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Computational solution for fluid flow under solid/liquid

phase change conditions

M. El Ganaoui a,*, A. Lamazouade b, P. Bontoux b, D. Morvan b

a SPCTS UMR 6638 CNRS, Facult�ee des Sciences, 87000 Limoges, France
b LMSNM FRE 2405, Universit�ee d’Aix-Marseille II, Marseille, France

A fixed grid method based on an enthalpy–porosity formulation for liquid/solid phase transition is ex-tended
to compute the time-dependent solutal convection in the melt during directional solidification of alloys. A
finite volumes approximation is used for uniform and refined grids with a second order Euler scheme. The
ability of the method to describe accurately the flow transitions and regimes is considered with respect to the
results of the linear theory of stability and of available spectral accurate calculation.
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1. Introduction

Directional solidification problems involve two domains of the mechanics that were intensively

studied with significant contributions of the numerical methods: the computational fluid dynamics

(CFD) [1–3] and thermal solid mechanics [3,4]. Various CFD methods have contributed to a

better understanding of complex structures in fluid flow. Accounting solid/liquid phase change

with complex boundary conditions, the complexity has increased and specific CFD development

are required. Recently CFD methods extended to liquid/solid phase change have known an im-

portant development in relevant fields of the modeling as physics, applied mathematics, en-

gineering and other fields [5] and is of fundamental importance for crystal growers, geologists and

meteorologists [6,7] etc.
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The existence of moving interface between solid and liquid characterizes directional solidifica-

tion. Each method of solution must determine the position and the shape of the phase change front

compatible with the governing conservation equations in each phase. Front tracking approach

deals with a weak formulation of these equations with tracking the interface, which induces

remeshing of both domains at each time step [8]. This kind of method is not suitable to investigate

solidification of alloys exhibiting usually a ‘mushy region’ rather than a sharp interface.

For heat problems, it is possible to obtain front fixing approach by making coordinates

transformation or variables transformation in the governing equations [8]. For coordinate trans-

formation, the resulting equations maintain the same variables in the conservative laws with

additional source terms issued from the transformation [9]. Stefan or similar conditions at the

interface will be imposed in the new coordinates.

The enthalpy method gives a front fixing approach for energy equation without introducing

coordinates transformation. The interface position is recovered a posteriori [8] and a number of

authors have extended this front fixing approach so as to include the convection phenomena

within the two phases mushy region [10–12,17,27]. We have developed a time-dependent en-

thalpy–porosity formulation for directional solidification. The energy equation is formulated with

the enthalpy variable accounting implicitly the thermal Stefan condition at the interface [15,

25,28].

The interaction between solid and liquid phases is modeled by a Darcian type force in the phase

change area. The behavior of the melt is similar with the flow of an incompressible fluid in a

porous medium. This force is proportional to the relative phase velocity. It corresponds to a

damping force depending on the anisotropic permeability of the mushy zone. The permeability

depends on the liquid fraction and on the size of solidification microstructures. An informative

discussion of a new slant on the general approach of continuum mechanics needed to analyze the

formation of mushy zone is given in Ref. [19]. The method is extended to the presence of species

diffusion: the solutal Stefan condition which expresses the solute incorporation or rejection across

the interface is taken into account implicitly in a species equation valid in all the domain [25,

29,30,35,36].

To solve numerically the obtained set of Navier–Stokes, energy and species equations, a second

order finite volumes approximation is used for space discretization (in the case of uniform mesh)

with a second order Euler scheme for time discretization [3,15,18]. A PISO algorithm is used for

solving coupled equations.

For the applications the vertical gradient freezing (Bridgman technique) for directional solid-

ification is studied. The material is loaded into an ampoule, melted and solidified by varying the

vertical field with a given translation. Convection in this system is driven by buoyancy differences

induced by radial and axial temperatures and solute gradients. Regarding to the magnitude of the

gradients, the geometry and the ampoule orientation with respect to the gravity direction, the

convection can be steady or time dependent [15,21,24,26].

The thermal convection occurring in such systems studied in Refs. [15,28] shows that the

enthalpy–porosity formulation in association with the finite volumes approximation simulate

accurately complex flow pattern and heat transfer. Comparisons with spectral results in fluid

phase only and finite element calculations in the two phases are achieved [15]. When the melt is

below the crystal, the thermal gradient has a destabilizing effect and time-dependent convection

develops to interact with melt/solid interface [15,28,34].

2



This study focuses on the occurrence of solutal convection in gradient freezing applications.

Firstly, only the fluid phase is investigated and the results are validated with respect to spectral

ones [13] then the full solid/liquid model is investigated. A linear approximation of the equilibrium

phase diagram is considered for establishing relations between mass fraction and temperature

fields to close the set of conservation equations [11,36].

2. Modeling

We consider a domain D � R
3 under phase change transformation. The solid and liquid phases

occupy respectively the domains Ds and Dl. The solid/liquid transition is assumed to occur in a

small region Isl. The governing equations for mass, momentum energy and species conservation

must be taken into account for this situation through the interface in Isl.

xðx; y; zÞ denotes the currant point of D and uðux; uy; uzÞ the 3D velocity vector. T is the tem-

perature and C the mass fraction. Liquid, solid and transition area are distinguished by using the

suffixes l, s and sl respectively.

Reduced domain for space and time is obtained by choosing a reference length lr and reference

time tr. Very different length scales are defined due to the characteristics time between thermal and

solutal properties. A reference magnitude velocity is deduced by ur ¼ lr=tr. A thermal variation

DT and a mass fraction variation DC respectively for thermal and solutal fields are chosen. The

same notations for reduced variables are maintained. We introduce a liquid fraction fl verifying:

flðx; tÞ ¼ 0 if x 2 Ds

0 < flðx; tÞ < 1 if x 2 Isl
flðx; tÞ ¼ 1 if x 2 Dl

ð1Þ

Introducing the reduced enthalpy variable for the energy equation:

hðx; tÞ ¼ T ðx; tÞ þ f1ðx; tÞSte
�1 ð2Þ

where Ste ¼ cDT=Lf is the Stefan number: ratio between the sensible heat cDT and the latent heat

of solidification Lf . Assuming constant and equal physical properties in the two phases (density,

thermal conductivity and heat capacity) the energy equation has the following form:

oT

ot
þ u � rT � ½atr=l

2
r �DT þ Ste�1

dfl

dt
¼ 0 ð3Þ

the term atr=l
2
r is equal to unity for thermal time scaling ðtr ¼ l2r=aÞ, gives Lewis number ðLe ¼

a=DlÞ for solutal scaling ðtr ¼ l2r=DlÞ and gives Prandtl number ðPr ¼ a=mÞ for dynamic scaling
ðtr ¼ l2r=mÞ. If Ste

�1 goes to 0 ðLf ¼ 0Þ, Eq. (3) goes to the classical one phase energy equation. In

the case of pure substance solidified during a time duration s, the transition area verify:

Isl ¼ ðx; tÞ 2 Df 
 ½0; s�=0 < flðx; tÞ < 1g ¼ ðx; tÞ 2 D
�


 ½0; s�=T�
sl 6 T ðx; tÞ6 T

þ
sl

�

ð4Þ

The difference 2eðx; tÞ ¼ Tþ
sl � T

�
sl characterizes the thermal thickness of the transition area and

flðx; tÞ is defined as:
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flðx; tÞ ¼
T � T�

sl

2eðx; tÞ
ð5Þ

Note that the energy equation is valid in all the domain D and there is no need to write explicitly

the thermal Stefan condition at the interface:

oTl

on
�
oTs

on
¼ Ste�1lra

�1v � n ð6Þ

where n is the outer normal vector. The group lrv � n=a ¼ v � n=ða=lrÞ gives thermal Peclet number
if the growth velocity is assumed equal to the normal velocity of the interface.

For the solidification of alloy the rejection or incorporation of the solute is given by a similar

relation to the thermal Stefan condition at the interface [8]. To remove the need of writing this

condition explicitly an average mass fraction is considered [11,17]:

C ¼ flCl þ ð1� flÞCs ð7Þ

using the partition ratio Cs=Cl ¼ k and neglecting the solute diffusion in the solid phase ðoCsðx; tÞ=
ot ¼ 0Þ the equation of the solute conservation is written [11,30]:

oCl

ot
þ u � rCl � ½Dltr=l

2
r �DCl þ

ofl

ot
ð1

�

� kÞCl þ ðfl � 1Þ
oCl

ot

�

¼ 0 ð8Þ

the quantity Dltr=l
2
r mentioning the solute diffusion in liquid phase is a dimensionless number

equal to unity for solutal scale, gives the inverse of the Lewis number ðLe ¼ a=DlÞ for the thermal
scale and the inverse of the Schmidt number ðSc ¼ m=DlÞ for problems reduced by dynamic time.

The phase change occurs during the temperature interval given by the solidus and liquidus lines

[11]. The linearized phase diagram gives:

Tþ
sol ¼ Tsolð0Þ þ kCsl and T�

sol ¼ Tsolð0Þ þ
k

k
Csl

where Tsolð0Þ is the melting temperature for pure solvant and k is the slope of the liquidus. In this

case the mushy zone is introduced by an e depending on the phase diagram:

2eðx; tÞ ¼ k 1

�

�
1

k

�

Csl ð9Þ

For the momentum equation a permeability term is introduced:

Kðx; tÞ ¼
Kl ! þ1 if x 2 Dl

Ksl if x 2 Isl
Ks ! 0 if x 2 Ds

ð10Þ

The momentum equations takes the following form:

ou

ot
þ u � ruþrP � ½mtr=l

2
r �Duþ ðAs C � At T Þĝgþ ½tr�K

�1u ¼ 0 ð11Þ

where the quantities At ¼ gbtDTt
2
r=lr and As ¼ gbcDCt

2
r=lr are dimensionless numbers giving for

example thermal and solutal Grashof numbers respectively when we use a dynamic scale ðtr ¼
l2r=mÞ, ĝg the unit gravity vector. Note that this equation contains asymptotically the behavior of the
velocity in each media. When K ¼ Kl, the term Kðx; tÞ�1u tends to zero and in the fluid domain Dl
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and we solve a close approximation of the Navier–Stokes equations. When K ¼ Ks, the term

Kðx; tÞ
�1
u penalizes the momentum equation, the other terms of the equation become negligible

and implies us � 0. A theoretical justification is given by using a formulation by fictitious domain

to study incompressible viscous flow inside fluid–porous-solid systems by using the Brinkman

model in Refs. [22,23]. Eqs. (3), (8) and (11) must be coupled to the continuity equation:

r � u ¼ 0 ð12Þ

3. Numerical method

3.1. Finite volumes approximation

To explain the approach we consider the two-dimensional (2D) convection diffusion equation

for a general variable u with the velocity field in cartesian coordinates u:

ou

ot
þ divðFðuÞÞ ¼ f ð13Þ

r � u ¼ 0

FðuÞ ¼ uu� cu gradu is the advection–diffusion tensor of u with the convective part Fc ¼ uu and

the diffusive part Fd ¼ �cu gradu.

Eq. (13) gives the expression of the conservation of u in an infinitesimal domain, it is equivalent

to write in any subdomain V and for all times t and t0:

Z

V

uðx; t0Þdx�

Z

V

uðx; tÞdxþ

Z t0

t

Z

oV

F � sV ðxÞdr ðxÞdt ¼

Z

V

Z t0

t

f ðx; tÞdxdt ð14Þ

where sV ðxÞ is the normal vector to the boundary oV at point x, outward to V.

In order to define a finite volumes scheme, the time derivative is approximated by a finite

differences scheme on an increasing sequences on time ðtnÞn2N with t0 ¼ 0. An ‘admissible’ mesh

(see Ref. [18]) of the physical domain X of R2 is introduced and noted M ðX ¼ [V ; V 2 MÞ. The
discrete unknowns at time tn ¼ ndt (dt is the time step), are expected to be an approximation of u

on the cell V around the point Mi;j and noted uni;j.

Eq. (13) is integrated over each cell V using the Gauss divergence theorem:
Z

V

ou

ot

� �n

dxþ

Z

oV

Fn � sV drðxÞ ¼

Z

V

f ðx; tnÞdx ð15Þ

where ðou=otÞn is given by the time scheme at the time step tn ¼ ndt in the control volume V. The

next step of the method is the approximation of the convective part Fc � sV and the diffusive part

Fd � sV of the projected flux F � sV over the boundary oV of each control volume.

3.1.1. Time discretization

The time integration is performed implicitly by using a three levels scheme, giving a second

order truncation error in time.
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ou

ot

� �n

¼
 3unþ2 � 4unþ1 þ un

2dt
þOðdt2Þ ð16Þ

3.1.2. Flux approximations

The diffusive part of the flux is discretized with a second order truncation error in space for

uniform mesh:

F
d
iþ1=2 ¼ �cu

uiþ1;j � ui;j

xiþ1 � xi
þOðdx2Þ

Different discretizations for the convective fluxes are possible, central schemes apply a sym-

metric interpolation for uiþ1=2. Upwind schemes apply a one side interpolation. Leonard and

Mokhtari [33] has introduced QUICK and other schemes as a combination between the two kinds

of interpolation. We have used QUICK scheme with a second order truncature in space. We write

Fc
iþ1=2;j ¼ uiþ1=2;juiþ1=2;j where uiþ1=2;j is an approximation of u at the east side of the volume V:

uiþ1=2;j ¼ aui�1�3m;j þ bui�m;j þ cuiþ1þm;j ð17Þ

the subscript m is equal to 0 for uiþ1=2;j > 0 and �1 for uiþ1=2;j < 0. a, b and c depends on ðxi�1; xi;
xiþ1=2 and xiþ1Þ:

a ¼
ðxiþ1=2 � xiÞðxiþ1=2 � xiþ1Þ

ðxi�1 � xiÞðxi�1 � xiþ1Þ
; b ¼

ðxiþ1=2 � xi�1Þðxiþ1=2 � xiþ1Þ

ðxi � xi�1Þðxi � xiþ1Þ

and

c ¼
ðxiþ1=2 � xi�1Þðxiþ1=2 � xiÞ

ðxiþ1 � xi�1Þðxiþ1 � xi�1Þ

for uniform grid ða;b; cÞ corresponds to ð�1=8; 6=8; 3=8Þ.

4. Numerical simulations

4.1. Fluid model for solutal convection

4.1.1. Test case definition

To validate the finite volumes code, we consider available results for a test case using time-

dependent approach with a high accuracy spectral methods [13,14]. The referred study describes

various cycles of hysteresis connecting the different branches of the stable steady solution. The

considered configuration is a 2D rectangular cavity restricted to fluid phase, the effects of front

deformation are neglected in order to focus this study on the dynamic flow patterns induced by

solutal convection. The concerned binary alloy Pb–30%Tl is characterized by k ¼ 1:1, Pr ¼
2:25
 10�2, Le ¼ 5400 and Sc ¼ 121:5. The solutal length lr ¼ ls ¼ Dl=up is used as a reference

for space and tr ¼ u2p=Dl as a reference time. DC ¼ C1ðk � 1Þ=k is the reference mass fraction

reject of Tl mass fraction at the solid/liquid interface corresponding to the diffusive solution [16].

C1 is the Tl mass fraction far from the interface. The control parameter used in the reference

results is the solutal Rayleigh number:
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Ras ¼ Grs=Sc ¼
gbcDC l

3
s

mDl

¼
gbcC1ðk � 1Þl3s

kmDl

ð18Þ

According to that and to the absence of phase change, the set (12), (11) and (8) is written in the

reduced domain fðx; y; tÞ=06 x6Ax; 06 y6Ay; 06 t6 sg:

r � u ¼ 0 ð19Þ

ou

ot
þ u � ru� ScDuþrP � GrsCĝg ¼ 0 ð20Þ

oC

ot
þ u � rC ¼ DC ð21Þ

with boundary conditions.

For the reduced velocity (set to the opposite growth velocity), homogeneous Dirichlet con-

ditions are imposed on the contour ðCÞ for ux and uy as:

uxjC ¼ 0 ð22Þ

uyjC ¼ �1 ð23Þ

For the mass fraction field a Dirichlet condition is imposed at the top, homogeneous Neumann

conditions on the vertical side, and a Robin condition at the bottom of the cavity to model the

solute rejection rate into the fluid:

Cðx;Ay ; tÞ ¼ ðk � 1Þ=k ð24Þ

oCð0; y; tÞ

ox
¼

oCðAx; y; tÞ

ox
¼ 0 ð25Þ

oCðx; 0; tÞ

oy
þ ð1� kÞCðx; 0; tÞ ¼ 0 ð26Þ

4.1.2. Finite volumes solution and comparison with spectral results

The investigated case corresponds to a reduced width Ax ¼ 9 for a reduced height Ay ¼ 16. With

these dimensions, the problem is assumed free of confinement effects [13]. The simulation was

carried out for solutal Rayleigh number Ras 2 ½10; 100� covering modes from the steady diffusive

solution to time-dependent one.

Chebyshev spectral or pseudo-spectral methods ensure important refinement near boundary

layers that usually corresponds to the smallest characteristic length scale [2,20,21]. To compare

our code with spectral one, uniform and refined grid are considered. Grid is refined around the

bottom of the domain where mass fraction gradients are localized. In the horizontal direction 40

points of grid are used. In order to better describe the viscous boundary layer where are local-

ized strong gradients of velocity a space step in geometrical progress is used with ratio

dxi=dxiþ1 ¼ q > 1. In the vertical direction, the accuracy of the solution is conditioned by the

solute gradients calculation near the bottom of the domain. We choose to refine vertically the part

7



½0;Ay=4� also. The steady solution of the Eq. (21) according to the boundary condition (23) gives

an analytical solution of the mass fraction field:

CðyÞ ¼ C1 1

�

�
k � 1

k
expð � yÞ

�

ð27Þ

The analytical solution shows the existence of an unit exponential diffusion layer adjacent to the

interface to justify the choice of solutal length as a reference scale of space. The solute field decays

from C1 far from the interface ðy ! 1Þ to ðC1=k ¼ Cð0ÞÞ near the interface.
The spectral code uses a space resolution corresponding to a Chebychev collocation method.

The solutions were calculated by taking 45 points of Gauss–Lobatto in each space direction [13].

This reference solution has been compared to four cases of finite volumes discretization. The

results are given grouped in Table 1 for Ras ¼ 35. Qualitatively the solution (Fig. 1) shows the

development of a convective cell for all the considered cases. From a quantitative point of view

a good agreement is obtained for all calculations between the finite volume solutions and the

spectral ones. The maximum difference corresponds for the uniform grid (q ¼ 1): 3.6% for stream

function and 2.2% for the mass-fraction field. The case defined in the second row of the Table 1

with q ¼ 1:07 appears to give a good compromise between the time step and the grid definition.

To evaluate the theoretical threshold of solutal convection, linear stability analysis has been

achieved by Gu�eerin et al. [16] for a large range of Ax considering a semi-infinite medium in the

vertical direction and for both alloy systems (k ¼ 0:3 and k ¼ 1:1). Two general features are ex-

hibited due to lateral confinement: a stabilizing effect on convection and a succession of odd and

even convective critical modes. For the value Ax ¼ 9 considered in our validation, the analysis

predicts a competition between the even and odd modes of the convection. However, for aspect

ratios Ax < 10, mode 1 corresponds to a mono-cellular asymmetrical and unstable mode. Mc-

Fadden et al. [31] exhibited the subcritical nature of the bifurcation node coll for convective

mono-cellular configurations. This bifurcation was then characterized by Impey et al. using a

continuation method [32]. The bifurcation has always a bounded amplitude, but the change of

stability occurs in a point noted Ra1 lower than the threshold of first instability apparition Ra2.

Varying the parameter of control Ra, we can follow an hysteresis cycle.

For present simulation the control parameter is the solutal Rayleigh number ðRasÞ, the linear
analysis gives ðRasÞ1 ¼ 20:38 and ðRasÞ2 ¼ 15:25 [14]. We have considered a range of Ras 2
½0; 100�. Starting with the diffusive solution Ras ¼ 0, the other ones are obtained successively for

higher Ras (see Table 2).

Table 1

Solutions for four kinds of finite volumes grid and a reference spectral grid for Ras ¼ 35. Maximum of stream-function

wmax and minimum of interface mass function Csl min are compared

Method Grid type Time step wmax Csl min

Finite volumes Refined q ¼ 1:07 5
 10�2 13.632 9.752

Finite volumes Refined q ¼ 1:03 5
 10�3 13.624 9.718

Finite volumes Refined q ¼ 1:01 4
 10�4 13.618 9.693

Finite volumes Uniform q ¼ 1 ð40
 105Þ 10�4 14.112 9.906

Spectral Collocation Chebychev ð45
 45Þ 10�4 13.619 9.696
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Fig. 1. Mass fraction configuration for: (a) Finite volumes and (b) spectral results. Dynamic configurations for: (c)

finite volumes and (d) spectral results corresponding to Ras ¼ 35. The orientation of the convective cells in both direct

and indirect direction is equiprobable.

Table 2

Comparison of finite volumes and spectral results: transitions for Ras 2 ½10; 60�; m ¼ 1 for one cellular flow, and m ¼ 2

for two cellular flow. For steady solution the maximum of stream-function wmax are compared. For periodic regime the

frequencies f are compared

Ras Finite volumes Spectral

10 Steady diffusive wmax ¼ 3:93
 10�3 Steady diffusive wmax ¼ 1
 10�7

20 Steady m ¼ 1; wmax ¼ 8:58 Steady m ¼ 1; wmax ¼ 8:91
35 Steady m ¼ 1; wmax ¼ 13:63 Steady m ¼ 1; wmax ¼ 13:619
41 Periodic m ¼ 2; f ¼ 0:105 Periodic m ¼ 2; f ¼ 0:110
60 Periodic m ¼ 2; f ¼ 0:177 Periodic m ¼ 2; f ¼ 0:192
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Obtained diffusive solution for Ras ¼ 10 corresponds the analytical equation (27) and allows

that the simulation takes into account correctly the Robin boundary condition imposed at the

bottom of the domain. Below the critical threshold, the diffusive mode is obtained (for example

Ras ¼ 20). The isolines of mass fraction remain quasi-planar and the interfacial field remains

constant. The signal of velocity diminishes slowly with the influence of solutal diffusion.

To reach high Ra values, the numerical simulation requires higher CPU time. The theory does

not take into account the effects of the numerical diffusion. Taking as initial conditions a de-

stabilized velocity field, a development of a mono-cellular convective mode for the threshold

Ras ¼ 20 is observed. The movement is ascending along the east wall and descending along the

west wall as show it the isovalues of the mass fraction (Fig. 2). For Ras ¼ 41 a second con-

trarotative cell appears in the top of the cavity (Fig. 3(a)). The regime becomes periodic with two

cells in competition corresponding to the frequency f ¼ 0:105. Fig. 4 shows three streamlines

patterns at three stages for the periodic flow (f ¼ 0:177) for Ras ¼ 60 illustrating the transition

between symmetric and asymmetric convection during time-dependent regime. The symmetry

breaking of the solute field is also illustrated in Fig. 5. The dynamic configuration is similar to

observed situations during Ga–Ge growth investigated in 2D cavity [15], the considered config-

uration in that case takes into account the solid/liquid interface interacting with the two cells

particularly in the case of time-dependent melt.

4.2. Solid/liquid model for solutal convection

A full model of Pb–30%Tl including solid and liquid phases is considered in an ampoule with

aspect ratio A ¼ 20=9. To focus the study on solutal influence, latent heat effects are neglected.

The displacement of the ampoule is done at constant speed up. The reduced linear thermal

Fig. 2. Finite volumes results: monocellular regime illustrating the study solution for Ras ¼ 20.
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gradient is G ¼ 1=9. We deduce approximately the reduced size of the mushy zone dymushy ¼ 0:818.
Homogeneous Dirichlet conditions are imposed for the velocity:

uxjC ¼ uy jC ¼ 0 ð28Þ

no permeable conditions implies a Neumann condition for the Thallium mass fraction field:

oC

on

�

�

�

�

C ¼ 0 ð29Þ

Fig. 3. Time-dependent regime for Ras ¼ 41 illustrated with periodic solution corresponding to frequency f ¼ 0:105.

Fig. 4. Dynamic field for periodic solution corresponding to Ras ¼ 60 ðf ¼ 0:177Þ. Three configurations illustrating
the transition between two-cellular and mono-cellular flow.
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for the thermal field a moving boundary conditions are applied to the adiabatic zone delimited

by a cold point ycðtÞ and a hot point yhðtÞ.

T ð0; y; tÞ ¼ T ðAx; y; tÞ ¼ 0 for y6 ycðtÞ ð30Þ

oT ð0; y; tÞ

on
¼

oT ðAx; y; tÞ

on
¼ 0 for yc6 y6 yh ð31Þ

T ð0; y; tÞ ¼ T ðAx; y; tÞ ¼ 1 for yP yhðtÞ ð32Þ

the adiabatic zone moves at the solidification velocity up. The initial conditions correspond to an

uniform mass fraction field of thallium Cðx; y; 0Þ ¼ 0:3% and an uniform thermal and dynamic

fields T ðx; y; 0Þ ¼ 0; uðx; y; 0Þ ¼ 0.

A 40
 140 grid is used. The space step in the horizontal direction is variable to refine the

mesh near the walls. In the vertical direction the grid is uniform with a small step dy1 ¼
12:8
 10�2 to obtain a good representation for the phase change area (six space mesh in the

mushy region). We use a time step dt ¼ 10�4 giving a correct time representation for the phase

change phenomena under similar conditions as studied in Ref. [15]. We present here solutal

results corresponding Ras 2 ½10; 80�, without taking into account the thermal convection

Rat ¼ 0. In order to examine coupled thermal and solutal convection, a configuration for

Ras ¼ 20 and Rat ¼ 500 has been considered. The thermal field (Fig. 6) is not influenced by

the convection in the melt, and it is independent on the Rayleigh number value. Figs. 7–9

show the mass fraction isovalues for respectively Ras ¼ 10 (diffusive regime) to high Ras ¼ 80.

Successive solidification interfaces are represented in the Fig. 6. At the first steps the influence

of initial condition is observed before a steady state with the same behavior of dynamic and

thermal fields. This influence is shown also by considering vertical positions z ¼ zi of the

ampoule for diffusive regime (Ras ¼ 10) at the first step and at the last step of the considered

duration of growth (Fig. 10).

For the alloy solidification the relation (4) quantifies the coupling between the liquids isotherm

and the solidification interface: jTsol � Tsolð0Þj6 jkCslj ¼ 1:1%. The phase diagram indicates that a

Fig. 5. Mass fraction field for periodic solution corresponding to Ras ¼ 60 ðf ¼ 0:177Þ. Three configurations illus-

trating the symmetry breaking.
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local variation of 10% of the field of mass fraction brings the variation on the thermal field, the

thermal gradient in the zone of phase change is G ¼ 1=9 to predict a small variation (1.1%) of the
interface position around the liquidus curve.

The simulation carried out without taking into account the thermal convection gives similar

dynamic mode in the melt. Figs. 11–13 show an axi-symmetrical convective hydrodynamic mode

with two counter-rotating cells. The external contours of the cells approach tangentially the

contour of the interface (Fig. 13). This fact explains the low perturbation in the mass fraction field

structure (Figs. 7–9). All simulations give steady hydrodynamic regime. It is pointed out that the

simulations given in Section 4.1 with modeling the segregation by a Robin’s boundary condition

favour the appearance of time-dependent structures is for lower value of the solutal Rayleigh

Fig. 6. Temperature field (left) and successive solidification interfaces (right) for the studied steps: these configurations

are similar for all studied Ras, 06Ras6 100.

Fig. 7. Evolution of the mass fraction field for sucessive steps of growth, Ras ¼ 10.
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number Ras ¼ 41. The comparison for both models shows that the maximum values of the con-

vective intensity are comparable for high values of Rayleigh number. Because of the displacement

of the interface the boundary layer induced by the mass fraction gradient is weaker in this case.

Fig. 8. Evolution of the mass fraction field for sucessive steps of growth, Ras ¼ 20.

Fig. 9. Evolution of the mass fraction field for sucessive steps of growth, Ras ¼ 80.

Fig. 10. Evolution of the mass fraction (fm noted C in the text) function of the y coordinate in five positions (z ¼ si,

i ¼ 1; . . . ; 5) for the first (left) and last step of growth (right), Ras ¼ 10.
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This configuration limits the effects of convective transport on the solute field, which explains the

less disturbed structure of this field (Figs. 7–9).

Taking into account the effects of thermal Rayleigh number Rat ¼ 500. The convective motion

develops with a symmetric regime but shows an increase of the stream-function maximum value.

The development begins with four cells, two lower ones near the interface are due to the solutal

convection and the higher cells are due to the radial thermal gradients established within the top

of the adiabatic zone as seen on the temperature field (Fig. 6). After the first step the higher and

lower cells give one convective cell occupying all the fluid phase (Figs. 14 and 15).

Fig. 11. Evolution of hydrodynamic field, Ras ¼ 10.

Fig. 12. Evolution of hydrodynamic field, Ras ¼ 20.

Fig. 13. Evolution of hydrodynamic field and the solid/liquid interface, Ras ¼ 80.
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5. Conclusion

A numerical investigation is proposed for 2D convective flow developing in the liquid phase

above an alloy directional growing in the vertical Bridgman configuration. The homogeneous

formulation of Navier–Stokes, energy and species conservation permits to consider extended

model accounting solid/liquid phase change without writing explicitly the transmission conditions

at the phase change interface.

By understanding the extension of CFD methods to fluid flow calculations under the phase

transition conditions a first step of better physical interpretation of this complex phenomena is

taken. Crystal growers are concerned with the interaction of convective phenomena with the

growth interface. An important aspect regarding thermal convection in directional solidification

configuration is achieved.

The extension to solutal convection for binary alloy makes an important advance to realistic

growth model. The work presented in this paper gives a first step in this way. It is be shown that

the method is able to describe with accuracy close to spectral one complex phenomena occurring

inreduced configuration to fluid phase. The global model with solid phase accounts correctly the

interface displacement and its interaction with solutal field. A weak coupling is considered in this

study. For the continuation of this work a strong coupling must be studied to extend these solutal

results to similar ones shown in El Ganaoui thesis [15] involving strong interaction between

solidification front and solid/liquid interface under thermal convection carried out for pure material.

Fig. 14. Evolution of the streamlines for both thermal and solutal convection Ras ¼ 80 and Rat ¼ 500.

Fig. 15. Evolution of the mass fraction field for both thermal and solutal convection, Ras ¼ 80 and Rat ¼ 500.
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