 10. Parametric study on the elongation second gradient parameter
α̃2 = α̃3 ∈ [3× 10−3, 9× 10−3] MPam2, taking fixed α̃1 = 3× 10−5 MPam2.

As for the choice of the second gradient elongation parameters, the identification procedure is
less direct than that one used for identifying the shear parameter α̃1. First of all, due to symmetry of
material properties in the directions of weft and warp, we set a priori that α̃2 = α̃3. Unfortunately,
due to the very high tensile stiffness of the yarns, experimental measurements of elongation boundary
layers in the fiber directions are not available, as it was instead the case for shear boundary layers



20 Manuel Ferretti, Angela Madeo*, Francesco dell’Isola and Philippe Boisse

Figure 11. Elongations in the direction + 45° (top figure) and -45° (bottom figure).

(see Fig. 5). The precise tuning procedure which allows us to fit the second gradient elongation
parameters to experimental measures of elongation boundary layers is henceforth not possible at this
stage. Therefore, the value of the parameters α̃2 and α̃3 was tuned after performing the parametric
study shown in Fig. 10 in which the effect of the variation of the second gradient elongation parameter
on the value of the shear angle is shown. It can be remarked from this picture that increasing the value
of the second gradient elongation parameter results in an overall increase of the shear angle variation
φ. The value of α̃2 which gives, in the center of the specimen, the same value of φ obtained for the limit
first gradient solution shown in Fig. 6 was chosen, so resulting in the value α̃2 = 9 × 10−3MPam2.
We obtained, in the performed numerical simulations, an elongation field which is everywhere very
small: the maximum value of elongation is of the order of 10−3. We show in figures 11 the elongation
boundary layers (each corresponding to the elongation in one of the two preferred directions of the
fibers) obtained in the performed numerical simulations. In order to precisely reveal the nature of these
elongation boundary layers suitable experimental campaigns as well as adapted microscopic models
should be developed together with suitable micro-macro identification techniques.

5.3. By using first gradient models it is not possible to correctly describe the onset of boundary layers

One could wonder if it is really necessary to introduce micromorphic continuum models to carefully
describe the onset of boundary layers in bias tests. In the present subsection we discuss some difficulties
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which arise if one tries to use the methods discussed in section 5.1. Actually, as shown by Fig. 12,
although it is indeed possible to describe the onset of some boundary layers still remaining in the
framework of first gradient models, it seems very unlikely that with those methods one can catch all
experimental features which are present in bias extension tests. In the numerical simulations leading
to Fig. 12 one can see formation of boundary layers where high gradients of shear and elongation are
concentrated even if this simulation is conducted in the framework of first gradient theory. However,
the solution is qualitatively and quantitatively different from the first gradient sharp solution shown
in Fig. 6 so that realistic quantitative values for shear deformations cannot be obtained from it.
Moreover, if one evaluates the reaction force on the fixed clamped end in the last considered case,

Figure 12. Shear angle variation φ for an imposed displacement d = 55mm obtained
with the first gradient theory and for an arbitrary mesh. The lateral bar indicates the
values of φ in degrees

it can be checked that its value exceeds of a big amount the reaction force which is expected. More
particularly, the force evaluated for the limit first gradient solution depicted in Fig. 6 is of the order of
5 N which is a sensible force for the bias extension test. On the other hand, if one evaluates the force for
the case depicted in Fig. 12, this force exceeds from 10 to 100 times the 5 N obtained in the limit sharp
first gradient solution, depending on the choice of the mesh. This means that the mesh dependence of
the first gradient solution is even more evident when analyzing force than when analyzing deformation.
Such a problem on the value of calculated force is not present when considering the second gradient
solution shown in Fig. 7. This point allows us to conclude that, using first gradient models, it is not
possible to correctly describe the onset of boundary layers and that the reaction forces at clamped
ends are definitely overestimated as soon as one gets far from the limit first gradient solution shown
in Fig. 6.

6. Conclusions

In this paper a constrained micromorphic theory is introduced which includes, as a particular case, a
second gradient model. Particular orthotropic, hyperelastic, constitutive laws are introduced in order
to account for the anisotropy of fibrous composite reinforcements undergoing large deformations. The
obtained theoretical framework is used to model the mechanical behavior of such fibrous composite
materials during the so-called bias extension test.

The first and second gradient solutions are compared showing that the proposed second gradient
model is actually able to describe the onset of shear boundary layers which regularize the first gradient
sharp transition between two zones at different levels of shear. Moreover, differently from what happens
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for the first gradient model, the proposed second gradient theory also allows to describe the curvature
of the free boundaries of the specimen.

In order to identify the values of introduced second gradient parameters we proceed by inverse
approach, performing numerical simulations which correctly fits the experimental data. More partic-
ularly, we choose the values of second gradient parameters in order to fit at best the characteristic
length of the shear boundary layer which is observed is bias test experiments.

Therefore, the results obtained in this paper allow us to estimate the order of magnitude of the
second gradient parameters to be used for the considered fibrous materials. These results are promising
and justify the need of novel experimental campaigns in order to estimates such gradient parameters
for a wider class of composite preforms.
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[26] Dumont J.P., Ladeveze P., Poss M., Remond Y., 1987. Damage mechanics for 3-D composites Composite
structures, 8:2, 119-141

[27] Eremeyev V. A., Lebedev L. P., Altenbach H. (2013). Foundations of micropolar mechanics. Springer,
Heidelberg.

[28] Eremeyev V.A., 2005. Acceleration waves in micropolar elastic media. Doklady Physics 50:4, 204-206

[29] Eringen A. C., 2001. Microcontinuum field theories. Springer-Verlag, New York.

[30] Eringen A.C., Suhubi, E.S. 1964. Nonlinear theory of simple microelastic solids: I. Int. J. Eng. Sci., 2,
189-203.

[31] Eringen A. C., Suhubi, E. S. 1964. Nonlinear theory of simple microelastic solids: II. Int. J. Eng. Sci., 2,
389-404.

[32] Forest, S., Sievert, R. 2006. Nonlinear microstrain theories. Int. J. Solids Struct., 43, 7224-7245.

[33] Forest S. 2009. Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage. Journal of
Engineering Mechanics, 135:3, 117-131.

[34] Forest S., Aifantis E.C., 2010. Some links between recent gradient thermo-elasto-plasticity theories and
the thermomechanics of generalized continua. Int. J. Solids. Struct. 47:(25-26), 3367-3376
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