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Abstract : We prove that edge contractions do not preserve the
property that a set of graphs has bounded clique-width. This prop-
erty is preserved by contractions of edges, one end of which is a
vertex of degree 2.
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1 Introduction

Clique-width is, like tree-width, an integer graph invariant that is an appropriate
parameter for the contruction of many FPT algorithms ([CMR, DF, FG, Hli+]).
It is thus important to know that the graphs of a particular type have bounded
tree-width or clique-width. See [KLM] for a survey. Gurski has reviewed in [Gur]
how clique-width behaves under different graph operations. He asks whether,
for each k, the class of graphs of clique-width at most k is stable under edge
contractions. This is true for k = 2, i.e., for cographs and we prove that this is
false for k = 3. (For each k, this stability property is true for the class of graphs
of tree-width at most k. It is thus natural to ask the question for clique-width.)

Gurski proves that contracting one edge can at most double the clique-width.
The conjecture is made in [Lac+] (Conjecture 8) that contracting several edges
in a graph of clique-width k yields a graph of clique-width at most f(k) for some
fixed function f . We disprove this conjecture and answer Gurski’s question by
proving the following proposition.

Proposition 1 : The graphs obtained by edge contractions from graphs of
clique-width 3 or of linear clique-width at most 4, have unbounded clique-width.
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The validity of Conjecture 8 of [Lac+] would have implied that the restricted
vertex multicut problem is FPT for the clique-with of a certain graph describing
the input in a natural way. This problem consists in finding a set of vertices
of given size that meets every path between the two vertices of each pair of a
given set and does not contain any vertex of these pairs. Without Conjecture 8,
this problem is FPT under the additional condition that no two vertices from
different pairs are adjacent.

For sake of comparison, we also consider contractions of edges, one end of
which has degree 2. We say in this case that we erase a vertex : we erase x
if it has two neighbours, y and z; to do so, we add an edge between y and z
(unless they are adjacent, we only consider graphs without parallel edges) and
we delete x and its two incident edges. The graphs obtained from a graph by
erasing and deleting vertices are its induced topological minors.

Proposition 2: The induced topological minors of the graphs of clique-
width k have clique-width at most 2k+1 − 1.

2 Definitions and proofs

Graphs are finite, undirected, loop-free and without parallel edges.

To keep this note as short as possible, we refer the reader to any of [CouEng,
Hli+, KLM, OumSey, Oum] for the definitions of clique-width and rank-width.
Other references for clique-width are [Cor+, CouOla, GolRot, Lac+]. We de-
note by cwd(G) and rwd(G) the clique-width and, respectively, the rank-width
of a graph G. Proving that cwd(G) > k for given G and k is rather difficult
in most cases. (See for instance the computation of the exact clique-width of a
square grid in [GolRot]). We overcome this difficulty in our proof of Proposition
1 by using monadic second-order transductions (MST): they are graph trans-
formations specified by formulas of monadic second-order logic. The (technical)
definition is in [CouEng] and in [Cou]. We will only need the fact that the
graphs defined by a MST from graphs of clique-width at most k have clique-
width at most f(k) for some computable function f that can be determined
from the formulas forming the definition of the transduction (Corollary 7.38(2),
[CouEng]).

Definitions and notation

(a) We denote by H/F the graph obtained from a graph H by contracting
the edges of a set F . (Parallel edges are fused, no loops are created.) If H is
a set of graphs, we denote by EC(H) the set of graphs H/F such that H ∈ H
and F is a set of edges of H .
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(b) We denote by R the set of 4-regular graphs having a proper edge coloring

with colors in {1, ..., 4}: each vertex has degree 4 and adjacent edges have differ-
ent colors. These graphs have 2p vertices and 4p edges. They have unbounded
tree-width and clique-width as they include the toroidal square grids with 4r2

vertices and 8r2 edges. (More precisely, the toroidal square grid with 4r2 vertices
has clique-width at least 2r, this follows from [GolRot]).

(c) For n ≥ 2, we define a graph Gn. Its vertices are x1, ..., xn, y1, ..., yn
and its edges are xi − yi, yi − yj for all i, j 6= i. We let D consist of 4 ver-
tices and no edge, and we let Hn be obtained from Gn by substituting dis-
joint copies of D to each vertex yi. More precisely, Hn has the 5n vertices
x1, ..., xn, y

1
1 , y

2
1 , y

3
1 , y

4
1, y

1
2 , ..., y

4
n and the 8n2 − 4n edges xi − yci , y

c
i − ydj for all

i, j 6= i and c, d = 1, ..., 4. The graphs Gn and Hn have clique-width 3 and linear
clique-width at most 4. We denote by H the set of graphs Hn.

(d) We define an MST transduction α with one parameter X . If G is a graph
and X a set of vertices, then the graph α(G,X) is defined if X is stable (no
two vertices are adjacent), its vertex set is then X and it has an edge between
x and y if and only if these vertices are at distance 2 in G. We denote by α(G)
the set of all such graphs, and by α(G) the union of the sets α(G) for G in a set
of graphs G.

Lemma 3 : We have α(EC(H)) ⊇ R.

Proof : Let R be a graph in R with vertices x1, ..., xn and a proper edge
coloring with colors 1 to 4. The set X = {x1, ..., xn} is also a subset of the vertex
set of Hn. The four neighbours of xi in Hn are y1i , y

2
i , y

3
i , y

4
i .

We let F be the set of edges yci −ycj such that xi−xj is an edge of R colored
by c. The graph K = Hn/F belongs to EC(H) and X is stable in this graph
(the vertices x1, ..., xn are not affected by the contractions of edges). It is clear
that xi −xj is an edge of R if and only if there is in K a path xi− z−xj where
z results from the contraction of yci − ycj and c is the color of xi − xj in R. It
follows that R = α(K,X). �

Proof of Proposition 1: By Lemma 3, the set α(EC(H)) has unbounded
clique-width. Hence, so has EC(H)) by Corollary 7.38(2) of [CouEng] recalled
above. This concludes the proof because the graphs Hn have clique-width 3 and
linear clique-width at most 4. �

Remarks : 1) In this proof, no two edges of a set F are adjacent because the
edge coloring of R is proper.

2) It is not hard to check that cographs (the graphs of clique-width at most
2) are preserved under edge contractions.

3) NLC-width and clique-width are linearly related (see [Gur]). Hence, the
graphs obtained by edge contractions from graphs of NLC-width at most 3 have
unbounded NLC-width. Edge contractions can also increase rank-width because
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the same sets of graphs have bounded rank-width and bounded clique-width
[OumSey].

Corollary 4 : One can determine a graph of clique-width 3 that yields a
graph of clique-width more than 3 by the contraction of a single edge.

Proof : By exhaustive search until some graph is obtained: for each n =
2, 3,... we consider the finitely many sets F of pairwise nonadjacent edges of
Hn. By using the polynomial-time algorithm of [Cor+] to check if a graph has
clique-width at most 3, we can look for a set F and an edge f ∈ F such
that Hn/(F −{f}) has clique-width 3 and Hn/F has clique-width more than 3
(actually 4, 5 or 6 by Theorem 4.8 of [Gur]). By Proposition 1, one must find
some n and such F and f . �

We have not implemented this algorithm, hence, we do not know the result-
ing graph.

Gurski has proved that erasing a vertex of degree 2 can increase (or decrease)
the clique-width by at most 2. In Proposition 2, we consider the effect of erasing
several vertices and taking induced subgraphs.

Proof of Proposition 2 : Deleting vertices does not increase rank-width.
We prove the same for erasing a degree 2 vertex x. Let y and z be its neigh-
bours. If they are adjacent, erasing x is the same as deleting it because we fuse
parallel edges. If they are not, erasing x is the same as performing first a local
complementation at x, which creates an edge between y and z, and then delet-
ing x. As local complementation preserves rank-width [Oum], erasing a degree
2 vertex cannot increase rank-width. Hence, by transitivity, the same holds for
taking an induced topological minor. The result follows since, for every graph
G, we have rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 − 1 by [OumSey].�

This proof leaves open the question of improving the upper bound 2k+1 − 1,
possibly to a polynomial in k or even to k.

Acknowledgement: I thank M. Kanté for useful comments.
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